2020-09-22 18:25:06 +00:00
|
|
|
from imutils.video import VideoStream
|
|
|
|
|
import argparse
|
|
|
|
|
import datetime
|
|
|
|
|
import imutils
|
|
|
|
|
import time
|
|
|
|
|
import cv2
|
|
|
|
|
import os
|
|
|
|
|
import traceback
|
|
|
|
|
import _thread
|
2020-09-23 20:02:46 +00:00
|
|
|
import imageio
|
|
|
|
|
import numpy as np
|
2020-10-05 07:43:27 +00:00
|
|
|
from threading import Thread
|
|
|
|
|
from multiprocessing import Queue, Process, Pool
|
|
|
|
|
from multiprocessing.pool import ThreadPool
|
|
|
|
|
import concurrent.futures
|
2020-10-18 15:36:34 +00:00
|
|
|
from Application.VideoReader import VideoReader
|
2020-10-11 12:13:27 +00:00
|
|
|
from queue import Queue
|
|
|
|
|
import threading
|
2020-10-17 22:02:05 +00:00
|
|
|
|
2020-10-18 15:36:34 +00:00
|
|
|
from Application.Config import Config
|
2020-09-22 18:25:06 +00:00
|
|
|
|
2020-09-20 20:01:54 +00:00
|
|
|
class ContourExtractor:
|
2020-09-22 18:25:06 +00:00
|
|
|
|
2020-10-31 19:36:43 +00:00
|
|
|
#extracedContours = {frame_number: [(contour, (x,y,w,h)), ...], }
|
|
|
|
|
# dict with frame numbers as keys and the contour bounds of every contour for that frame
|
2020-09-22 18:25:06 +00:00
|
|
|
|
2020-11-27 00:06:25 +00:00
|
|
|
def getExtractedContours(self):
|
2020-09-24 20:48:04 +00:00
|
|
|
return self.extractedContours
|
|
|
|
|
|
2020-11-27 00:06:25 +00:00
|
|
|
def getExtractedMasks(self):
|
|
|
|
|
return self.extractedMasks
|
|
|
|
|
|
|
|
|
|
|
2020-10-11 15:09:49 +00:00
|
|
|
def __init__(self, config):
|
2020-10-11 12:13:27 +00:00
|
|
|
self.frameBuffer = Queue(16)
|
|
|
|
|
self.extractedContours = dict()
|
2020-11-27 00:06:25 +00:00
|
|
|
self.extractedMasks = dict()
|
2020-10-11 15:09:49 +00:00
|
|
|
self.min_area = config["min_area"]
|
|
|
|
|
self.max_area = config["max_area"]
|
|
|
|
|
self.threashold = config["threashold"]
|
|
|
|
|
self.resizeWidth = config["resizeWidth"]
|
|
|
|
|
self.videoPath = config["inputPath"]
|
2020-10-11 12:13:27 +00:00
|
|
|
self.xDim = 0
|
|
|
|
|
self.yDim = 0
|
2020-10-11 15:09:49 +00:00
|
|
|
self.config = config
|
2020-10-17 22:02:05 +00:00
|
|
|
self.diff = []
|
2020-10-21 19:56:00 +00:00
|
|
|
self.lastFrames = None
|
|
|
|
|
self.averages = dict()
|
2020-10-11 12:13:27 +00:00
|
|
|
|
2020-09-23 20:02:46 +00:00
|
|
|
print("ContourExtractor initiated")
|
|
|
|
|
|
2020-10-31 19:36:43 +00:00
|
|
|
def extractContours(self):
|
|
|
|
|
videoReader = VideoReader(self.config)
|
2020-10-22 16:40:13 +00:00
|
|
|
videoReader.fillBuffer()
|
2020-10-08 20:26:29 +00:00
|
|
|
|
2020-10-17 22:02:05 +00:00
|
|
|
threads = self.config["videoBufferLength"]
|
|
|
|
|
self.start = time.time()
|
2020-10-31 19:36:43 +00:00
|
|
|
# start a bunch of frames and let them read from the video reader buffer until the video reader reaches EOF
|
2020-10-11 12:13:27 +00:00
|
|
|
with ThreadPool(threads) as pool:
|
|
|
|
|
while not videoReader.videoEnded():
|
|
|
|
|
if videoReader.buffer.qsize() == 0:
|
2020-10-11 15:09:49 +00:00
|
|
|
time.sleep(.5)
|
2020-10-05 07:43:27 +00:00
|
|
|
|
2020-10-11 12:13:27 +00:00
|
|
|
tmpData = [videoReader.pop() for i in range(0, videoReader.buffer.qsize())]
|
2020-10-21 19:56:00 +00:00
|
|
|
self.computeMovingAverage(tmpData)
|
2020-10-11 12:13:27 +00:00
|
|
|
pool.map(self.getContours, tmpData)
|
2020-10-17 22:02:05 +00:00
|
|
|
#for data in tmpData:
|
2020-11-05 22:17:05 +00:00
|
|
|
# self.getContours(data)
|
2020-10-17 22:02:05 +00:00
|
|
|
frameCount = tmpData[-1][0]
|
2020-10-22 16:40:13 +00:00
|
|
|
|
2020-10-08 20:26:29 +00:00
|
|
|
videoReader.thread.join()
|
2020-11-27 00:06:25 +00:00
|
|
|
return self.extractedContours, self.extractedMasks
|
2020-10-21 19:56:00 +00:00
|
|
|
|
2020-10-11 12:13:27 +00:00
|
|
|
def getContours(self, data):
|
|
|
|
|
frameCount, frame = data
|
2020-10-31 19:36:43 +00:00
|
|
|
# wait for the reference frame, which is calculated by averaging some revious frames
|
