Video-Summary/Application/Classifiers/Classifier.py

62 lines
2.5 KiB
Python

# Code adapted from Tensorflow Object Detection Framework
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
# Tensorflow Object Detection Detector
import numpy as np
import tensorflow as tf
import cv2
import os
import json
from Application.Classifiers.ClassifierInterface import ClassifierInterface
class Classifier(ClassifierInterface):
def __init__(self):
self.threshold = .5
with open(os.path.join(os.path.dirname(__file__), "coco_map.json")) as file:
mapping = json.load(file)
self.classes = dict()
for element in mapping:
self.classes[element["id"]-1] = element["display_name"]
self.net = cv2.dnn.readNet(os.path.join(os.path.dirname(__file__),"yolov4.weights"),os.path.join(os.path.dirname(__file__),"yolov4.cfg"))
#self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
#self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
self.layer_names = self.net.getLayerNames()
self.outputlayers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
print("Classifier Initiated")
def tagLayer(self, imgs):
# get the results from the net
results = []
for i, contours in enumerate(imgs[19:20]):
#print(i)
for contour in contours:
height,width,channels = contour.shape
dim = max(height, width)
if dim > 320:
img2 = np.zeros(shape=[dim, dim, 3], dtype=np.uint8)
else:
img2 = np.zeros(shape=[320,320, 3], dtype=np.uint8)
img2[:height,:width] = contour
blob = cv2.dnn.blobFromImage(img2,1/256,(320,320),(0,0,0),True,crop=False) #reduce 416 to 320
self.net.setInput(blob)
outs = self.net.forward(self.outputlayers)
for out in outs:
for detection in out:
scores = detection
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > self.threshold:
if self.classes[class_id] not in results:
cv2.imshow("changes x", img2)
cv2.waitKey(10) & 0XFF
results.append(self.classes[class_id])
#print(self.classes[x], score)
return results