added classifier
This commit is contained in:
parent
e9585706b9
commit
03d26b46ca
|
|
@ -8,3 +8,5 @@ short.mp4
|
|||
__pycache__/
|
||||
|
||||
*.mp4
|
||||
|
||||
*.weights
|
||||
|
|
@ -5,99 +5,57 @@
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import cv2
|
||||
import os
|
||||
import json
|
||||
|
||||
from Application.Classifiers.ClassifierInterface import ClassifierInterface
|
||||
|
||||
|
||||
class Classifier(ClassifierInterface):
|
||||
def __init__(self):
|
||||
print("1")
|
||||
self.model_path = "./class1.pb"
|
||||
self.odapi = DetectorAPI(path_to_ckpt=self.model_path)
|
||||
self.threshold = 0.6
|
||||
self.threshold = .5
|
||||
with open(os.path.join(os.path.dirname(__file__), "coco_map.json")) as file:
|
||||
mapping = json.load(file)
|
||||
self.classes = dict()
|
||||
for element in mapping:
|
||||
self.classes[element["id"]-1] = element["display_name"]
|
||||
|
||||
def detect(self, stream):
|
||||
cap = cv2.VideoCapture(stream)
|
||||
img = None
|
||||
r, img = cap.read()
|
||||
if img is None:
|
||||
return img
|
||||
# scale the image down for faster processing
|
||||
scale_percent = 60 # percent of original size
|
||||
width = int(img.shape[1] * scale_percent / 100)
|
||||
height = int(img.shape[0] * scale_percent / 100)
|
||||
dim = (width, height)
|
||||
self.net = cv2.dnn.readNet(os.path.join(os.path.dirname(__file__),"yolov4.weights"),os.path.join(os.path.dirname(__file__),"yolov4.cfg"))
|
||||
#self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
||||
#self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
||||
self.layer_names = self.net.getLayerNames()
|
||||
self.outputlayers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
|
||||
|
||||
img = cv2.resize(img, dim)
|
||||
print("Classifier Initiated")
|
||||
|
||||
def tagLayer(self, imgs):
|
||||
# get the results from the net
|
||||
boxes, scores, classes, num = self.odapi.process_frame(img)
|
||||
res = False
|
||||
for i in range(len(boxes)):
|
||||
# Class 1 represents human
|
||||
# draw recogniction boxes and return resulting image + true/false
|
||||
if classes[i] == 1:
|
||||
if scores[i] > self.threshold:
|
||||
box = boxes[i]
|
||||
cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)
|
||||
res = True
|
||||
return img, res
|
||||
|
||||
results = []
|
||||
for i, contours in enumerate(imgs[19:20]):
|
||||
#print(i)
|
||||
for contour in contours:
|
||||
height,width,channels = contour.shape
|
||||
|
||||
dim = max(height, width)
|
||||
if dim > 320:
|
||||
img2 = np.zeros(shape=[dim, dim, 3], dtype=np.uint8)
|
||||
else:
|
||||
res = False
|
||||
return img, res
|
||||
|
||||
|
||||
def tagLayers(self, layers):
|
||||
print("tagging")
|
||||
# Detector API can be changed out given the I/O remains the same
|
||||
# this way you can use a different N-Net if you like to
|
||||
class DetectorAPI:
|
||||
def __init__(self, path_to_ckpt):
|
||||
self.path_to_ckpt = path_to_ckpt
|
||||
|
||||
self.detection_graph = tf.Graph()
|
||||
with self.detection_graph.as_default():
|
||||
od_graph_def = tf.GraphDef()
|
||||
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
|
||||
serialized_graph = fid.read()
|
||||
od_graph_def.ParseFromString(serialized_graph)
|
||||
tf.import_graph_def(od_graph_def, name='')
|
||||
|
||||
self.default_graph = self.detection_graph.as_default()
|
||||
self.sess = tf.Session(graph=self.detection_graph)
|
||||
|
||||
# Definite input and output Tensors for detection_graph
|
||||
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
|
||||
# Each box represents a part of the image where a particular object was detected.
|
||||
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||
# Each score represent how level of confidence for each of the objects.
|
||||
# Score is shown on the result image, together with the class label.
|
||||
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
|
||||
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
|
||||
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
|
||||
|
||||
def process_frame(self, image):
|
||||
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
|
||||
image_np_expanded = np.expand_dims(image, axis=0)