2020-10-21 19:56:00 +00:00
|
|
|
while frameCount not in self.averages:
|
|
|
|
|
time.sleep(0.1)
|
|
|
|
|
firstFrame = self.averages.pop(frameCount, None)
|
2020-10-22 16:40:13 +00:00
|
|
|
|
2020-10-17 22:02:05 +00:00
|
|
|
if frameCount % (60*30) == 0:
|
2020-11-21 18:13:17 +00:00
|
|
|
print(f" \r {frameCount/(60*30)} Minutes processed in {round((time.time() - self.start), 2)} each", end='\r')
|
2020-10-17 22:02:05 +00:00
|
|
|
self.start = time.time()
|
2020-10-31 19:36:43 +00:00
|
|
|
|
2020-10-21 19:56:00 +00:00
|
|
|
gray = self.prepareFrame(frame)
|
2020-10-05 07:43:27 +00:00
|
|
|
frameDelta = cv2.absdiff(gray, firstFrame)
|
|
|
|
|
thresh = cv2.threshold(frameDelta, self.threashold, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours
|
2020-10-17 22:02:05 +00:00
|
|
|
thresh = cv2.dilate(thresh, None, iterations=10)
|
|
|
|
|
#cv2.imshow("changes x", thresh)
|
|
|
|
|
#cv2.waitKey(10) & 0XFF
|
2020-10-05 07:43:27 +00:00
|
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
2020-10-17 22:02:05 +00:00
|
|
|
self.diff.append(np.count_nonzero(thresh))
|
2020-10-05 07:43:27 +00:00
|
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
|
|
|
|
|
|
contours = []
|
2020-11-27 00:06:25 +00:00
|
|
|
masks = []
|
2020-10-05 07:43:27 +00:00
|
|
|
for c in cnts:
|
|
|
|
|
ca = cv2.contourArea(c)
|
2020-11-27 00:06:25 +00:00
|
|
|
(x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
|
#ca = (x+w)*(y+h)
|
2020-10-05 07:43:27 +00:00
|
|
|
if ca < self.min_area or ca > self.max_area:
|
|
|
|
|
continue
|
|
|
|
|
|
2020-10-11 12:13:27 +00:00
|
|
|
contours.append((x, y, w, h))
|
2020-11-27 00:06:25 +00:00
|
|
|
masks.append(np.packbits(np.copy(thresh[y:y+h,x:x+w]), axis=0))
|
|
|
|
|
|
2020-10-08 20:26:29 +00:00
|
|
|
if len(contours) != 0 and contours is not None:
|
2020-10-11 12:13:27 +00:00
|
|
|
# this should be thread safe
|
|
|
|
|
self.extractedContours[frameCount] = contours
|
2020-11-27 00:06:25 +00:00
|
|
|
self.extractedMasks[frameCount] = masks
|
2020-10-11 12:13:27 +00:00
|
|
|
|
2020-10-21 19:56:00 +00:00
|
|
|
def prepareFrame(self, frame):
|
|
|
|
|
frame = imutils.resize(frame, width=self.resizeWidth)
|
|
|
|
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
|
|
|
|
return gray
|
|
|
|
|
|
2020-10-22 16:40:13 +00:00
|
|
|
def computeMovingAverage(self, frames):
|
|
|
|
|
avg = []
|
2020-11-08 15:28:47 +00:00
|
|
|
averageFrames = self.config["avgNum"]
|
|
|
|
|
|
|
|
|
|
nth = int(averageFrames/3) # only take /x x frames to average
|
2020-10-22 16:40:13 +00:00
|
|
|
if frames[0][0] < averageFrames:
|
|
|
|
|
frame = frames[0][1]
|
|
|
|
|
frame = self.prepareFrame(frame)
|
|
|
|
|
for j in range(0, len(frames)):
|
|
|
|
|
frameNumber, _ = frames[j]
|
|
|
|
|
self.averages[frameNumber] = frame
|
|
|
|
|
# put last x frames into a buffer
|
|
|
|
|
self.lastFrames = frames[-averageFrames:]
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if self.lastFrames is not None:
|
|
|
|
|
frames = self.lastFrames + frames
|
|
|
|
|
|
2020-11-08 15:28:47 +00:00
|
|
|
tmp = [[j, frames, averageFrames] for j in range(averageFrames, len(frames))]
|
2020-10-22 16:40:13 +00:00
|
|
|
with ThreadPool(16) as pool:
|
|
|
|
|
pool.map(self.averageDaFrames, tmp)
|
|
|
|
|
|
|
|
|
|
self.lastFrames = frames[-averageFrames:]
|
|
|
|
|
|
2020-09-22 18:25:06 +00:00
|
|
|
|
2020-10-22 16:40:13 +00:00
|
|
|
def averageDaFrames(self, dat):
|
|
|
|
|
j, frames, averageFrames = dat
|
|
|
|
|
frameNumber, frame = frames[j]
|
|
|
|
|
frame = self.prepareFrame(frame)
|
|
|
|
|
|
|
|
|
|
avg = frame/averageFrames
|
2020-11-08 15:28:47 +00:00
|
|
|
for jj in range(0,averageFrames-1):
|
2020-10-22 16:40:13 +00:00
|
|
|
avg += self.prepareFrame(frames[j-jj][1])/averageFrames
|
|
|
|
|
self.averages[frameNumber] = np.array(np.round(avg), dtype=np.uint8)
|
2020-11-27 00:06:25 +00:00
|
|
|
#self.averages[frameNumber] = self.prepareFrame(frames[j-averageFrames - 1][1])
|