claude/claude_top_level_library.pyx

110 lines
5.0 KiB
Cython

# claude_top_level_library
import claude_low_level_library as low_level
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DTYPE_f
# laplacian of scalar field a
# def laplacian(a):
# output = np.zeros_like(a)
# if output.ndim == 2:
# for i in np.arange(1,nlat-1):
# for j in range(nlon):
# output[i,j] = (scalar_gradient_x_2D(a,i,(j+1)%nlon) - scalar_gradient_x_2D(a,i,(j-1)%nlon))/dx[i] + (scalar_gradient_y_2D(a,i+1,j) - scalar_gradient_y_2D(a,i-1,j))/dy
# return output
# if output.ndim == 3:
# for i in np.arange(1,nlat-1):
# for j in range(nlon):
# for k in range(nlevels-1):
# output[i,j,k] = (scalar_gradient_x(a,i,(j+1)%nlon,k) - scalar_gradient_x(a,i,(j-1)%nlon,k))/dx[i] + (scalar_gradient_y(a,i+1,j,k) - scalar_gradient_y(a,i-1,j,k))/dy + (scalar_gradient_z(a,i,j,k+1)-scalar_gradient_z(a,i,j,k-1))/(2*dz[k])
# return output
# divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field
def divergence_with_scalar(a,u,v,dx,dy):
output = np.zeros_like(a)
nlat, nlon, nlevels = output.shape[:]
au = a*u
av = a*v
for i in range(nlat):
for j in range(nlon):
for k in range(nlevels):
output[i,j,k] = low_level.scalar_gradient_x(au,dx,nlon,i,j,k) + low_level.scalar_gradient_y(av,dy,nlat,i,j,k) #+ 0.1*scalar_gradient_z(a*w,i,j,k)
return output
def radiation_calculation(np.ndarray temperature_world, np.ndarray temperature_atmos, np.ndarray air_pressure, np.ndarray air_density, np.ndarray heat_capacity_earth, np.ndarray albedo, DTYPE_f insolation, np.ndarray lat, np.ndarray lon, np.ndarray heights, np.ndarray dz, np.int_t t, np.int_t dt, DTYPE_f day, DTYPE_f year, DTYPE_f axial_tilt):
# calculate change in temperature of ground and atmosphere due to radiative imbalance
cdef np.int_t nlat,nlon,nlevels,i,j
cdef DTYPE_f fl = 0.1
cdef np.ndarray upward_radiation,downward_radiation,optical_depth,Q, pressure_profile, density_profile
nlat = temperature_atmos.shape[0]
nlon = temperature_atmos.shape[1]
nlevels = temperature_atmos.shape[2]
upward_radiation = np.zeros(nlevels)
downward_radiation = np.zeros(nlevels)
optical_depth = np.zeros(nlevels)
Q = np.zeros(nlevels)
for i in range(nlat):
for j in range(nlon):
# calculate optical depth
pressure_profile = air_pressure[i,j,:]
density_profile = air_density[i,j,:]
optical_depth = low_level.surface_optical_depth(lat[i])*(fl*(pressure_profile/pressure_profile[0]) + (1-fl)*(pressure_profile/pressure_profile[0])**4)
# calculate upward longwave flux, bc is thermal radiation at surface
upward_radiation[0] = low_level.thermal_radiation(temperature_world[i,j])
for k in np.arange(1,nlevels):
upward_radiation[k] = (upward_radiation[k-1] - (optical_depth[k]-optical_depth[k-1])*(low_level.thermal_radiation(temperature_atmos[i,j,k])))/(1+optical_depth[k-1]-optical_depth[k])
# calculate downward longwave flux, bc is zero at TOA (in model)
downward_radiation[-1] = 0
for k in np.arange(0,nlevels-1)[::-1]:
downward_radiation[k] = (downward_radiation[k+1] - low_level.thermal_radiation(temperature_atmos[i,j,k])*(optical_depth[k+1]-optical_depth[k]))/(1 + optical_depth[k] - optical_depth[k+1])
# gradient of difference provides heating at each level
for k in np.arange(nlevels):
Q[k] = -low_level.scalar_gradient_z_1D(upward_radiation-downward_radiation,dz,0,0,k)/(1E3*density_profile[k])
# make sure model does not have a higher top than 50km!!
# approximate SW heating of ozone
if heights[k] > 20E3:
Q[k] += low_level.solar(5,lat[i],lon[j],t,day, year, axial_tilt)*((((heights[k]-20E3)/1E3)**2)/(30**2))/(24*60*60)
temperature_atmos[i,j,:] += Q*dt
# update surface temperature with shortwave radiation flux
temperature_world[i,j] += dt*((1-albedo[i,j])*(low_level.solar(insolation,lat[i],lon[j],t, day, year, axial_tilt) + downward_radiation[0]) - upward_radiation[0])/heat_capacity_earth[i,j]
return temperature_world, temperature_atmos
def velocity_calculation(u,v,air_pressure,old_pressure,air_density,coriolis,gravity,dx,dy,dt):
# introduce temporary arrays to update velocity in the atmosphere
u_temp = np.zeros_like(u)
v_temp = np.zeros_like(v)
w_temp = np.zeros_like(u)
nlat,nlon,nlevels = air_pressure.shape[:]
# calculate acceleration of atmosphere using primitive equations on beta-plane
for i in np.arange(1,nlat-1):
for j in range(nlon):
for k in range(nlevels):
u_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(u,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(u,dy,nlat,i,j,k) + coriolis[i]*v[i,j,k] - low_level.scalar_gradient_x(air_pressure,dx,nlon,i,j,k)/air_density[i,j,k] )
v_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(v,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(v,dy,nlat,i,j,k) - coriolis[i]*u[i,j,k] - low_level.scalar_gradient_y(air_pressure,dy,nlat,i,j,k)/air_density[i,j,k] )
w_temp[i,j,k] += -(air_pressure[i,j,k]-old_pressure[i,j,k])/(dt*air_density[i,j,k]*gravity)
u += u_temp
v += v_temp
w = w_temp
# approximate friction
u *= 0.95
v *= 0.95
return u,v,w