# toy model for use on stream # Please give me your Twitch prime sub! # CLimate Analysis using Digital Estimations (CLAuDE) import numpy as np import matplotlib.pyplot as plt import time, sys, pickle ### CONTROL ### day = 60*60*24 # define length of day (used for calculating Coriolis as well) (s) dt = 60*9 # <----- TIMESTEP (s) resolution = 5 # how many degrees between latitude and longitude gridpoints nlevels = 5 # how many vertical layers in the atmosphere top = 10E3 # top of atmosphere (m) planet_radius = 6.4E6 # define the planet's radius (m) insolation = 1370 # TOA radiation from star (W m^-2) gravity = 9.81 # define surface gravity for planet (m s^-2) advection = True # if you want to include advection set this to be True advection_boundary = 3 # how many gridpoints away from poles to apply advection save = False load = False ########################### # define coordinate arrays lat = np.arange(-90,91,resolution) lon = np.arange(0,360,resolution) nlat = len(lat) nlon = len(lon) lon_plot, lat_plot = np.meshgrid(lon, lat) heights = np.arange(0,top,top/nlevels) heights_plot, lat_z_plot = np.meshgrid(lat,heights) # initialise arrays for various physical fields temperature_planet = np.zeros((nlat,nlon)) + 270 temperature_atmosp = np.zeros((nlat,nlon,nlevels)) + 270 air_pressure = np.zeros_like(temperature_atmosp) u = np.zeros_like(temperature_atmosp) v = np.zeros_like(temperature_atmosp) w = np.zeros_like(temperature_atmosp) air_density = np.zeros_like(temperature_atmosp) # read temperature and density in from standard atmosphere f = open("standard_atmosphere.txt", "r") standard_height = [] standard_temp = [] standard_density = [] for x in f: h, t, r = x.split() standard_height.append(float(h)) standard_temp.append(float(t)) standard_density.append(float(r)) f.close() density_profile = np.interp(x=heights/1E3,xp=standard_height,fp=standard_density) temp_profile = np.interp(x=heights/1E3,xp=standard_height,fp=standard_temp) for k in range(nlevels): air_density[:,:,k] = density_profile[k] temperature_atmosp[:,:,k] = temp_profile[k] albedo = np.zeros_like(temperature_planet) + 0.5 heat_capacity_earth = np.zeros_like(temperature_planet) + 1E7 albedo_variance = 0.001 for i in range(nlat): for j in range(nlon): albedo[i,j] += np.random.uniform(-albedo_variance,albedo_variance) # define physical constants epsilon = np.zeros(nlevels) epsilon[0] = 0.75 for i in np.arange(1,nlevels): epsilon[i] = epsilon[i-1]*0.5 heat_capacity_atmos = 1E6 specific_gas = 287 thermal_diffusivity_air = 20E-6 thermal_diffusivity_roc = 1.5E-6 sigma = 5.67E-8 # define planet size and various geometric constants circumference = 2*np.pi*planet_radius circle = np.pi*planet_radius**2 sphere = 4*np.pi*planet_radius**2 # define how far apart the gridpoints are: note that we use central difference derivatives, and so these distances are actually twice the distance between gridboxes dy = circumference/nlat dx = np.zeros(nlat) coriolis = np.zeros(nlat) # also define the coriolis parameter here angular_speed = 2*np.pi/day for i in range(nlat): dx[i] = dy*np.cos(lat[i]*np.pi/180) coriolis[i] = angular_speed*np.sin(lat[i]*np.pi/180) dz = np.zeros(nlevels) for k in range(nlevels-1): dz[k] = heights[k+1] - heights[k] dz[-1] = dz[-2] ###################### FUNCTIONS ###################### # define various useful differential functions: # gradient of scalar field a in the local x direction at point i,j def scalar_gradient_x(a,i,j,k=999): if k == 999: return (a[i,(j+1)%nlon]-a[i,(j-1)%nlon])/dx[i] else: return (a[i,(j+1)%nlon,k]-a[i,(j-1)%nlon,k])/dx[i] # gradient of scalar field a in the local y direction at point i,j def scalar_gradient_y(a,i,j,k=999): if k == 999: if i == 0: return 2*(a[i+1,j]-a[i,j])/dy elif i == nlat-1: return 2*(a[i,j]-a[i-1,j])/dy else: return (a[i+1,j]-a[i-1,j])/dy else: if i == 0: return 2*(a[i+1,j,k]-a[i,j,k])/dy elif i == nlat-1: return 2*(a[i,j,k]-a[i-1,j,k])/dy else: return (a[i+1,j,k]-a[i-1,j,k])/dy def scalar_gradient_z(a,i,j,k): if k == 0: return (a[i,j,k+1]-a[i,j,k])/dz[k] elif k == nlevels-1: return (a[i,j,k]-a[i,j,k-1])/dz[k] else: return (a[i,j,k+1]-a[i,j,k-1])/(2*dz[k]) # laplacian of scalar field a def laplacian(a): output = np.zeros_like(a) if output.ndim == 2: for i in np.arange(1,nlat-1): for j in range(nlon): output[i,j] = (scalar_gradient_x(a,i,(j+1)%nlon) - scalar_gradient_x(a,i,(j-1)%nlon)/dx[i]) + (scalar_gradient_y(a,i+1,j) - scalar_gradient_y(a,i-1,j))/dy return output if output.ndim == 3: for i in np.arange(1,nlat-1): for j in range(nlon): for k in range(nlevels-1): output[i,j,k] = (scalar_gradient_x(a,i,(j+1)%nlon,k) - scalar_gradient_x(a,i,(j-1)%nlon,k)/dx[i]) + (scalar_gradient_y(a,i+1,j,k) - scalar_gradient_y(a,i-1,j,k))/dy + (scalar_gradient_z(a,i,j,k+1)-scalar_gradient_z(a,i,j,k-1))/2*dz[k] return output # divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field def divergence_with_scalar(a): output = np.zeros_like(a) for i in range(nlat): for j in range(nlon): for k in range(nlevels): output[i,j] = scalar_gradient_x(a*u,i,j,k) + scalar_gradient_y(a*v,i,j,k) + scalar_gradient_z(a*w,i,j,k) return output # power incident on (lat,lon) at time t def solar(insolation, lat, lon, t): sun_longitude = -t % day sun_longitude *= 360/day value = insolation*np.cos(lat*np.pi/180)*np.cos((lon-sun_longitude)*np.pi/180) if value < 0: return 0 else: return value #################### SHOW TIME #################### # set up plot f, ax = plt.subplots(2,figsize=(9,7)) f.canvas.set_window_title('CLAuDE') ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic') ax[1].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,0], cmap='seismic') plt.subplots_adjust(left=0.1, right=0.75) ax[0].set_title('Ground temperature') ax[1].set_title('Atmosphere temperature') # allow for live updating as calculations take place g, bx = plt.subplots(nlevels,figsize=(9,7),sharex=True) g.canvas.set_window_title('CLAuDE atmospheric levels') for k in range(nlevels): bx[k].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,k], cmap='seismic') bx[k].set_title(str(heights[k])+' km') bx[k].set_ylabel('Latitude') bx[-1].set_xlabel('Longitude') plt.ion() plt.show() # INITIATE TIME t = 0 if load: # load in previous save file temperature_atmosp,temperature_planet,u,v,t,air_density,albedo = pickle.load(open("save_file.p","rb")) while True: initial_time = time.time() if t < 7*day: dt = 60*47 velocity = False else: dt = 60*9 velocity = True # print current time in simulation to command line print("+++ t = " + str(round(t/day,2)) + " days +++", end='\r') print('U:',u.max(),u.min(),'V: ',v.max(),v.min(),'W: ',w.max(),w.min()) print(np.mean(np.mean(air_density,axis=0),axis=0)) # calculate change in temperature of ground and atmosphere due to radiative imbalance for i in range(nlat): for j in range(nlon): temperature_planet[i,j] += dt*((1-albedo[i,j])*solar(insolation,lat[i],lon[j],t) + epsilon[0]*sigma*temperature_atmosp[i,j,0]**4 - sigma*temperature_planet[i,j]**4)/heat_capacity_earth[i,j] for k in range(nlevels): if k == 0: temperature_atmosp[i,j,k] += dt*epsilon[k]*sigma*(temperature_planet[i,j]**4 + epsilon[k+1]*temperature_atmosp[i,j,k+1]**4 - 2*temperature_atmosp[i,j,k]**4)/(air_density[i,j,k]*heat_capacity_atmos*dz[k]) elif k == nlevels-1: temperature_atmosp[i,j,k] += dt*epsilon[k]*sigma*(epsilon[k-1]*temperature_atmosp[i,j,k-1]**4 - 2*temperature_atmosp[i,j,k]**4)/(air_density[i,j,k]*heat_capacity_atmos*dz[k]) else: temperature_atmosp[i,j,k] += dt*epsilon[k]*sigma*(epsilon[k+1]*temperature_atmosp[i,j,k+1]**4 + epsilon[k-1]*temperature_atmosp[i,j,k-1]**4 - 2*temperature_atmosp[i,j,k]**4)/(air_density[i,j,k]*heat_capacity_atmos*dz[k]) # update air pressure air_pressure = air_density*specific_gas*temperature_atmosp print(heights/1E3,np.mean(np.mean(air_pressure,axis=0),axis=0)) if velocity: # introduce temporary arrays to update velocity in the atmosphere u_temp = np.zeros_like(u) v_temp = np.zeros_like(v) w_temp = np.zeros_like(w) # calculate acceleration of atmosphere using primitive equations on beta-plane for i in np.arange(1,nlat-1): for j in range(nlon): for k in range(nlevels-2): if k == 0: u_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(u,i,j,k) - v[i,j,k]*scalar_gradient_y(u,i,j,k) + coriolis[i]*v[i,j,k] - scalar_gradient_x(air_pressure,i,j,k)/air_density[i,j,k] ) v_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(v,i,j,k) - v[i,j,k]*scalar_gradient_y(v,i,j,k) - coriolis[i]*u[i,j,k] - scalar_gradient_y(air_pressure,i,j,k)/air_density[i,j,k] ) elif k == nlevels-1: u_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(u,i,j,k) - v[i,j,k]*scalar_gradient_y(u,i,j,k) + coriolis[i]*v[i,j,k] - scalar_gradient_x(air_pressure,i,j,k)/air_density[i,j,k] ) v_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(v,i,j,k) - v[i,j,k]*scalar_gradient_y(v,i,j,k) - coriolis[i]*u[i,j,k] - scalar_gradient_y(air_pressure,i,j,k)/air_density[i,j,k] ) else: u_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(u,i,j,k) - v[i,j,k]*scalar_gradient_y(u,i,j,k) + coriolis[i]*v[i,j,k] - scalar_gradient_x(air_pressure,i,j,k)/air_density[i,j,k] ) v_temp[i,j,k] += dt*( -u[i,j,k]*scalar_gradient_x(v,i,j,k) - v[i,j,k]*scalar_gradient_y(v,i,j,k) - coriolis[i]*u[i,j,k] - scalar_gradient_y(air_pressure,i,j,k)/air_density[i,j,k] ) w_temp[i,j,k] += -1E-3*dt*( scalar_gradient_z(air_pressure,i,j,k)/air_density[i,j,k] + gravity ) u += u_temp v += v_temp w += w_temp u[:,:,0] *= 0.99 v[:,:,0] *= 0.99 if advection: # allow for thermal advection in the atmosphere, and heat diffusion in the atmosphere and the ground # atmosp_addition = dt*(thermal_diffusivity_air*laplacian(temperature_atmosp)) atmosp_addition = dt*divergence_with_scalar(temperature_atmosp) temperature_atmosp[advection_boundary:-advection_boundary,:,:] -= atmosp_addition[advection_boundary:-advection_boundary,:,:] temperature_atmosp[advection_boundary-1,:,:] -= 0.5*atmosp_addition[advection_boundary-1,:,:] temperature_atmosp[-advection_boundary,:,:] -= 0.5*atmosp_addition[-advection_boundary,:,:] # as density is now variable, allow for mass advection density_addition = dt*divergence_with_scalar(air_density) air_density[advection_boundary:-advection_boundary,:,:] -= density_addition[advection_boundary:-advection_boundary,:,:] air_density[(advection_boundary-1),:,:] -= 0.5*density_addition[advection_boundary-1,:,:] air_density[-advection_boundary,:,:] -= 0.5*density_addition[-advection_boundary,:,:] temperature_planet += dt*(thermal_diffusivity_roc*laplacian(temperature_planet)) # update plot test = ax[0].contourf(lon_plot, lat_plot, temperature_planet, cmap='seismic') ax[0].set_title('$\it{Ground} \quad \it{temperature}$') test = ax[1].contourf(heights_plot, lat_z_plot, np.transpose(np.mean(temperature_atmosp,axis=1)), cmap='seismic') ax[1].streamplot(heights_plot, lat_z_plot, np.transpose(np.mean(v,axis=1)),np.transpose(np.mean(w,axis=1)),color='black',density=0.75) ax[1].set_title('$\it{Atmospheric} \quad \it{temperature}$') ax[0].set_xlim((lon.min(),lon.max())) ax[0].set_ylim((lat.min(),lat.max())) ax[0].set_ylabel('Latitude') ax[0].axhline(y=0,color='black',alpha=0.3) ax[0].set_xlabel('Longitude') ax[1].set_xlim((-90,90)) ax[1].set_ylim((0,heights.max())) ax[1].set_ylabel('Height (m)') ax[1].set_xlabel('Latitude') cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.7]) f.colorbar(test, cax=cbar_ax) cbar_ax.set_title('Temperature (K)') f.suptitle( 'Time ' + str(round(24*t/day,2)) + ' hours' ) for k in range(nlevels): test = bx[nlevels-1-k].contourf(lon_plot, lat_plot, temperature_atmosp[:,:,k], cmap='seismic') bx[nlevels-1-k].streamplot(lon_plot, lat_plot, u[:,:,k], v[:,:,k],density=0.75,color='black') # g.colorbar(test,cax=bx[nlevels-1-k]) bx[nlevels-1-k].set_title(str(heights[k]/1E3)+' km') bx[nlevels-1-k].set_ylabel('Latitude') bx[nlevels-1-k].set_xlim((lon.min(),lon.max())) bx[nlevels-1-k].set_ylim((lat.min(),lat.max())) bx[-1].set_xlabel('Longitude') plt.pause(0.01) ax[0].cla() ax[1].cla() for k in range(nlevels): bx[k].cla() # advance time by one timestep t += dt time_taken = float(round(time.time() - initial_time,3)) print('Time: ',str(time_taken),'s') if save: pickle.dump((temperature_atmosp,temperature_planet,u,v,t,air_density,albedo), open("save_file.p","wb"))