Video-Summary/ContourExctractor.py

120 lines
3.9 KiB
Python
Raw Normal View History

2020-09-22 18:25:06 +00:00
from imutils.video import VideoStream
import argparse
import datetime
import imutils
import time
import cv2
import os
import traceback
import _thread
import imageio
import numpy as np
import time
2020-10-05 07:43:27 +00:00
from threading import Thread
from multiprocessing import Queue, Process, Pool
from multiprocessing.pool import ThreadPool
import concurrent.futures
2020-10-08 20:26:29 +00:00
from VideoReader import VideoReader
2020-09-22 18:25:06 +00:00
2020-09-20 20:01:54 +00:00
class ContourExtractor:
2020-09-22 18:25:06 +00:00
#X = {frame_number: [(contour, (x,y,w,h)), ...], }
2020-09-22 18:25:06 +00:00
extractedContours = dict()
min_area = 100
max_area = 1000
2020-10-04 12:51:16 +00:00
threashold = 13
2020-09-24 13:47:49 +00:00
xDim = 0
yDim = 0
2020-09-22 18:25:06 +00:00
2020-09-24 20:48:04 +00:00
def getextractedContours(self):
return self.extractedContours
2020-09-28 20:28:23 +00:00
def __init__(self):
print("ContourExtractor initiated")
2020-10-03 22:27:36 +00:00
def extractContours(self, videoPath, resizeWidth):
2020-09-22 18:25:06 +00:00
firstFrame = None
2020-10-08 20:26:29 +00:00
extractedContours = dict()
videoReader = VideoReader(videoPath)
self.xDim = videoReader.w
self.yDim = videoReader.h
videoReader.fillBuffer()
while not videoReader.videoEnded():
frameCount, frame = videoReader.pop()
if frameCount % (60*30) == 0:
print("Minutes processed: ", frameCount/(60*30))
if frame is None:
print("ContourExtractor: frame was None")
continue
2020-10-04 12:51:16 +00:00
2020-10-08 20:26:29 +00:00
# resize the frame, convert it to grayscale, and blur it
frame = imutils.resize(frame, width=resizeWidth)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
2020-10-05 07:43:27 +00:00
2020-10-08 20:26:29 +00:00
# if the first frame is None, initialize it
if firstFrame is None:
#gray = np.asarray(gray[:,:,1]/2 + gray[:,:,2]/2).astype(np.uint8)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
firstFrame = gray
continue
x = self.getContours(gray, firstFrame)
if x is not None:
extractedContours[frameCount] = x
2020-09-22 18:25:06 +00:00
2020-10-08 20:26:29 +00:00
print("done")
videoReader.thread.join()
2020-09-28 20:28:23 +00:00
self.extractedContours = extractedContours
2020-09-30 17:50:43 +00:00
return extractedContours
2020-09-28 20:28:23 +00:00
2020-10-08 20:26:29 +00:00
def getContours(self, gray, firstFrame):
2020-10-05 07:43:27 +00:00
gray = cv2.GaussianBlur(gray, (5, 5), 0)
frameDelta = cv2.absdiff(gray, firstFrame)
thresh = cv2.threshold(frameDelta, self.threashold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
thresh = cv2.dilate(thresh, None, iterations=3)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
contours = []
for c in cnts:
ca = cv2.contourArea(c)
if ca < self.min_area or ca > self.max_area:
continue
(x, y, w, h) = cv2.boundingRect(c)
#print((x, y, w, h))
contours.append((x, y, w, h))
2020-10-08 20:26:29 +00:00
if len(contours) != 0 and contours is not None:
return contours
2020-10-05 07:43:27 +00:00
2020-09-22 18:25:06 +00:00
def displayContours(self):
values = self.extractedContours.values()
for xx in values:
for v1 in xx:
(x, y, w, h) = v1[1]
v = v1[0]
2020-09-24 13:47:49 +00:00
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
frame = imutils.resize(frame, width=512)
2020-09-24 15:14:59 +00:00
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
cv2.imshow("changes overlayed", frame)
cv2.waitKey(10) & 0XFF
cv2.destroyAllWindows()
2020-09-24 15:14:59 +00:00
def exportContours(self):
values = self.extractedContours.values()
frames = []
for xx in values:
for v1 in xx:
(x, y, w, h) = v1[1]
v = v1[0]
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
frame = imutils.resize(frame, width=512)
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
frames.append(frame)
return frames
2020-09-22 18:25:06 +00:00