mirror of https://github.com/Askill/claude.git
407 lines
15 KiB
Python
407 lines
15 KiB
Python
# toy model for use on stream
|
|
# Please give me your Twitch prime sub!
|
|
|
|
# CLimate Analysis using Digital Estimations (CLAuDE)
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import time, sys, pickle
|
|
|
|
######## CONTROL ########
|
|
|
|
day = 60*60*24 # define length of day (used for calculating Coriolis as well) (s)
|
|
dt = 60*9 # <----- TIMESTEP (s)
|
|
resolution = 5 # how many degrees between latitude and longitude gridpoints
|
|
nlevels = 20 # how many vertical layers in the atmosphere
|
|
top = 20E3 # top of atmosphere (m)
|
|
planet_radius = 6.4E6 # define the planet's radius (m)
|
|
insolation = 1370 # TOA radiation from star (W m^-2)
|
|
gravity = 9.81 # define surface gravity for planet (m s^-2)
|
|
|
|
###
|
|
|
|
advection = True # if you want to include advection set this to be True
|
|
advection_boundary = 3 # how many gridpoints away from poles to apply advection
|
|
|
|
save = False
|
|
load = False
|
|
|
|
plot = True
|
|
level_plots = False
|
|
|
|
###########################
|
|
|
|
# define coordinate arrays
|
|
lat = np.arange(-90,91,resolution)
|
|
lon = np.arange(0,360,resolution)
|
|
nlat = len(lat)
|
|
nlon = len(lon)
|
|
lon_plot, lat_plot = np.meshgrid(lon, lat)
|
|
heights = np.arange(0,top,top/nlevels)
|
|
heights_plot, lat_z_plot = np.meshgrid(lat,heights)
|
|
|
|
# initialise arrays for various physical fields
|
|
temperature_planet = np.zeros((nlat,nlon)) + 270
|
|
temperature_atmosp = np.zeros((nlat,nlon,nlevels))
|
|
air_pressure = np.zeros_like(temperature_atmosp)
|
|
u = np.zeros_like(temperature_atmosp)
|
|
v = np.zeros_like(temperature_atmosp)
|
|
w = np.zeros_like(temperature_atmosp)
|
|
air_density = np.zeros_like(temperature_atmosp)
|
|
|
|
# #######################
|
|
upward_radiation = np.zeros(nlevels)
|
|
downward_radiation = np.zeros(nlevels)
|
|
optical_depth = np.zeros(nlevels)
|
|
Q = np.zeros(nlevels)
|
|
# #######################
|
|
|
|
def profile(a):
|
|
return np.mean(np.mean(a,axis=0),axis=0)
|
|
|
|
# read temperature and density in from standard atmosphere
|
|
f = open("standard_atmosphere.txt", "r")
|
|
standard_height = []
|
|
standard_temp = []
|
|
standard_density = []
|
|
for x in f:
|
|
h, t, r = x.split()
|
|
standard_height.append(float(h))
|
|
standard_temp.append(float(t))
|
|
standard_density.append(float(r))
|
|
f.close()
|
|
|
|
density_profile = np.interp(x=heights/1E3,xp=standard_height,fp=standard_density)
|
|
temp_profile = np.interp(x=heights/1E3,xp=standard_height,fp=standard_temp)
|
|
for k in range(nlevels):
|
|
air_density[:,:,k] = density_profile[k]
|
|
temperature_atmosp[:,:,k] = temp_profile[k]
|
|
|
|
###########################
|
|
|
|
weight_above = np.interp(x=heights/1E3,xp=standard_height,fp=standard_density)
|
|
top_index = np.argmax(np.array(standard_height) >= top/1E3)
|
|
if standard_height[top_index] == top/1E3:
|
|
weight_above = np.trapz(np.interp(x=standard_height[top_index:],xp=standard_height,fp=standard_density),standard_height[top_index:])*gravity*1E3
|
|
else:
|
|