|
||||
# Actual detection.
|
||||
|
||||
(boxes, scores, classes, num) = self.sess.run(
|
||||
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
|
||||
feed_dict={self.image_tensor: image_np_expanded})
|
||||
|
||||
im_height, im_width,_ = image.shape
|
||||
boxes_list = [None for i in range(boxes.shape[1])]
|
||||
for i in range(boxes.shape[1]):
|
||||
boxes_list[i] = (
|
||||
int(boxes[0, i, 0] * im_height),
|
||||
int(boxes[0, i, 1] * im_width),
|
||||
int(boxes[0, i, 2] * im_height),
|
||||
int(boxes[0, i, 3] * im_width)
|
||||
)
|
||||
|
||||
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
|
||||
|
||||
def close(self):
|
||||
self.sess.close()
|
||||
self.default_graph.close()
|
||||
img2 = np.zeros(shape=[320,320, 3], dtype=np.uint8)
|
||||
img2[:height,:width] = contour
|
||||
blob = cv2.dnn.blobFromImage(img2,1/256,(320,320),(0,0,0),True,crop=False) #reduce 416 to 320
|
||||
self.net.setInput(blob)
|
||||
outs = self.net.forward(self.outputlayers)
|
||||
for out in outs:
|
||||
for detection in out:
|
||||
scores = detection
|
||||
class_id = np.argmax(scores)
|
||||
confidence = scores[class_id]
|
||||
if confidence > self.threshold:
|
||||
if self.classes[class_id] not in results:
|
||||
cv2.imshow("changes x", img2)
|
||||
cv2.waitKey(10) & 0XFF
|
||||
results.append(self.classes[class_id])
|
||||
#print(self.classes[x], score)
|
||||
|
||||
return results
|
||||
|
|
|
|||
|
|
@ -0,0 +1,185 @@
|
|||
[
|
||||
{
|
||||
"name": "/m/01g317"
|
||||
,"id": 1
|
||||
,"display_name": "person"
|
||||
},
|
||||
{
|
||||
"name": "/m/0199g"
|
||||
,"id": 2
|
||||
,"display_name": "bicycle"
|
||||
},
|
||||
{
|
||||
"name": "/m/0k4j"
|
||||
,"id": 3
|
||||
,"display_name": "car"
|
||||
},
|
||||
{
|
||||
"name": "/m/04_sv"
|
||||
,"id": 4
|
||||
,"display_name": "motorcycle"
|
||||
},
|
||||
{
|
||||
"name": "/m/05czz6l"
|
||||
,"id": 5
|
||||
,"display_name": "airplane"
|
||||
},
|
||||
{
|
||||
"name": "/m/01bjv"
|
||||
,"id": 6
|
||||
,"display_name": "bus"
|
||||
},
|
||||
{
|
||||
"name": "/m/07jdr"
|
||||
,"id": 7
|
||||
,"display_name": "train"
|
||||
},
|
||||
{
|
||||
"name": "/m/07r04"
|
||||
,"id": 8
|
||||
,"display_name": "truck"
|
||||
},
|
||||
{
|
||||
"name": "/m/019jd"
|
||||
,"id": 9
|
||||
,"display_name": "boat"
|
||||
},
|
||||
{
|
||||
"name": "/m/015qff"
|
||||
,"id": 10
|
||||
,"display_name": "traffic light"
|
||||
},
|
||||
{
|
||||
"name": "/m/01pns0"
|
||||
,"id": 11
|
||||
,"display_name": "fire hydrant"
|
||||
},
|
||||
{
|
||||
"name": "/m/02pv19"
|
||||
,"id": 13
|
||||
,"display_name": "stop sign"
|
||||
},
|
||||
{
|
||||
"name": "/m/015qbp"
|
||||
,"id": 14
|
||||
,"display_name": "parking meter"
|
||||
},
|
||||
{
|
||||
"name": "/m/0cvnqh"
|
||||
,"id": 15
|
||||
,"display_name": "bench"
|
||||
},
|
||||
{
|
||||
"name": "/m/015p6"
|
||||
,"id": 16
|
||||
,"display_name": "bird"
|
||||
},
|
||||
{
|
||||
"name": "/m/01yrx"
|
||||
,"id": 17
|
||||
,"display_name": "cat"
|
||||
},
|
||||
{
|
||||
"name": "/m/0bt9lr"
|
||||
,"id": 18
|
||||
,"display_name": "dog"
|
||||
},
|
||||
{
|
||||
"name": "/m/03k3r"
|
||||
,"id": 19
|
||||
,"display_name": "horse"
|
||||
},
|
||||
{
|
||||
"name": "/m/07bgp"
|
||||
,"id": 20
|
||||
