prepared for multiprocessing
This commit is contained in:
parent
4766560dcf
commit
58fa46a92d
|
|
@ -1 +0,0 @@
|
||||||
java.exe -classpath ".;C:\Program Files\DigitalPersona\U.are.U SDK\Windows\Lib\Java\dpuareu.jar" -Djava.library.path="C:\Program Files\DigitalPersona\U.are.U SDK\Windows\Lib\win32" UareUSampleJava
|
|
||||||
|
|
@ -1,23 +1,17 @@
|
||||||
|
import dlib
|
||||||
import face_recognition
|
import face_recognition
|
||||||
import os
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
from application.db import Session, Person
|
from application.db import Session, Person
|
||||||
import base64
|
import base64
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from base64 import decodestring
|
|
||||||
import base64
|
|
||||||
|
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
KNOWN_FACES_DIR = 'known_faces'
|
|
||||||
UNKNOWN_FACES_DIR = 'unknown_faces'
|
|
||||||
TOLERANCE = 0.6
|
TOLERANCE = 0.6
|
||||||
FRAME_THICKNESS = 3
|
FRAME_THICKNESS = 3
|
||||||
FONT_THICKNESS = 2
|
FONT_THICKNESS = 2
|
||||||
MODEL = "hog" # default: 'hog', other one can be 'cnn' - CUDA accelerated (if available) deep-learning pretrained model
|
MODEL = "hog" # default: 'hog', other one can be 'cnn' - CUDA accelerated (if available) deep-learning pretrained model
|
||||||
|
|
||||||
|
|
||||||
def readb64(base64_string):
|
def readb64(base64_string):
|
||||||
sbuf = StringIO()
|
sbuf = StringIO()
|
||||||
sbuf.write(base64.b64decode(base64_string))
|
sbuf.write(base64.b64decode(base64_string))
|
||||||
|
|
@ -64,7 +58,6 @@ def identifyFace(image):
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def identifyFaceVideo(url):
|
def identifyFaceVideo(url):
|
||||||
print('Identifying Faces')
|
|
||||||
video = cv2.VideoCapture(url)
|
video = cv2.VideoCapture(url)
|
||||||
image = video.read()[1]
|
image = video.read()[1]
|
||||||
ret, image = cv2.imencode(".png", image)
|
ret, image = cv2.imencode(".png", image)
|
||||||
|
|
@ -75,39 +68,32 @@ def identifyFaceVideo(url):
|
||||||
locations = face_recognition.face_locations(image, model=MODEL)
|
locations = face_recognition.face_locations(image, model=MODEL)
|
||||||
encodings = face_recognition.face_encodings(image, locations)
|
encodings = face_recognition.face_encodings(image, locations)
|
||||||
|
|
||||||
|
face_locations = {} #face locations to be drawn
|
||||||
|
|
||||||
for face_encoding, face_location in zip(encodings, locations):
|
for face_encoding, face_location in zip(encodings, locations):
|
||||||
|
|
||||||
# We use compare_faces (but might use face_distance as well)
|
face_locations.update(compareFace(face_encoding, face_location))
|
||||||
# Returns array of True/False values in order of passed known_faces
|
|
||||||
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
|
|
||||||
|
|
||||||
# Since order is being preserved, we check if any face was found then grab index
|
for k, v in face_locations.items():
|
||||||
# then label (name) of first matching known face withing a tolerance
|
# Paint frame
|
||||||
match = None
|
cv2.rectangle(image, v[0], v[1], [255, 0, 0], FRAME_THICKNESS)
|
||||||
if True in results: # If at least one is true, get a name of first of found labels
|
# Wite a name
|
||||||
match = "name"
|
cv2.putText(image, k, v[0], cv2.FONT_HERSHEY_SIMPLEX, 1.5, [255, 0, 255], FONT_THICKNESS)
|
||||||
print(f' - {match} from {results}')
|
|
||||||
|
|
||||||
# Each location contains positions in order: top, right, bottom, left
|
|
||||||
top_left = (face_location[3], face_location[0])
|
|
||||||
bottom_right = (face_location[1], face_location[2])
|
|
||||||
color = [255, 0, 0]
|
|
||||||
# Paint frame
|
|
||||||
cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS)
|
|
||||||
|
|
||||||
# Now we need smaller, filled grame below for a name
|
|
||||||
# This time we use bottom in both corners - to start from bottom and move 50 pixels down
|
|
||||||
top_left = (face_location[3], face_location[2])
|
|
||||||
bottom_right = (face_location[1], face_location[2] + 22)
|
|
||||||
|
|
||||||
# Paint frame
|
|
||||||
cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED)
|
|
||||||
|
|
||||||
# Wite a name
|
|
||||||
#cv2.putText(image, match, (face_location[3] + 10, face_location[2] + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), FONT_THICKNESS)
|
|
||||||
|
|
||||||
# Show image
|
# Show image
|
||||||
image = cv2.imencode(".jpg", image)[1]
|
image = cv2.imencode(".jpg", image)[1]
|
||||||
return image
|
return image
|
||||||
|
|
||||||
#identifyFace("")
|
|
||||||
|
def compareFace(face_encoding, face_location):
|
||||||
|
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
|
||||||
|
face_locations = {}
|
||||||
|
match = None
|
||||||
|
if True in results: # If at least one is true, get a name of first of found labels
|
||||||
|
match = "name"
|
||||||
|
print(f' - {match} from {results}')
|
||||||
|
top_left = (face_location[3], face_location[0])
|
||||||
|
bottom_right = (face_location[1], face_location[2])
|
||||||
|
|
||||||
|
face_locations[match] = (top_left, bottom_right)
|
||||||
|
return face_locations
|
||||||
|
|
@ -0,0 +1 @@
|
||||||
|
Subproject commit c7062aa3631ba4912255a9bcc0563d404d3bdd5d
|
||||||
Loading…
Reference in New Issue