weight_above = np.trapz(np.interp(x=np.insert(standard_height[top_index:], 0, top/1E3),xp=standard_height,fp=standard_density),np.insert(standard_height[top_index:], 0, top/1E3))*gravity*1E3
|
|
weight_above *= 1.1
|
|
# sys.exit()
|
|
|
|
###########################
|
|
|
|
albedo = np.zeros_like(temperature_planet) + 0.5
|
|
heat_capacity_earth = np.zeros_like(temperature_planet) + 1E7
|
|
|
|
albedo_variance = 0.001
|
|
for i in range(nlat):
|
|
for j in range(nlon):
|
|
albedo[i,j] += np.random.uniform(-albedo_variance,albedo_variance)
|
|
|
|
specific_gas = 287
|
|
thermal_diffusivity_roc = 1.5E-6
|
|
sigma = 5.67E-8
|
|
|
|
air_pressure = air_density*specific_gas*temperature_atmosp
|
|
|
|
# define planet size and various geometric constants
|
|
circumference = 2*np.pi*planet_radius
|
|
circle = np.pi*planet_radius**2
|
|
sphere = 4*np.pi*planet_radius**2
|
|
|
|
# define how far apart the gridpoints are: note that we use central difference derivatives, and so these distances are actually twice the distance between gridboxes
|
|
dy = circumference/nlat
|
|
dx = np.zeros(nlat)
|
|
coriolis = np.zeros(nlat) # also define the coriolis parameter here
|
|
angular_speed = 2*np.pi/day
|
|
for i in range(nlat):
|
|
dx[i] = dy*np.cos(lat[i]*np.pi/180)
|
|
coriolis[i] = angular_speed*np.sin(lat[i]*np.pi/180)
|
|
dz = np.zeros(nlevels)
|
|
for k in range(nlevels-1): dz[k] = heights[k+1] - heights[k]
|
|
dz[-1] = dz[-2]
|
|
|
|
###################### FUNCTIONS ######################
|
|
|
|
# define various useful differential functions:
|
|
# gradient of scalar field a in the local x direction at point i,j
|
|
def scalar_gradient_x(a,i,j,k=999):
|
|
if k == 999:
|
|
return (a[i,(j+1)%nlon]-a[i,(j-1)%nlon])/dx[i]
|
|
else:
|
|
return (a[i,(j+1)%nlon,k]-a[i,(j-1)%nlon,k])/dx[i]
|
|
|
|
# gradient of scalar field a in the local y direction at point i,j
|
|
def scalar_gradient_y(a,i,j,k=999):
|
|
if k == 999:
|
|
if i == 0:
|
|
return 2*(a[i+1,j]-a[i,j])/dy
|
|
elif i == nlat-1:
|
|
return 2*(a[i,j]-a[i-1,j])/dy
|
|
else:
|
|
return (a[i+1,j]-a[i-1,j])/dy
|
|
else:
|
|
if i == 0:
|
|
return 2*(a[i+1,j,k]-a[i,j,k])/dy
|
|
elif i == nlat-1:
|
|
return 2*(a[i,j,k]-a[i-1,j,k])/dy
|
|
else:
|
|
return (a[i+1,j,k]-a[i-1,j,k])/dy
|
|
|
|
def scalar_gradient_z(a,i,j,k):
|
|
output = np.zeros_like(a)
|
|
if output.ndim == 1:
|
|
if k == 0:
|
|
return (a[k+1]-a[k])/dz[k]
|
|
elif k == nlevels-1:
|
|
return (a[k]-a[k-1])/dz[k]
|
|
else:
|
|
return (a[k+1]-a[k-1])/(2*dz[k])
|
|
else:
|
|
if k == 0:
|
|
return (a[i,j,k+1]-a[i,j,k])/dz[k]
|
|
elif k == nlevels-1:
|
|
return (a[i,j,k]-a[i,j,k-1])/dz[k]
|
|
else:
|
|
return (a[i,j,k+1]-a[i,j,k-1])/(2*dz[k])
|
|
|
|
# laplacian of scalar field a
|
|
def laplacian(a):
|
|
output = np.zeros_like(a)
|
|
if output.ndim == 2:
|
|
for i in np.arange(1,nlat-1):
|
|
for j in range(nlon):
|
|
output[i,j] = (scalar_gradient_x(a,i,(j+1)%nlon) - scalar_gradient_x(a,i,(j-1)%nlon))/dx[i] + (scalar_gradient_y(a,i+1,j) - scalar_gradient_y(a,i-1,j))/dy
|
|
return output
|
|
if output.ndim == 3:
|
|
for i in np.arange(1,nlat-1):
|
|
for j in range(nlon):
|
|
for k in range(nlevels-1):
|
|