,"display_name": "sheep"
|
||||
},
|
||||
{
|
||||
"name": "/m/01xq0k1"
|
||||
,"id": 21
|
||||
,"display_name": "cow"
|
||||
},
|
||||
{
|
||||
"name": "/m/0bwd_0j"
|
||||
,"id": 22
|
||||
,"display_name": "elephant"
|
||||
},
|
||||
{
|
||||
"name": "/m/01dws"
|
||||
,"id": 23
|
||||
,"display_name": "bear"
|
||||
},
|
||||
{
|
||||
"name": "/m/0898b"
|
||||
,"id": 24
|
||||
,"display_name": "zebra"
|
||||
},
|
||||
{
|
||||
"name": "/m/03bk1"
|
||||
,"id": 25
|
||||
,"display_name": "giraffe"
|
||||
},
|
||||
{
|
||||
"name": "/m/01940j"
|
||||
,"id": 27
|
||||
,"display_name": "backpack"
|
||||
},
|
||||
{
|
||||
"name": "/m/0hnnb"
|
||||
,"id": 28
|
||||
,"display_name": "umbrella"
|
||||
},
|
||||
{
|
||||
"name": "/m/080hkjn"
|
||||
,"id": 31
|
||||
,"display_name": "handbag"
|
||||
},
|
||||
|
||||
{
|
||||
"name": "/m/01s55n"
|
||||
,"id": 33
|
||||
,"display_name": "suitcase"
|
||||
},
|
||||
|
||||
{
|
||||
"name": "/m/03g8mr"
|
||||
,"id": 39
|
||||
,"display_name": "baseball bat"
|
||||
},
|
||||
|
||||
{
|
||||
"name": "/m/06_fw"
|
||||
,"id": 41
|
||||
,"display_name": "skateboard"
|
||||
},
|
||||
{
|
||||
"name": "/m/01mzpv"
|
||||
,"id": 62
|
||||
,"display_name": "chair"
|
||||
},
|
||||
{
|
||||
"name": "/m/02crq1"
|
||||
,"id": 63
|
||||
,"display_name": "couch"
|
||||
},
|
||||
{
|
||||
"name": "/m/03ssj5"
|
||||
,"id": 65
|
||||
,"display_name": "bed"
|
||||
},
|
||||
{
|
||||
"name": "/m/04bcr3"
|
||||
,"id": 67
|
||||
,"display_name": "dining table"
|
||||
},
|
||||
{
|
||||
"name": "/m/07c52"
|
||||
,"id": 72
|
||||
,"display_name": "tv"
|
||||
},
|
||||
{
|
||||
"name": "/m/01c648"
|
||||
,"id": 73
|
||||
,"display_name": "laptop"
|
||||
}
|
||||
]
|
||||
|
|
@ -0,0 +1,789 @@
|
|||
[net]
|
||||
# Testing
|
||||
# batch=1
|
||||
# subdivisions=1
|
||||
# Training
|
||||
batch=64
|
||||
subdivisions=16
|
||||
width=608
|
||||
height=608
|
||||
channels=3
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
hue=.1
|
||||
|
||||
learning_rate=0.001
|
||||
burn_in=1000
|
||||
max_batches = 500200
|
||||
policy=steps
|
||||
steps=400000,450000
|
||||
scales=.1,.1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
######################
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=255
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 6,7,8
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=80
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
||||
|
||||
[route]
|
||||
layers = -4
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[upsample]
|
||||
stride=2
|
||||
|
||||
[route]
|
||||
layers = -1, 61
|
||||
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=255
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 3,4,5
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=80
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
||||
|
||||
|
||||
[route]
|
||||
layers = -4
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[upsample]
|
||||
stride=2
|
||||
|
||||
[route]
|
||||
layers = -1, 36
|
||||
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=255
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 0,1,2
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=80
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -12,7 +12,7 @@ class Config:
|
|||
"tolerance": 20,
|
||||
"maxLength": None,
|
||||
"ttolerance": 60,
|
||||
"videoBufferLength": 128,
|
||||
"videoBufferLength": 16,
|
||||
"noiseThreashold": 0.1,
|
||||
"noiseSensitivity": 3/4,
|
||||
"LayersPerContour": 5,
|
||||
|
|
@ -20,6 +20,7 @@ class Config:
|
|||
}
|
||||
|
||||
def __init__(self):
|
||||
'''This is basically just a wrapper for a json / python dict'''
|
||||
print("Current Config:", self.c)
|
||||
|
||||
def __getitem__(self, key):
|
||||
|
|
|
|||
|
|
@ -21,8 +21,8 @@ from Application.Config import Config
|
|||
|
||||
class ContourExtractor:
|
||||
|
||||
#X = {frame_number: [(contour, (x,y,w,h)), ...], }
|
||||
|
||||
#extracedContours = {frame_number: [(contour, (x,y,w,h)), ...], }
|
||||
# dict with frame numbers as keys and the contour bounds of every contour for that frame
|
||||
|
||||
def getextractedContours(self):
|
||||
return self.extractedContours
|
||||
|
|
@ -45,16 +45,14 @@ class ContourExtractor:
|
|||
print("ContourExtractor initiated")
|
||||
|
||||
def extractContours(self):
|
||||
extractedContours = dict()
|
||||
videoReader = VideoReader(self.config)
|
||||
|
||||
videoReader.fillBuffer()
|
||||
|
||||
threads = self.config["videoBufferLength"]
|
||||
self.start = time.time()
|
||||
# start a bunch of frames and let them read from the video reader buffer until the video reader reaches EOF
|
||||
with ThreadPool(threads) as pool:
|
||||
while not videoReader.videoEnded():
|
||||
#FrameCount, frame = videoReader.pop()
|
||||
if videoReader.buffer.qsize() == 0:
|
||||
time.sleep(.5)
|
||||
|
||||
|
|
@ -70,6 +68,7 @@ class ContourExtractor:
|
|||
|
||||
def getContours(self, data):
|
||||
frameCount, frame = data
|
||||
# wait for the reference frame, which is calculated by averaging some revious frames
|
||||
while frameCount not in self.averages:
|
||||
time.sleep(0.1)
|
||||
firstFrame = self.averages.pop(frameCount, None)
|
||||
|
|
@ -77,6 +76,7 @@ class ContourExtractor:
|
|||
if frameCount % (60*30) == 0:
|
||||
print(f"{frameCount/(60*30)} Minutes processed in {round((time.time() - self.start), 2)} each")
|
||||
self.start = time.time()
|
||||
|
||||
gray = self.prepareFrame(frame)
|
||||
frameDelta = cv2.absdiff(gray, firstFrame)
|
||||
thresh = cv2.threshold(frameDelta, self.threashold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ class Exporter:
|
|||
if raw:
|
||||
self.exportRawData(layers)
|
||||
if layered and overlayed:
|
||||
print("Layered and Individual are mutially exclusive, Individual was choosen automatically")
|
||||
print("Layered and Individual are mutually exclusive, individual was choosen automatically")
|
||||
overlayed = False
|
||||
if layered and not overlayed:
|
||||
self.exportLayers(layers)
|
||||
|
|
|
|||
|
|
@ -17,6 +17,16 @@ class Layer:
|
|||
length = None
|
||||
|
||||
def __init__(self, startFrame, data, config):
|
||||
'''returns a Layer object
|
||||
|
||||
Layers are collections of contours with a StartFrame,
|
||||
which is the number of the frame the first contour of
|
||||
this layer was extraced from
|
||||
|
||||
A Contour is a CV2 Contour, which is a y*x*3 rgb numpy array,
|
||||
but we only care about the corners of the contours.
