# claude_top_level_library import claude_low_level_library as low_level import numpy as np cimport numpy as np cimport cython ctypedef np.float64_t DTYPE_f # laplacian of scalar field a # def laplacian(a): # output = np.zeros_like(a) # if output.ndim == 2: # for i in np.arange(1,nlat-1): # for j in range(nlon): # output[i,j] = (scalar_gradient_x_2D(a,i,(j+1)%nlon) - scalar_gradient_x_2D(a,i,(j-1)%nlon))/dx[i] + (scalar_gradient_y_2D(a,i+1,j) - scalar_gradient_y_2D(a,i-1,j))/dy # return output # if output.ndim == 3: # for i in np.arange(1,nlat-1): # for j in range(nlon): # for k in range(nlevels-1): # output[i,j,k] = (scalar_gradient_x(a,i,(j+1)%nlon,k) - scalar_gradient_x(a,i,(j-1)%nlon,k))/dx[i] + (scalar_gradient_y(a,i+1,j,k) - scalar_gradient_y(a,i-1,j,k))/dy + (scalar_gradient_z(a,i,j,k+1)-scalar_gradient_z(a,i,j,k-1))/(2*dz[k]) # return output # divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field def divergence_with_scalar(a,u,v,dx,dy): output = np.zeros_like(a) nlat, nlon, nlevels = output.shape[:] au = a*u av = a*v for i in range(nlat): for j in range(nlon): for k in range(nlevels): output[i,j,k] = low_level.scalar_gradient_x(au,dx,nlon,i,j,k) + low_level.scalar_gradient_y(av,dy,nlat,i,j,k) #+ 0.1*scalar_gradient_z(a*w,i,j,k) return output def radiation_calculation(np.ndarray temperature_world, np.ndarray temperature_atmos, np.ndarray air_pressure, np.ndarray air_density, np.ndarray heat_capacity_earth, np.ndarray albedo, DTYPE_f insolation, np.ndarray lat, np.ndarray lon, np.ndarray heights, np.ndarray dz, np.int_t t, np.int_t dt, DTYPE_f day, DTYPE_f year, DTYPE_f axial_tilt): # calculate change in temperature of ground and atmosphere due to radiative imbalance cdef np.int_t nlat,nlon,nlevels,i,j cdef DTYPE_f fl = 0.1 cdef np.ndarray upward_radiation,downward_radiation,optical_depth,Q, pressure_profile, density_profile nlat = temperature_atmos.shape[0] nlon = temperature_atmos.shape[1] nlevels = temperature_atmos.shape[2] upward_radiation = np.zeros(nlevels) downward_radiation = np.zeros(nlevels) optical_depth = np.zeros(nlevels) Q = np.zeros(nlevels) for i in range(nlat): for j in range(nlon): # calculate optical depth pressure_profile = air_pressure[i,j,:] density_profile = air_density[i,j,:] optical_depth = low_level.surface_optical_depth(lat[i])*(fl*(pressure_profile/pressure_profile[0]) + (1-fl)*(pressure_profile/pressure_profile[0])**4) # calculate upward longwave flux, bc is thermal radiation at surface upward_radiation[0] = low_level.thermal_radiation(temperature_world[i,j]) for k in np.arange(1,nlevels): upward_radiation[k] = (upward_radiation[k-1] - (optical_depth[k]-optical_depth[k-1])*(low_level.thermal_radiation(temperature_atmos[i,j,k])))/(1+optical_depth[k-1]-optical_depth[k]) # calculate downward longwave flux, bc is zero at TOA (in model) downward_radiation[-1] = 0 for k in np.arange(0,nlevels-1)[::-1]: downward_radiation[k] = (downward_radiation[k+1] - low_level.thermal_radiation(temperature_atmos[i,j,k])*(optical_depth[k+1]-optical_depth[k]))/(1 + optical_depth[k] - optical_depth[k+1]) # gradient of difference provides heating at each level for k in np.arange(nlevels): Q[k] = -low_level.scalar_gradient_z_1D(upward_radiation-downward_radiation,dz,0,0,k)/(1E3*density_profile[k]) # make sure model does not have a higher top than 50km!! # approximate SW heating of ozone if heights[k] > 20E3: Q[k] += low_level.solar(5,lat[i],lon[j],t,day, year, axial_tilt)*((((heights[k]-20E3)/1E3)**2)/(30**2))/(24*60*60) temperature_atmos[i,j,:] += Q*dt # update surface temperature with shortwave radiation flux temperature_world[i,j] += dt*((1-albedo[i,j])*(low_level.solar(insolation,lat[i],lon[j],t, day, year, axial_tilt) + downward_radiation[0]) - upward_radiation[0])/heat_capacity_earth[i,j] return temperature_world, temperature_atmos def velocity_calculation(u,v,air_pressure,old_pressure,air_density,coriolis,gravity,dx,dy,dt): # introduce temporary arrays to update velocity in the atmosphere u_temp = np.zeros_like(u) v_temp = np.zeros_like(v) w_temp = np.zeros_like(u) nlat,nlon,nlevels = air_pressure.shape[:] # calculate acceleration of atmosphere using primitive equations on beta-plane for i in np.arange(1,nlat-1): for j in range(nlon): for k in range(nlevels): u_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(u,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(u,dy,nlat,i,j,k) + coriolis[i]*v[i,j,k] - low_level.scalar_gradient_x(air_pressure,dx,nlon,i,j,k)/air_density[i,j,k] ) v_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(v,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(v,dy,nlat,i,j,k) - coriolis[i]*u[i,j,k] - low_level.scalar_gradient_y(air_pressure,dy,nlat,i,j,k)/air_density[i,j,k] ) w_temp[i,j,k] += -(air_pressure[i,j,k]-old_pressure[i,j,k])/(dt*air_density[i,j,k]*gravity) u += u_temp v += v_temp w = w_temp # approximate friction u *= 0.95 v *= 0.95 return u,v,w