# Code adapted from Tensorflow Object Detection Framework # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb # Tensorflow Object Detection Detector import numpy as np import tensorflow as tf import cv2 import os import json from Application.Classifiers.ClassifierInterface import ClassifierInterface class Classifier(ClassifierInterface): def __init__(self): self.threshold = .5 with open(os.path.join(os.path.dirname(__file__), "coco_map.json")) as file: mapping = json.load(file) self.classes = dict() for element in mapping: self.classes[element["id"]-1] = element["display_name"] self.net = cv2.dnn.readNet(os.path.join(os.path.dirname(__file__),"yolov4.weights"),os.path.join(os.path.dirname(__file__),"yolov4.cfg")) #self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) #self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) self.layer_names = self.net.getLayerNames() self.outputlayers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] print("Classifier Initiated") def tagLayer(self, imgs): # get the results from the net results = [] for i, contours in enumerate(imgs[19:20]): #print(i) for contour in contours: height,width,channels = contour.shape dim = max(height, width) if dim > 320: img2 = np.zeros(shape=[dim, dim, 3], dtype=np.uint8) else: img2 = np.zeros(shape=[320,320, 3], dtype=np.uint8) img2[:height,:width] = contour blob = cv2.dnn.blobFromImage(img2,1/256,(320,320),(0,0,0),True,crop=False) #reduce 416 to 320 self.net.setInput(blob) outs = self.net.forward(self.outputlayers) for out in outs: for detection in out: scores = detection class_id = np.argmax(scores) confidence = scores[class_id] if confidence > self.threshold: if self.classes[class_id] not in results: cv2.imshow("changes x", img2) cv2.waitKey(10) & 0XFF results.append(self.classes[class_id]) #print(self.classes[x], score) return results