|
||||
So we save the bounds (x,y,w,h) in bounds[] and the actual content in data[]
|
||||
'''
|
||||
self.startFrame = startFrame
|
||||
self.lastFrame = startFrame
|
||||
self.config = config
|
||||
|
|
@ -25,22 +35,28 @@ class Layer:
|
|||
self.bounds.append([data])
|
||||
#print("Layer constructed")
|
||||
|
||||
def add(self, frameNumber, data):
|
||||
def add(self, frameNumber, bound):
|
||||
'''Adds a bound'''
|
||||
if not self.startFrame + len(self.bounds) < frameNumber:
|
||||
if len(self.bounds[self.startFrame - frameNumber]) >= 1:
|
||||
self.bounds[self.startFrame - frameNumber].append(data)
|
||||
self.bounds[self.startFrame - frameNumber].append(bound)
|
||||
else:
|
||||
self.lastFrame = frameNumber
|
||||
self.bounds.append([data])
|
||||
self.bounds.append([bound])
|
||||
|
||||
self.getLength()
|
||||
|
||||
def getLength(self):
|
||||
return len(self)
|
||||
|
||||
def __len__(self):
|
||||
self.length = len(self.bounds)
|
||||
return self.length
|
||||
|
||||
def fill(self, inputPath, resizeWidth):
|
||||
'''reads in the contour data, needed for export'''
|
||||
'''deprecated
|
||||
|
||||
Fills the data[] array by iterateing over the bounds'''
|
||||
|
||||
cap = cv2.VideoCapture(inputPath)
|
||||
self.data = [None]*len(self.bounds)
|
||||
|
|
@ -57,12 +73,18 @@ class Layer:
|
|||
cap.release()
|
||||
|
||||
def clusterDelete(self):
|
||||
'''Uses a cluster analysis to remove contours which are not the result of movement'''
|
||||
org = self.bounds
|
||||
if len(org) == 1:
|
||||
return
|
||||
mapped = []
|
||||
mapping = []
|
||||
clusterCount = 1
|
||||
noiseSensitivity = self.config["noiseSensitivity"]
|
||||
noiseThreashold = self.config["noiseThreashold"]
|
||||
|
||||
# calculates the middle of each contour in the 2d bounds[] and saves it in 1d list
|
||||
# and saves the 2d indexes in a mapping array
|
||||
for i, bounds in enumerate(org):
|
||||
for j, bound in enumerate(bounds):
|
||||
x = (bound[0] + bound[2]/2) / self.config["w"]
|
||||
|
|
@ -76,6 +98,7 @@ class Layer:
|
|||
centers = []
|
||||
kmeans = None
|
||||
|
||||
# the loop isn't nessecary (?) if the number of clusters is known, since it isn't the loop tries to optimize
|
||||
while True:
|
||||
kmeans = KMeans(init="random", n_clusters=clusterCount, n_init=5, max_iter=300, random_state=42)
|
||||
kmeans.fit(mapped)
|
||||
|
|
@ -96,12 +119,21 @@ class Layer:
|
|||
centers = kmeans.cluster_centers_
|
||||
break
|
||||
|
||||
# transformes the labels array
|
||||
# new array:
|
||||
# the index is the cluster id, the array is the id of the contour
|
||||
# [
|
||||
# [1,2,3]
|
||||
# [3,4,5]
|
||||
# [6,7,8,9]
|
||||
# ]
|
||||
classed = [[]]
|
||||
for i, x in enumerate(list(labels)):
|
||||
while len(classed) <= x:
|
||||
classed.append([])
|
||||
classed[x].append(i)
|
||||
|
||||
# calculates the euclidean distance (without the sqrt) of each point in a cluster to the cluster center
|
||||
dists = []
|
||||
for num, cen in enumerate(centers):
|
||||
dist = 0
|
||||
|
|
@ -110,9 +142,10 @@ class Layer:
|
|||
dist/=len(classed[num])
|
||||
dists.append(dist*1000)
|
||||
|
||||
# copy all contours of the clusters with more movement than the threshold
|
||||
newContours = [[]]
|
||||
for i, dis in enumerate(dists):
|
||||
# copy contours which are spread out, delete rest by not yopying them
|
||||
# copy contours which are spread out, delete rest by not copying them
|
||||
if dis > noiseThreashold:
|
||||
for j in classed[i]:
|
||||
x, y = mapping[j]
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ class LayerFactory:
|
|||
self.extractLayers(data)
|
||||
|
||||
def extractLayers(self, data = None):
|
||||
'''Bundle given contours together into Layer Objects'''
|
||||
if self.data is None:
|
||||
if data is None:
|
||||
print("LayerFactory data was none")
|
||||
|
|
@ -48,8 +49,6 @@ class LayerFactory:
|
|||
#for x in tmp:
|
||||
#self.getLayers(x)
|
||||
|
||||
|
||||
|
||||
return self.layers
|
||||
|
||||
def getLayers(self, data):
|
||||
|
|
|
|||
|
|
@ -3,9 +3,10 @@ from Application.Config import Config
|
|||
from Application.VideoReader import VideoReader
|
||||
from Application.Exporter import Exporter
