from imutils.video import VideoStream import argparse import datetime import imutils import time import cv2 import os import numpy as np import traceback import _thread import imageio import numpy as np class ContourExtractor: #X = {frame_number: [(contour, (x,y,w,h)), ...], } extractedContours = dict() min_area = 990 max_area = 30000 threashold = 25 xDim = 0 yDim = 0 def __init__(self, videoPath): print("ContourExtractor initiated") min_area = self.min_area max_area = self.max_area threashold = self.threashold # initialize the first frame in the video stream vs = cv2.VideoCapture(videoPath) res, image = vs.read() self.xDim = image.shape[1] self.yDim = image.shape[0] firstFrame = None # loop over the frames of the video frameCount = 0 while res: res, frame = vs.read() # resize the frame, convert it to grayscale, and blur it if frame is None: print("ContourExtractor: frame was None") return frame = imutils.resize(frame, width=500) cv2.imshow( "frame", frame) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) # if the first frame is None, initialize it if firstFrame is None: firstFrame = gray continue frameDelta = cv2.absdiff(gray, firstFrame) thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1] # dilate the thresholded image to fill in holes, then find contours thresh = cv2.dilate(thresh, None, iterations=3) cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) contours = [] for c in cnts: if cv2.contourArea(c) < min_area or cv2.contourArea(c) > max_area: continue (x, y, w, h) = cv2.boundingRect(c) contours.append((frame[y:y+h, x:x+w], (x, y, w, h))) #cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) self.extractedContours[frameCount] = contours frameCount += 1 #cv2.imshow( "annotated", frame ) #cv2.waitKey(10) & 0XFF def displayContours(self): values = self.extractedContours.values() for xx in values: for v1 in xx: (x, y, w, h) = v1[1] v = v1[0] frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8) frame = imutils.resize(frame, width=512) frame[y:y+v.shape[0], x:x+v.shape[1]] = v cv2.imshow("changes overlayed", frame) cv2.waitKey(10) & 0XFF cv2.destroyAllWindows() def exportContours(self): values = self.extractedContours.values() frames = [] for xx in values: for v1 in xx: (x, y, w, h) = v1[1] v = v1[0] frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8) frame = imutils.resize(frame, width=512) frame[y:y+v.shape[0], x:x+v.shape[1]] = v frames.append(frame) return frames