# toy model for use on stream # Please give me your Twitch prime sub! # CLimate Analysis using Digital Estimations (CLAuDE) import numpy as np import matplotlib.pyplot as plt import time, sys, pickle ### CONTROL day = 60*60*24 # define length of day (used for calculating Coriolis as well) (s) dt = 60*9 # <----- TIMESTEP (s) resolution = 3 # how many degrees between latitude and longitude gridpoints planet_radius = 6.4E6 # define the planet's radius (m) insolation = 1370 # TOA radiation from star (W m^-2) advection = True # if you want to include advection set this to be True (currently this breaks the model!) advection_boundary = 7 # how many gridpoints away from poles to apply advection save = False load = True ########################### # define coordinate arrays lat = np.arange(-90,91,resolution) lon = np.arange(0,360,resolution) nlat = len(lat) nlon = len(lon) lon_plot, lat_plot = np.meshgrid(lon, lat) # initialise arrays for various physical fields temperature_planet = np.zeros((nlat,nlon)) + 270 temperature_atmosp = np.zeros_like(temperature_planet) + 270 air_pressure = np.zeros_like(temperature_planet) u = np.zeros_like(temperature_planet) v = np.zeros_like(temperature_planet) air_density = np.zeros_like(temperature_planet) + 1.3 albedo = np.zeros_like(temperature_planet) + 0.5 heat_capacity_earth = np.zeros_like(temperature_planet) + 1E7 albedo_variance = 0.001 for i in range(nlat): for j in range(nlon): albedo[i,j] += np.random.uniform(-albedo_variance,albedo_variance) # if including an ocean, uncomment the below # albedo[5:55,9:20] = 0.2 # albedo[23:50,45:70] = 0.2 # albedo[2:30,85:110] = 0.2 # heat_capacity_earth[5:55,9:20] = 1E6 # heat_capacity_earth[23:50,45:70] = 1E6 # heat_capacity_earth[2:30,85:110] = 1E6 # define physical constants epsilon = 0.75 heat_capacity_atmos = 1E7 specific_gas = 287 thermal_diffusivity_air = 20E-6 thermal_diffusivity_roc = 1.5E-6 sigma = 5.67E-8 # define planet size and various geometric constants circumference = 2*np.pi*planet_radius circle = np.pi*planet_radius**2 sphere = 4*np.pi*planet_radius**2 # define how far apart the gridpoints are: note that we use central difference derivatives, and so these distances are actually twice the distance between gridboxes dy = circumference/nlat dx = np.zeros(nlat) coriolis = np.zeros(nlat) # also define the coriolis parameter here angular_speed = 2*np.pi/day for i in range(nlat): dx[i] = dy*np.cos(lat[i]*np.pi/180) coriolis[i] = angular_speed*np.sin(lat[i]*np.pi/180) ###################### FUNCTIONS ###################### # define various useful differential functions: # gradient of scalar field a in the local x direction at point i,j def scalar_gradient_x(a,i,j): return (a[i,(j+1)%nlon]-a[i,(j-1)%nlon])/dx[i] # gradient of scalar field a in the local y direction at point i,j def scalar_gradient_y(a,i,j): if i == 0 or i == nlat-1: return 0 else: return (a[i+1,j]-a[i-1,j])/dy # laplacian of scalar field a in the local x direction def laplacian(a): output = np.zeros_like(a) for i in np.arange(1,len(a[:,0])-1): for j in range(len(a[0,:])): output[i,j] = (scalar_gradient_x(a,i,(j+1)%nlon) - scalar_gradient_x(a,i,(j-1)%nlon)/dx[i]) + (scalar_gradient_y(a,i+1,j) - scalar_gradient_y(a,i-1,j))/dy return output # divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field def divergence_with_scalar(a): output = np.zeros_like(a) for i in range(len(a[:,0])): for j in range(len(a[0,:])): output[i,j] = scalar_gradient_x(a*u,i,j) + scalar_gradient_y(a*v,i,j) return output # power incident on (lat,lon) at time t def solar(insolation, lat, lon, t): sun_longitude = -t % day sun_longitude *= 360/day value = insolation*np.cos(lat*np.pi/180)*np.cos((lon-sun_longitude)*np.pi/180) if value < 0: return 0 else: return value #################### SHOW TIME #################### # set up plot f, ax = plt.subplots(2,figsize=(9,9)) f.canvas.set_window_title('CLAuDE') ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic') ax[1].contourf(lon_plot, lat_plot, temperature_atmosp, cmap='seismic') plt.subplots_adjust(left=0.1, right=0.75) ax[0].set_title('Ground temperature') ax[1].set_title('Atmosphere temperature') # allow for live updating as calculations take place plt.ion() plt.show() # INITIATE TIME t = 0 if load: # load in previous save file temperature_atmosp,temperature_planet,u,v,t,air_density,albedo = pickle.load(open("save_file.p","rb")) while True: initial_time = time.time() if t < 7*day: dt = 60*47 velocity = False else: dt = 60*9 velocity = True # print current time in simulation to command line print("t = " + str(round(t/day,2)) + " days", end='\r') print('U:',u.max(),u.min(),'V: ',v.max(),v.min()) # calculate change in temperature of ground and atmosphere due to radiative imbalance for i in range(nlat): for j in range(nlon): temperature_planet[i,j] += dt*((1-albedo[i,j])*solar(insolation,lat[i],lon[j],t) + epsilon*sigma*temperature_atmosp[i,j]**4 - sigma*temperature_planet[i,j]**4)/heat_capacity_earth[i,j] temperature_atmosp[i,j] += dt*(epsilon*sigma*temperature_planet[i,j]**4 - 2*epsilon*sigma*temperature_atmosp[i,j]**4)/heat_capacity_atmos # update air pressure air_pressure = air_density*specific_gas*temperature_atmosp if velocity: # introduce temporary arrays to update velocity in the atmosphere u_temp = np.zeros_like(u) v_temp = np.zeros_like(v) # calculate acceleration of atmosphere using primitive equations on beta-plane for i in np.arange(1,nlat-1): for j in range(nlon): u_temp[i,j] += dt*( -u[i,j]*scalar_gradient_x(u,i,j) - v[i,j]*scalar_gradient_y(u,i,j) + coriolis[i]*v[i,j] - scalar_gradient_x(air_pressure,i,j)/air_density[i,j] ) v_temp[i,j] += dt*( -u[i,j]*scalar_gradient_x(v,i,j) - v[i,j]*scalar_gradient_y(v,i,j) - coriolis[i]*u[i,j] - scalar_gradient_y(air_pressure,i,j)/air_density[i,j] ) u += u_temp v += v_temp u *= 0.99 v *= 0.99 if advection: # allow for thermal advection in the atmosphere, and heat diffusion in the atmosphere and the ground atmosp_addition = dt*(thermal_diffusivity_air*laplacian(temperature_atmosp) + divergence_with_scalar(temperature_atmosp)) temperature_atmosp[advection_boundary:-advection_boundary,:] -= atmosp_addition[advection_boundary:-advection_boundary,:] temperature_atmosp[advection_boundary-1,:] -= 0.5*atmosp_addition[advection_boundary-1,:] temperature_atmosp[-advection_boundary,:] -= 0.5*atmosp_addition[-advection_boundary,:] # as density is now variable, allow for mass advection density_addition = dt*divergence_with_scalar(air_density) air_density[advection_boundary:-advection_boundary,:] -= density_addition[advection_boundary:-advection_boundary,:] air_density[(advection_boundary-1),:] -= 0.5*density_addition[advection_boundary-1,:] air_density[-advection_boundary,:] -= 0.5*density_addition[-advection_boundary,:] temperature_planet += dt*(thermal_diffusivity_roc*laplacian(temperature_planet)) # update plot test = ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic') ax[0].set_title('$\it{Ground} \quad \it{temperature}$') ax[1].contourf(lon_plot, lat_plot, temperature_atmosp, cmap='seismic') ax[1].streamplot(lon_plot,lat_plot,u,v,density=0.75,color='black') ax[1].set_title('$\it{Atmospheric} \quad \it{temperature}$') for i in ax: i.set_xlim((lon.min(),lon.max())) i.set_ylim((lat.min(),lat.max())) i.set_ylabel('Latitude') i.axhline(y=0,color='black',alpha=0.3) ax[-1].set_xlabel('Longitude') cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.7]) f.colorbar(test, cax=cbar_ax) cbar_ax.set_title('Temperature (K)') f.suptitle( 'Time ' + str(round(24*t/day,2)) + ' hours' ) plt.pause(0.01) ax[0].cla() ax[1].cla() # advance time by one timestep t += dt time_taken = float(round(time.time() - initial_time,3)) print('Time: ',str(time_taken),'s') if save: pickle.dump((temperature_atmosp,temperature_planet,u,v,t,air_density,albedo), open("save_file.p","wb"))