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from Application.Classifiers.Classifier import Classifier
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import time
|
||||
class LayerManager:
|
||||
def __init__(self, config, layers):
|
||||
self.data = {}
|
||||
|
|
@ -17,12 +18,16 @@ class LayerManager:
|
|||
self.resizeWidth = config["resizeWidth"]
|
||||
self.footagePath = config["inputPath"]
|
||||
self.config = config
|
||||
self.classifier = Classifier()
|
||||
self.tags = []
|
||||
print("LayerManager constructed")
|
||||
|
||||
|
||||
|
||||
def cleanLayers(self):
|
||||
self.freeMin()
|
||||
self.sortLayers()
|
||||
self.cleanLayers()
|
||||
#self.cleanLayers2()
|
||||
self.freeMax()
|
||||
|
||||
def removeStaticLayers(self):
|
||||
|
|
@ -52,7 +57,7 @@ class LayerManager:
|
|||
if l.getLength() > self.minLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
|
||||
def freeMax(self):
|
||||
layers = []
|
||||
|
|
@ -60,39 +65,45 @@ class LayerManager:
|
|||
if l.getLength() < self.maxLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
def fillLayers(self):
|
||||
|
||||
listOfFrames = Exporter(self.config).makeListOfFrames(self.layers)
|
||||
videoReader = VideoReader(self.config, listOfFrames)
|
||||
videoReader.fillBuffer()
|
||||
def tagLayers(self):
|
||||
'''Use classifieres the tag all Layers, by reading the contour content from the original video, then applying the classifier'''
|
||||
exporter = Exporter(self.config)
|
||||
start = time.time()
|
||||
for i, layer in enumerate(self.layers):
|
||||
print(f"{round(i/len(self.layers)*100,2)} {round((time.time() - start), 2)}")
|
||||
start = time.time()
|
||||
if len(layer.bounds[0]) == 0:
|
||||
continue
|
||||
listOfFrames = exporter.makeListOfFrames([layer])
|
||||
|
||||
while not videoReader.videoEnded():
|
||||
frameCount, frame = videoReader.pop()
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i % 20 == 0:
|
||||
print(f"filled {int(round(i/len(self.layers),2)*100)}% of all Layers")
|
||||
videoReader = VideoReader(self.config, listOfFrames)
|
||||
videoReader.fillBuffer()
|
||||
|
||||
if layer.startFrame <= frameCount and layer.startFrame + len(layer.bounds) > frameCount:
|
||||
data = []
|
||||
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
|
||||
if x is None:
|
||||
break
|
||||
factor = videoReader.w / self.resizeWidth
|
||||
x = int(x * factor)
|
||||
y = int(y * factor)
|
||||
w = int(w * factor)
|
||||
h = int(h * factor)
|
||||
data.append(np.copy(frame[y:y+h, x:x+w]))
|
||||
layer.data.append(data)
|
||||
while not videoReader.videoEnded():
|
||||
frameCount, frame = videoReader.pop()
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
data = []
|
||||
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
|
||||
if x is None:
|
||||
break
|
||||
factor = videoReader.w / self.resizeWidth
|
||||
x = int(x * factor)
|
||||
y = int(y * factor)
|
||||
w = int(w * factor)
|
||||
h = int(h * factor)
|
||||
data.append(np.copy(frame[y:y+h, x:x+w]))
|
||||
layer.data.append(data)
|
||||
tags = self.classifier.tagLayer(layer.data)
|
||||
print(tags)
|
||||
self.tags.append(tags)
|
||||
|
||||
videoReader.thread.join()
|
||||
videoReader.thread.join()
|
||||
|
||||
def sortLayers(self):
|
||||
self.layers.sort(key = lambda c:c.startFrame)
|
||||
|
||||
def cleanLayers(self):
|
||||
def cleanLayers2(self):
|
||||
for layer in self.layers:
|
||||
layer.clusterDelete()
|
||||
|
|
|
|||
|
|
@ -24,11 +24,11 @@ class VideoReader:
|
|||
self.buffer = Queue(config["videoBufferLength"])
|
||||
self.vc = cv2.VideoCapture(videoPath)
|
||||
self.stopped = False
|
||||
self.getWH()
|
||||
if setOfFrames is not None:
|
||||
self.listOfFrames = sorted(setOfFrames)
|
||||
|
||||
def getWH(self):
|
||||
'''get width and height'''
|
||||
res, image = self.vc.read()
|
||||
self.w = image.shape[1]
|
||||
self.h = image.shape[0]
|
||||
|
|
@ -37,15 +37,11 @@ class VideoReader:
|
|||
def pop(self):
|
||||
return self.buffer.get(block=True)
|
||||
|
||||
def get(self):
|
||||
return self.buffer[-1]
|
||||
|
||||
def fillBuffer(self):
|
||||
if self.buffer.full():
|
||||
print("VideoReader::fillBuffer was called when buffer was full.")
