106 lines
3.3 KiB
Python
106 lines
3.3 KiB
Python
from imutils.video import VideoStream
|
|
import argparse
|
|
import datetime
|
|
import imutils
|
|
import time
|
|
import cv2
|
|
import os
|
|
import numpy as np
|
|
import traceback
|
|
import _thread
|
|
import imageio
|
|
import numpy as np
|
|
|
|
class ContourExtractor:
|
|
|
|
#X = {frame_number: [(contour, (x,y,w,h)), ...], }
|
|
extractedContours = dict()
|
|
min_area = 990
|
|
max_area = 30000
|
|
threashold = 25
|
|
xDim = 0
|
|
yDim = 0
|
|
|
|
def __init__(self, videoPath):
|
|
print("ContourExtractor initiated")
|
|
|
|
|
|
min_area = self.min_area
|
|
max_area = self.max_area
|
|
threashold = self.threashold
|
|
|
|
# initialize the first frame in the video stream
|
|
vs = cv2.VideoCapture(videoPath)
|
|
|
|
res, image = vs.read()
|
|
self.xDim = image.shape[1]
|
|
self.yDim = image.shape[0]
|
|
firstFrame = None
|
|
# loop over the frames of the video
|
|
frameCount = 0
|
|
while res:
|
|
res, frame = vs.read()
|
|
# resize the frame, convert it to grayscale, and blur it
|
|
if frame is None:
|
|
print("ContourExtractor: frame was None")
|
|
return
|
|
|
|
frame = imutils.resize(frame, width=500)
|
|
cv2.imshow( "frame", frame)
|
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
|
|
|
# if the first frame is None, initialize it
|
|
if firstFrame is None:
|
|
firstFrame = gray
|
|
continue
|
|
|
|
frameDelta = cv2.absdiff(gray, firstFrame)
|
|
thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1]
|
|
# dilate the thresholded image to fill in holes, then find contours
|
|
thresh = cv2.dilate(thresh, None, iterations=3)
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
contours = []
|
|
for c in cnts:
|
|
if cv2.contourArea(c) < min_area or cv2.contourArea(c) > max_area:
|
|
continue
|
|
|
|
(x, y, w, h) = cv2.boundingRect(c)
|
|
contours.append((frame[y:y+h, x:x+w], (x, y, w, h)))
|
|
#cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
self.extractedContours[frameCount] = contours
|
|
frameCount += 1
|
|
|
|
#cv2.imshow( "annotated", frame )
|
|
|
|
#cv2.waitKey(10) & 0XFF
|
|
|
|
def displayContours(self):
|
|
values = self.extractedContours.values()
|
|
for xx in values:
|
|
for v1 in xx:
|
|
(x, y, w, h) = v1[1]
|
|
v = v1[0]
|
|
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
|
|
frame = imutils.resize(frame, width=512)
|
|
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
|
|
cv2.imshow("changes overlayed", frame)
|
|
cv2.waitKey(10) & 0XFF
|
|
cv2.destroyAllWindows()
|
|
|
|
def exportContours(self):
|
|
values = self.extractedContours.values()
|
|
frames = []
|
|
for xx in values:
|
|
for v1 in xx:
|
|
(x, y, w, h) = v1[1]
|
|
v = v1[0]
|
|
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
|
|
frame = imutils.resize(frame, width=512)
|
|
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
|
|
frames.append(frame)
|
|
return frames
|
|
|