verification and identification works
This commit is contained in:
parent
33a49a25d1
commit
8e1f765c52
|
|
@ -6,7 +6,7 @@ import json
|
|||
import cv2
|
||||
import base64
|
||||
from application.db import Session, Person, Fingerprint
|
||||
|
||||
import application.face_rec as fr
|
||||
lastImage = ""
|
||||
|
||||
class PersonList(Resource):
|
||||
|
|
@ -58,17 +58,19 @@ class PersonList(Resource):
|
|||
if id is not None:
|
||||
# validate
|
||||
data = list(session.query(Person).filter_by(person_id=id))[0].serialize()
|
||||
data["matching_score"] = 0.95
|
||||
results = fr.identifyFace(lastImage)
|
||||
data["matching_score"] = 1 - results[int(id)]
|
||||
# return identified person object + matching score
|
||||
return flask.make_response(flask.jsonify({'data': data}), 200)
|
||||
else:
|
||||
# replace by Biometric function
|
||||
# identify
|
||||
# return identified person object + matching score
|
||||
results = fr.identifyFace(lastImage)
|
||||
data = []
|
||||
for x in list(session.query(Person).all()):
|
||||
ser = x.serialize()
|
||||
ser["matching_score"] = 0.95
|
||||
ser["matching_score"] = 1 - results[x.person_id]
|
||||
data.append(ser)
|
||||
|
||||
return flask.make_response(flask.jsonify({'data': data}), 200)
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
import face_recognition
|
||||
import os
|
||||
import cv2
|
||||
from db import Session, Person
|
||||
from application.db import Session, Person
|
||||
import base64
|
||||
import numpy as np
|
||||
from base64 import decodestring
|
||||
|
|
@ -34,77 +34,51 @@ def readb64(base64_string):
|
|||
print('Loading known faces...')
|
||||
known_faces = []
|
||||
known_names = []
|
||||
session = Session()
|
||||
|
||||
# We oranize known faces as subfolders of KNOWN_FACES_DIR
|
||||
# Each subfolder's name becomes our label (name)
|
||||
for face, name in session.query(Person.face, Person.lname).all():
|
||||
# Load an image
|
||||
nparr = np.fromstring(base64.b64decode(face), np.uint8)
|
||||
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
# Get 128-dimension face encoding
|
||||
# Always returns a list of found faces, for this purpose we take first face only (assuming one face per image as you can't be twice on one image)
|
||||
encoding = face_recognition.face_encodings(image)[0]
|
||||
|
||||
# Append encodings and name
|
||||
known_faces.append(encoding)
|
||||
known_names.append(name)
|
||||
|
||||
|
||||
print('Processing unknown faces...')
|
||||
# Now let's loop over a folder of faces we want to label
|
||||
|
||||
image = face_recognition.load_image_file('C:/Users/ofjok/Desktop/1.png')
|
||||
def initFaceRec():
|
||||
session = Session()
|
||||
# We oranize known faces as subfolders of KNOWN_FACES_DIR
|
||||
# Each subfolder's name becomes our label (name)
|
||||
for face, name in session.query(Person.face, Person.person_id).all():
|
||||
# Load an image
|
||||
nparr = np.fromstring(base64.b64decode(face), np.uint8)
|
||||
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
# Get 128-dimension face encoding
|
||||
# Always returns a list of found faces, for this purpose we take first face only (assuming one face per image as you can't be twice on one image)
|
||||
encoding = face_recognition.face_encodings(image)[0]
|
||||
|
||||
# This time we first grab face locations - we'll need them to draw boxes
|
||||
locations = face_recognition.face_locations(image, model=MODEL)
|
||||
# Append encodings and name
|
||||
known_faces.append(encoding)
|
||||
known_names.append(name)
|
||||
|
||||
# Now since we know loctions, we can pass them to face_encodings as second argument
|
||||
# Without that it will search for faces once again slowing down whole process
|
||||
encodings = face_recognition.face_encodings(image, locations)
|
||||
def identifyFace(imgage):
|
||||
print('Processing unknown faces...')
|
||||
image = face_recognition.load_image_file('C:/Users/ofjok/Desktop/1.png')
|
||||
|
||||
# We passed our image through face_locations and face_encodings, so we can modify it
|
||||
# First we need to convert it from RGB to BGR as we are going to work with cv2
|
||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
locations = face_recognition.face_locations(image, model=MODEL)
|
||||
encodings = face_recognition.face_encodings(image, locations)
|
||||
|
||||
# But this time we assume that there might be more faces in an image - we can find faces of dirrerent people
|
||||
|
||||
for face_encoding, face_location in zip(encodings, locations):
|
||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# We use compare_faces (but might use face_distance as well)
|
||||
# Returns array of True/False values in order of passed known_faces
|
||||
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
|
||||
res = {}
|
||||
|
||||
# Since order is being preserved, we check if any face was found then grab index
|
||||
# then label (name) of first matching known face withing a tolerance
|
||||
match = None
|
||||
if True in results: # If at least one is true, get a name of first of found labels
|
||||
match = known_names[results.index(True)]
|
||||
print(f' - {match} from {results}')
|
||||
for face_encoding, face_location in zip(encodings, locations):
|
||||
|
||||
# Each location contains positions in order: top, right, bottom, left
|
||||
top_left = (face_location[3], face_location[0])
|
||||
bottom_right = (face_location[1], face_location[2])
|
||||
# We use compare_faces (but might use face_distance as well)
|
||||
# Returns array of True/False values in order of passed known_faces
|
||||
results = face_recognition.face_distance(known_faces, face_encoding)
|
||||
|
||||
# Get color by name using our fancy function
|
||||
color = name_to_color(match)
|
||||
# Since order is being preserved, we check if any face was found then grab index
|
||||
# then label (name) of first matching known face withing a tolerance
|
||||
# If at least one is true, get a name of first of found labels
|
||||
res = {known_names[i]: results[i] for i in range(0, len(results)) }
|
||||
|
||||
return res
|
||||
|
||||
# Paint frame
|
||||
cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS)
|
||||
|
||||
# Now we need smaller, filled grame below for a name
|
||||
# This time we use bottom in both corners - to start from bottom and move 50 pixels down
|
||||
top_left = (face_location[3], face_location[2])
|
||||
bottom_right = (face_location[1], face_location[2] + 22)
|
||||
|
||||
# Paint frame
|
||||
cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED)
|
||||
|
||||
# Wite a name
|
||||
cv2.putText(image, match, (face_location[3] + 10, face_location[2] + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), FONT_THICKNESS)
|
||||
|
||||
# Show image
|
||||
cv2.imshow("1", image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("1")
|
||||
initFaceRec()
|
||||
identifyFace("")
|
||||
BIN
test.sqlite
BIN
test.sqlite
Binary file not shown.
Loading…
Reference in New Issue