FacialRecognition-Demo/application/face_rec.py

113 lines
4.1 KiB
Python
Raw Normal View History

import face_recognition
import os
import cv2
2020-04-27 17:44:55 +00:00
from application.db import Session, Person
import base64
import numpy as np
from base64 import decodestring
import base64
from io import StringIO
from PIL import Image
KNOWN_FACES_DIR = 'known_faces'
UNKNOWN_FACES_DIR = 'unknown_faces'
TOLERANCE = 0.6
FRAME_THICKNESS = 3
FONT_THICKNESS = 2
2020-05-07 17:43:16 +00:00
MODEL = "hog" # default: 'hog', other one can be 'cnn' - CUDA accelerated (if available) deep-learning pretrained model
def readb64(base64_string):
sbuf = StringIO()
sbuf.write(base64.b64decode(base64_string))
pimg = Image.open(sbuf)
return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
print('Loading known faces...')
known_faces = []
known_names = []
2020-04-27 17:44:55 +00:00
def initFaceRec():
session = Session()
# We oranize known faces as subfolders of KNOWN_FACES_DIR
# Each subfolder's name becomes our label (name)
for face, name in session.query(Person.face, Person.person_id).all():
# Load an image
nparr = np.fromstring(base64.b64decode(face), np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Get 128-dimension face encoding
# Always returns a list of found faces, for this purpose we take first face only (assuming one face per image as you can't be twice on one image)
encoding = face_recognition.face_encodings(image)[0]
2020-04-27 17:44:55 +00:00
# Append encodings and name
known_faces.append(encoding)
known_names.append(name)
2020-04-29 20:00:17 +00:00
session.close()
2020-04-29 20:00:17 +00:00
def identifyFace(image):
2020-05-07 17:43:16 +00:00
print('Identifying Face')
2020-04-29 20:00:17 +00:00
nparr = np.fromstring(base64.b64decode(image), np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
#image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
2020-04-27 17:44:55 +00:00
locations = face_recognition.face_locations(image, model=MODEL)
encodings = face_recognition.face_encodings(image, locations)
2020-04-27 17:44:55 +00:00
res = {}
2020-04-27 17:44:55 +00:00
for face_encoding, face_location in zip(encodings, locations):
results = face_recognition.face_distance(known_faces, face_encoding)
res = {known_names[i]: results[i] for i in range(0, len(results)) }
return res
2020-05-07 17:43:16 +00:00
def identifyFaceVideo(url):
print('Identifying Faces')
video = cv2.VideoCapture(url)
image = video.read()[1]
ret, image = cv2.imencode(".png", image)
nparr = np.fromstring(image, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
locations = face_recognition.face_locations(image, model=MODEL)
encodings = face_recognition.face_encodings(image, locations)
for face_encoding, face_location in zip(encodings, locations):
2020-05-07 17:43:16 +00:00
# We use compare_faces (but might use face_distance as well)
# Returns array of True/False values in order of passed known_faces
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
# Since order is being preserved, we check if any face was found then grab index
# then label (name) of first matching known face withing a tolerance
match = None
if True in results: # If at least one is true, get a name of first of found labels
match = "name"
print(f' - {match} from {results}')
# Each location contains positions in order: top, right, bottom, left
top_left = (face_location[3], face_location[0])
bottom_right = (face_location[1], face_location[2])
color = [255, 0, 0]
# Paint frame
cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS)
# Now we need smaller, filled grame below for a name
# This time we use bottom in both corners - to start from bottom and move 50 pixels down
top_left = (face_location[3], face_location[2])
bottom_right = (face_location[1], face_location[2] + 22)
# Paint frame
cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED)
# Wite a name
#cv2.putText(image, match, (face_location[3] + 10, face_location[2] + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), FONT_THICKNESS)
# Show image
image = cv2.imencode(".jpg", image)[1]
return image
2020-04-29 20:00:17 +00:00
#identifyFace("")