|
||||
self.endFrame = int(self.vc.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
|
||||
#self.endFrame = 10*60*30
|
||||
if self.listOfFrames is not None:
|
||||
self.thread = threading.Thread(target=self.readFramesByList, args=())
|
||||
else:
|
||||
|
|
@ -57,6 +53,7 @@ class VideoReader:
|
|||
self.vc.release()
|
||||
|
||||
def readFrames(self):
|
||||
'''Reads video from start to finish'''
|
||||
while self.lastFrame < self.endFrame:
|
||||
res, frame = self.vc.read()
|
||||
if res:
|
||||
|
|
@ -65,8 +62,8 @@ class VideoReader:
|
|||
|
||||
self.stopped = True
|
||||
|
||||
|
||||
def readFramesByList(self):
|
||||
'''Reads all frames from a list of frame numbers'''
|
||||
self.vc.set(1, self.listOfFrames[0])
|
||||
self.lastFrame = self.listOfFrames[0]
|
||||
self.endFrame = self.listOfFrames[-1]
|
||||
|
|
@ -76,6 +73,8 @@ class VideoReader:
|
|||
res, frame = self.vc.read()
|
||||
if res:
|
||||
self.buffer.put((self.lastFrame, frame))
|
||||
else:
|
||||
print("READING FRAMES IS FALSE")
|
||||
# since the list is sorted the first element is always the lowest relevant framenumber
|
||||
# [0,1,2,3,32,33,34,35,67,68,69]
|
||||
self.listOfFrames.pop(0)
|
||||
|
|
|
|||
27
main.py
27
main.py
|
|
@ -9,44 +9,39 @@ from Application.Importer import Importer
|
|||
from Application.VideoReader import VideoReader
|
||||
from Application.LayerManager import LayerManager
|
||||
from Application.Classifiers import *
|
||||
#TODO
|
||||
# finden von relevanten Stellen anhand von zu findenen metriken für vergleichsbilder
|
||||
|
||||
def demo():
|
||||
print("startup")
|
||||
def main():
|
||||
start = time.time()
|
||||
config = Config()
|
||||
|
||||
config["inputPath"] = os.path.join(os.path.dirname(__file__), "generate test footage/3.mp4")
|
||||
config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
|
||||
config["inputPath"] = os.path.join(os.path.dirname(__file__), "generate test footage/out.mp4")
|
||||
#config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
|
||||
config["outputPath"] = os.path.join(os.path.dirname(__file__), "output/short.mp4")
|
||||
|
||||
vr = VideoReader(config)
|
||||
config["w"], config["h"] = vr.getWH()
|
||||
|
||||
if config["importPath"] is None:
|
||||
#ana = Analyzer(config)
|
||||
#ref = ana.avg
|
||||
contours = ContourExtractor(config).extractContours()
|
||||
print("Time consumed extracting: ", time.time() - start)
|
||||
layerFactory = LayerFactory(config)
|
||||
|
||||
layers = layerFactory.extractLayers(contours)
|
||||
layerManager = LayerManager(config, layers)
|
||||
layerManager.cleanLayers()
|
||||
layers = layerManager.layers
|
||||
|
||||
else:
|
||||
layers = Importer(config).importRawData()
|
||||
|
||||
layerManager = LayerManager(config, layers)
|
||||
layerManager.cleanLayers()
|
||||
|
||||
#layerManager.tagLayers()
|
||||
layers = layerManager.layers
|
||||
exporter = Exporter(config)
|
||||
exporter.export(layers)
|
||||
exporter.export(layers, raw=False)
|
||||
|
||||
print("Total time: ", time.time() - start)
|
||||
|
||||
def init():
|
||||
print("not needed yet")
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo()
|
||||
main()
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue