FacialRecognition-Demo/application/face_rec.py

99 lines
3.4 KiB
Python

import dlib
import face_recognition
import os
import cv2
from application.db import Session, Person
import base64
import numpy as np
from io import StringIO
TOLERANCE = 0.6
FRAME_THICKNESS = 3
FONT_THICKNESS = 2
MODEL = "hog" # default: 'hog', other one can be 'cnn' - CUDA accelerated (if available) deep-learning pretrained model
def readb64(base64_string):
sbuf = StringIO()
sbuf.write(base64.b64decode(base64_string))
pimg = Image.open(sbuf)
return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
print('Loading known faces...')
known_faces = []
known_names = []
def initFaceRec():
session = Session()
# We oranize known faces as subfolders of KNOWN_FACES_DIR
# Each subfolder's name becomes our label (name)
for face, name in session.query(Person.face, Person.person_id).all():
# Load an image
nparr = np.fromstring(base64.b64decode(face), np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Get 128-dimension face encoding
# Always returns a list of found faces, for this purpose we take first face only (assuming one face per image as you can't be twice on one image)
encoding = face_recognition.face_encodings(image)[0]
# Append encodings and name
known_faces.append(encoding)
known_names.append(name)
session.close()
def identifyFace(image):
print('Identifying Face')
nparr = np.fromstring(base64.b64decode(image), np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
#image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
locations = face_recognition.face_locations(image, model=MODEL)
encodings = face_recognition.face_encodings(image, locations)
res = {}
for face_encoding, face_location in zip(encodings, locations):
results = face_recognition.face_distance(known_faces, face_encoding)
res = {known_names[i]: results[i] for i in range(0, len(results)) }
return res
def identifyFaceVideo(url):
video = cv2.VideoCapture(url)
image = video.read()[1]
ret, image = cv2.imencode(".png", image)
nparr = np.fromstring(image, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
locations = face_recognition.face_locations(image, model=MODEL)
encodings = face_recognition.face_encodings(image, locations)
face_locations = {} #face locations to be drawn
for face_encoding, face_location in zip(encodings, locations):
face_locations.update(compareFace(face_encoding, face_location))
for k, v in face_locations.items():
# Paint frame
cv2.rectangle(image, v[0], v[1], [255, 0, 0], FRAME_THICKNESS)
# Wite a name
cv2.putText(image, k, v[0], cv2.FONT_HERSHEY_SIMPLEX, 1.5, [255, 0, 255], FONT_THICKNESS)
# Show image
image = cv2.imencode(".jpg", image)[1]
return image
def compareFace(face_encoding, face_location):
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
face_locations = {}
match = None
if True in results: # If at least one is true, get a name of first of found labels
match = "name"
print(f' - {match} from {results}')
top_left = (face_location[3], face_location[0])
bottom_right = (face_location[1], face_location[2])
face_locations[match] = (top_left, bottom_right)
return face_locations