output[i,j,k] = (scalar_gradient_x(a,i,(j+1)%nlon,k) - scalar_gradient_x(a,i,(j-1)%nlon,k))/dx[i] + (scalar_gradient_y(a,i+1,j,k) - scalar_gradient_y(a,i-1,j,k))/dy + (scalar_gradient_z(a,i,j,k+1)-scalar_gradient_z(a,i,j,k-1))/(2*dz[k])
|
|
return output
|
|
|
|
# divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field
|
|
def divergence_with_scalar(a):
|
|
output = np.zeros_like(a)
|
|
for i in range(nlat):
|
|
for j in range(nlon):
|
|
for k in range(nlevels):
|
|
output[i,j] = scalar_gradient_x(a*u,i,j,k) + scalar_gradient_y(a*v,i,j,k) + scalar_gradient_z(a*w,i,j,k)
|
|
return output
|
|
|
|
# power incident on (lat,lon) at time t
|
|
def solar(insolation, lat, lon, t):
|
|
sun_longitude = -t % day
|
|
sun_longitude *= 360/day
|
|
value = insolation*np.cos(lat*np.pi/180)*np.cos((lon-sun_longitude)*np.pi/180)
|
|
if value < 0: return 0
|
|
else: return value
|
|
|
|
def surface_optical_depth(lat):
|
|
return 3.75 + np.cos(lat*np.pi/90)*4.5/2
|
|
|
|
#################### SHOW TIME ####################
|
|
|
|
# pressure_profile = profile(air_pressure)
|
|
# density_profile = profile(air_density)
|
|
# temperature_profile = profile(temperature_atmosp)
|
|
|
|
# print(dz,density_profile,gravity,pressure_profile/1E2,temperature_profile)
|
|
|
|
# plt.plot(pressure_profile/1E2,heights/1E3,color='blue',label='Model atmosphere')
|
|
# temp = np.zeros_like(pressure_profile)
|
|
# temp[0] = pressure_profile[0]
|
|
# for k in np.arange(1,nlevels): temp[k] = temp[k-1] - dz[k]*density_profile[k]*gravity
|
|
# plt.plot(temp/1E2,heights/1E3,color='red',label='Implied hydrostatic balance')
|
|
# plt.xlabel('Pressure (hPa)')
|
|
# plt.ylabel('Height (km)')
|
|
# plt.legend()
|
|
# plt.show()
|
|
|
|
# plt.plot(temp/pressure_profile)
|
|
# plt.show()
|
|
|
|
# sys.exit()
|
|
|
|
#################################################
|
|
|
|
if plot:
|
|
# set up plot
|
|
f, ax = plt.subplots(2,figsize=(9,7))
|
|
f.canvas.set_window_title('CLAuDE')
|
|
ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic')
|
|
ax[1].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,0], cmap='seismic')
|
|
plt.subplots_adjust(left=0.1, right=0.75)
|
|
ax[0].set_title('Ground temperature')
|
|
ax[1].set_title('Atmosphere temperature')
|
|
# allow for live updating as calculations take place
|
|
|
|
if level_plots:
|
|
plot_subsample = [0,5,10,15]
|
|
g, bx = plt.subplots(len(plot_subsample),figsize=(9,7),sharex=True)
|
|
g.canvas.set_window_title('CLAuDE atmospheric levels')
|
|
for k in plot_subsample:
|
|
bx[k].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,k], cmap='seismic')
|
|
bx[k].set_title(str(heights[k])+' km')
|
|
bx[k].set_ylabel('Latitude')
|
|
bx[-1].set_xlabel('Longitude')
|
|
|
|
plt.ion()
|
|
plt.show()
|
|
|
|
# INITIATE TIME
|
|
t = 0
|
|
|
|
if load:
|
|
# load in previous save file
|
|
temperature_atmosp,temperature_planet,u,v,w,t,air_density,albedo = pickle.load(open("save_file.p","rb"))
|
|
|
|
while True:
|
|
|
|
initial_time = time.time()
|
|
|
|
if t < 14*day:
|
|
dt = 60*47
|
|
velocity = False
|
|
else:
|
|
dt = 60*9
|
|
velocity = True
|
|
|
|
# print current time in simulation to command line
|
|
print("+++ t = " + str(round(t/day,2)) + " days +++", end='\r')
|
|
print('U:',u.max(),u.min(),'V: ',v.max(),v.min(),'W: ',w.max(),w.min())
|
|
# print(np.mean(np.mean(air_density,axis=0),axis=0))
|
|
|
|
# calculate change in temperature of ground and atmosphere due to radiative imbalance
|
|
for i in range(nlat):
|
|
for j in range(nlon):
|
|
|
|
# calculate optical depth
|
|
pressure_profile = air_pressure[i,j,:]
|
|
density_profile = air_density[i,j,:]
|
|
fl = 0.1
|
|
optical_depth = surface_optical_depth(lat[i])*(fl*(pressure_profile/pressure_profile[0]) + (1-fl)*(pressure_profile/pressure_profile[0])**4)
|
|
|
|
# calculate upward longwave flux, bc is thermal radiation at surface
|
|
upward_radiation[0] = sigma*temperature_planet[i,j]**4
|
|
for k in np.arange(1,nlevels):
|
|
upward_radiation[k] = upward_radiation[k-1] + (optical_depth[k]-optical_depth[k-1])*(upward_radiation[k-1] - sigma*temperature_atmosp[i,j,k]**4)
|
|
|
|
# calculate downward longwave flux, bc is zero at TOA (in model)
|
|
downward_radiation[nlevels-1] = 0
|
|
for k in np.arange(0,nlevels-1)[::-1]:
|
|
if k == 0:
|
|
downward_radiation[k] = downward_radiation[k+1] + (optical_depth[k+1]-optical_depth[k])*(sigma*temperature_atmosp[i,j,k]**4 - downward_radiation[k+1])
|
|
else:
|
|
downward_radiation[k] = downward_radiation[k+1] + (optical_depth[k]-optical_depth[k-1])*(sigma*temperature_atmosp[i,j,k]**4 - downward_radiation[k+1])
|
|
# gradient of difference provides heating at each level
|
|
for k in np.arange(nlevels):
|
|
Q[k] = -scalar_gradient_z(upward_radiation-downward_radiation,0,0,k)/(1E3*density_profile[k])
|
|
temperature_atmosp[i,j,:] += Q
|
|
|
|
# update surface temperature with shortwave radiation flux
|
|
temperature_planet[i,j] += dt*((1-albedo[i,j])*solar(insolation,lat[i],lon[j],t) + scalar_gradient_z(downward_radiation,0,0,0) - sigma*temperature_planet[i,j]**4)/heat_capacity_earth[i,j]
|
|
|
|
# plt.plot(downward_radiation,heights,label='downward',color='blue')
|
|
# plt.plot(upward_radiation,heights,label='upward',color='red')
|
|
# plt.legend()
|
|
# plt.show()
|
|
|
|
# update air pressure
|
|
air_pressure = air_density*specific_gas*temperature_atmosp
|
|
|
|
if velocity:
|
|
|
|
# introduce temporary arrays to update velocity in the atmosphere
|
|
u_temp = np.zeros_like(u)
|
|
v_temp = np.zeros_like(v)
|
|
w_temp = np.zeros_like(w)
|
|
|
|
# calculate acceleration of atmosphere using primitive equations on beta-plane
|
|
for i in np.arange(1,nlat-1):
|
|
for j in range(nlon):
|
|
for k in range(nlevels):
|
|
u_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(u,i,j,k) - v[i,j,k]*scalar_gradient_y(u,i,j,k) + coriolis[i]*v[i,j,k] - scalar_gradient_x(air_pressure,i,j,k)/air_density[i,j,k] )
|
|
v_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(v,i,j,k) - v[i,j,k]*scalar_gradient_y(v,i,j,k) - coriolis[i]*u[i,j,k] - scalar_gradient_y(air_pressure,i,j,k)/air_density[i,j,k] )
|
|
|
|
# w_temp[i,j,k] += dt*( (air_pressure[i,j,k] - np.trapz(y=air_density[i,j,k:]*gravity,dx=dz[(k+1):]) - weight_above)/(1E5*dz[k]*air_density[i,j,k]) )
|
|
|
|
u += u_temp
|
|
v += v_temp
|
|
w[:,:,1:-2] += w_temp[:,:,1:-2]
|
|
|
|
# approximate surface friction
|
|
u[:,:,0] *= 0.99
|
|
v[:,:,0] *= 0.99
|
|
|
|
if advection:
|
|
# allow for thermal advection in the atmosphere, and heat diffusion in the atmosphere and the ground
|
|
# atmosp_addition = dt*(thermal_diffusivity_air*laplacian(temperature_atmosp))
|
|
atmosp_addition = dt*divergence_with_scalar(temperature_atmosp)
|
|
temperature_atmosp[advection_boundary:-advection_boundary,:,:] -= atmosp_addition[advection_boundary:-advection_boundary,:,:]
|
|
temperature_atmosp[advection_boundary-1,:,:] -= 0.5*atmosp_addition[advection_boundary-1,:,:]
|
|
temperature_atmosp[-advection_boundary,:,:] -= 0.5*atmosp_addition[-advection_boundary,:,:]
|
|
|
|
# as density is now variable, allow for mass advection
|
|
density_addition = dt*divergence_with_scalar(air_density)
|
|
air_density[advection_boundary:-advection_boundary,:,:] -= density_addition[advection_boundary:-advection_boundary,:,:]
|
|
air_density[(advection_boundary-1),:,:] -= 0.5*density_addition[advection_boundary-1,:,:]
|
|
air_density[-advection_boundary,:,:] -= 0.5*density_addition[-advection_boundary,:,:]
|
|
|
|
temperature_planet += dt*(thermal_diffusivity_roc*laplacian(temperature_planet))
|
|
|
|
if plot:
|
|
# update plot
|
|
test = ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic')
|
|
ax[0].set_title('$\it{Ground} \quad \it{temperature}$')
|
|
ax[0].set_xlim((lon.min(),lon.max()))
|
|
ax[0].set_ylim((lat.min(),lat.max()))
|
|
ax[0].set_ylabel('Latitude')
|
|
ax[0].axhline(y=0,color='black',alpha=0.3)
|
|
ax[0].set_xlabel('Longitude')
|
|
|
|
ax[1].contourf(heights_plot, lat_z_plot, np.transpose(np.mean(temperature_atmosp,axis=1)), cmap='seismic')
|
|
ax[1].contour(heights_plot,lat_z_plot, np.transpose(np.mean(u,axis=1)), colors='white')
|
|
ax[1].streamplot(heights_plot, lat_z_plot, np.transpose(np.mean(v,axis=1)),np.transpose(np.mean(w,axis=1)),color='black',density=0.75)
|
|
ax[1].set_title('$\it{Atmospheric} \quad \it{temperature}$')
|
|
ax[1].set_xlim((-90,90))
|
|
ax[1].set_ylim((0,heights.max()))
|
|
ax[1].set_ylabel('Height (m)')
|
|
ax[1].set_xlabel('Latitude')
|
|
|
|
cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.7])
|
|
f.colorbar(test, cax=cbar_ax)
|
|
cbar_ax.set_title('Temperature (K)')
|
|
f.suptitle( 'Time ' + str(round(24*t/day,2)) + ' hours' )
|
|
|
|
if level_plots:
|
|
for k in plot_subsample:
|
|
index = nlevels-1-k
|
|
test = bx[index].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,k], cmap='seismic')
|
|
bx[index].streamplot(lon_plot, lat_plot, u[:,:,k], v[:,:,k],density=0.75,color='black')
|
|
# g.colorbar(test,cax=bx[nlevels-1-k])
|
|
bx[index].set_title(str(heights[k]/1E3)+' km')
|
|
bx[index].set_ylabel('Latitude')
|
|
bx[index].set_xlim((lon.min(),lon.max()))
|
|
bx[index].set_ylim((lat.min(),lat.max()))
|
|
bx[-1].set_xlabel('Longitude')
|
|
|
|
plt.pause(0.01)
|
|
|
|
ax[0].cla()
|
|
ax[1].cla()
|
|
if level_plots:
|
|
for k in range(nlevels):
|
|
bx[k].cla()
|
|
|
|
# advance time by one timestep
|
|
t += dt
|
|
|
|
time_taken = float(round(time.time() - initial_time,3))
|
|
|
|
print('Time: ',str(time_taken),'s')
|
|
|
|
if save:
|
|
pickle.dump((temperature_atmosp,temperature_planet,u,v,w,t,air_density,albedo), open("save_file.p","wb"))
|
|
|
|
# sys.exit() |