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0 Introduction

The CLimate Analysis using Digital Estimations model is a simplified planetary climate model. It will be
used to educate people on how climate physics works and to experiment with different parameters and see
how much influence a tiny change can have (like for instance the rotation rate of the planet around its axis).
It is built to be accessible to and runnable by everyone, whether they have a super computer or a dated
laptop. The model is written in Python and written during the weekly streams of Dr. Simon Clark .
There is a useful playlist on Simon’s Twitch which has all the streams without ad breaks or interruptions .

The manual itself is split up into distinct sections, each explaining one particular part of the model. Each
section will be treating one topic, like radiation, advection or the control panel. Although many concepts
cannot be seen in isolation, as the wind has influence on how much temperature is distributed throughout
the atmosphere, the calculations can be split up. The manual is cumulative, starting with the basics and
slowly building up to the current form of the algorithm. All changes to the algorithms can therefore be
found here. An important distinction needs to be made regarding the changes though. If the changes only
change one part of the calculations, then it is considered an evolution, which will be added to the relevant
section. However if the changes are significant and not based on the previous code then the old alghorithms
will be relocated to Though the relevant theory will remain, as that is required to gain an
understanding of what the algorithm does. Do note that the radiation is an exception for the first
calculations as this forms the basis of the beginning of CLAuDE and the fundamentals of the theory which
I deem important enough to be left in place even if the calculations end up significantly different.

This manual will provide an overview of the formulae used and will explain aspects of these formulae. For
each equation each symbol will be explained what it is. In such an explanation, the units will be presented
in ST units between brackets like: T: The temperature of the planet (K). Which indicates that T is
the temperature of the planet in degrees Kelvin. If you need to relate SI units to your preferred system of
units, please refer to the internet for help with that. There are great calculators online where you only need
to plug in a number and select the right units.



Within this manual we will not concern ourselves with plotting the data, instead we focus on the physics
side of things and translating formulae into code. If you are interested in how the plotting of the data works,
or how loading and saving data works, please refer to the relevant stream on Simon’s Twitch page [13].

This manual is for the toy model, which is as of now still in development. One important thing to note
is that the layout may change significantly when new sections are added. This is due to the amount of code
that is added/changed. If a lot of code changes, a lot of so called ’algorithm’ blocks are present which have
different placement rules than just plain text. Therefore it may occur that an algorithm is referenced even
though it is one or two pages later. This is a pain to fix and if something later on changes, the whole layout
may be messed up again and is a pain to fix again. Hence I opt to let IXTEX(the software/typeset language
used to create this manual) figure out the placement of the algorithm blocks, which may or may not be in
the right places.

The manual is now up on the Planet Factory GitHub repository [16], together with all the source code.
There is also a fork [7] that also contains the source code. The fork will usually be more up to date than
the version on the Planet Factory repository as Simon needs to merge pull requests into the repository.
However I can update the fork freely so if a particular stream is missing in the version on the Planet Factory
repository, check the fork/Discord whether there is a newer version. If that is not the case, you just have
to be a bit more patient, or you can start writing a part of the manual yourself! Don’t forget to ping me
in the Discord to notify me of any additions (GitHub refuses to send me emails so I have no other way of
knowing).

1 Control Panel

Before we dive in an start modelling the planet, let us first set up a control panel that will influence how the
model will behave and effectively decides what type of planet we model.

1.1 The Beginning

In the beginning there was nothing, and then there was ”Hello World!” Or at least that is how many projects
start. Why? you might ask, which is a perfectly valid question. In Computer Science, ”Hello World!” is
very simple code that we use to test whether all the tools we need to get coding works. This checks whether
the computer compiles the code and is able to execute it and whether the code editor (IDE, Integrated
Development Environment) starts the right processes to get the code compiled and executed. Oh right we
were talking about CLAuDE, ahem.

Every project must have its beginning. And with CLAuDE I made the decision to start explaining the
Control Panel first. This is to get you familiar with notation and to lay down some basics. To do that
we start with the fixed part of the Control Panel, the physical constants. Many things vary from planet
to planet, how much radiation they receive from their star, how strong their gravity is, how fast they spin
around their axis and many many more. What does not change are the physical constants, well because they
are constant. The Stefan-Boltzmann constant for instance does not change. Whether you are on Earth, in
space or on Jupiter, the value of the Stefan-Boltzmann constant will remain the same.

The Stefan-Boltzmann constant is denoted by ¢ and has a value of 5.670373 - 10~8 (Wm™2K~%) [32].
The o is a greek letter called sigma. Greek letters are often used in mathematics, as well as in physics or
any other discipline that relies on maths (spoiler alert, quite a lot). Treat it like a normal letter in maths,
representing a number that you either do not know yet or is too long or cumbersome to write down every
time. The Stefan-Boltzmann constant is denoted in scientific notation, a number followed by the order of
magnitude. It is denoted as a multiplication, because that is what you have to do to get the real number.
An example: 4.3 - 102 = 430 and 4.3 - 1072 = 0.043. The letters behind the numbers are units, how we give
meaning to the numbers. If I say that I am 1.67 does not mean anything. Do I mean inches, centimeters,
meters, miles? That is why we need units as they give meaning to the number. they tell us whether the
number is talking about speed, distance, time, energy and many other things. In this manual we will use
ST units. Behind all the letters you will find the following: [number]. This is a citation, a reference to an
external source where you can check whether I can still read. If T pull a value out somewhere I will insert a
citation to show that I am not making these numbers up. This is what scientists use to back up their claims



if they do not want to redo the work that others have done. I mean what is the point of re-inventing the
wheel if there is a tyre company next door? That is why scientists citate.

So with that out of the way, let us write down some constants. Why do I do this here? Because a lot of
constants are used everywhere and I am too lazy to relicate them every time. If you see a letter or symbol
that is not explicitly explained, then it is most likely a constant that we discuss here in the control panel.

1.2 Physical Constants

As mentioned before, physical constants do not change based on where you are in the universe. Below you
will find an overview of all the relevant constants together with their units. And a short explanation where
they are used or what they represent. To see them in action, consult the other sections of this manual, you
will find them in equations all throughout this document.

1.2.1 The Gas Constant

The Gas constant, R = 8.3144621 (J(mol) 1K) [33] is the constant used to relate the temperature of the
gas to the pressure and the volume. One would expect this constant to be different per gas, but under high
enough temperatures and low enough pressure the gas constant is the same for all gases.

1.2.2 The Specific Heat Capacity

The specific heat capacity ¢ depicts how much energy is required to heat the object by one degree Kelvin
per unit mass ( K;_ %) [34]. This varies per material and is usually indicated by a subscript. The specific
heat capacity for water for instance is ¢,, = 4190JK g~ 'K ~!. Specific heat capacities also exist in the form
of Jg7 K=, Jmol ' K~! and Jem 3K ~! which you can use in various circumstances, depending on what

information you have.

1.2.3 Mole

Mole is the amount of particles (6.02214076 - 10?3) in a substance, where the average weight of one mole of
particles in grams is about the same as the weight of one particle in atomic mass units (u) |[12]. This is not
a physical constant perse, but more like a unit (mol). Though it is still important enough to be added here
for future reference. All other units are way more intuitive and are assumed to be known.

1.2.4 The Stefan-Boltzmann Constant
The Stefan-Boltzmann constant, o = 5.670373-10-8 (Wm 2K ~%) [32] is used in the Stefan-Boltzmann law

(more on that in [subsection 3.1J).

1.3 Planet Specific Variables

The following set of variables vary per planet, that’s why we call them variables since they vary. Makes
sense right? We add them here as we will use them throughout the manual. The advantage of that is quite
significant. If you want to test things for a different planet, you only need to change the values in one place,
instead of all places where you use it. If there is one thing that we computer scientists hate is doing work,
we like being lazy and defining things in one place means that we can be lazy if we need to change it. So
we put in the extra work now, so we do not have to do the extra work in the future. That’s actually a quite
accurate description of computer scientists, doing hard work so that they can be lazy in the future.

1.3.1 The Passage of Time

On Earth we have various indications of how much time has passed. While most of them remain the same
throughout the universe, like seconds, minutes and hours, others vary throughout the universe, like days,
months and years. Here we specify how long the variable quantities of time are for the planet we want to
consider as they are used in the code. This can be seen in [algorithm 1} Here a < indicates that we assign a
value to the variable name before it, so that we can use the variable name in the code instead of the value,



which has the advantage I indicated before. // means that we start a comment, which is text that the code
ignores and does not tell the cpu about. Not that the cpu would understand it, but that just means less
work for the computer. Yes computers are lazy too.

Algorithm 1: Definition of how much time it takes for a day and a year on a planet and how much
time on the planet passes before we start another calculation run

day < 60 %60 x 24 ; //Length of one day in seconds (s)
year <— 365 x day ; //Length of one year in seconds (s)
0t <+ 60%9 ; //How much time is between each calculation run in seconds (s)

1.3.2 The Planet Passport

Each planet is different, so why should they all have the same gravity? Oh wait, they don’t. Just as they
are not all the same size, tilted as much and their atmospheres differ. So here we define all the relevant
variables that are unique to a planet, or well not necessarily unique but you get the idea. This can all be

found in

Algorithm 2: Defining the constants that are specific to a planet
2

g < 9.81; //Magnitude of gravity on the planet in ms~

a ¢ —23.5; //By how many degrees the planet is tilted with respect to the star’s
plane

top < 50 % 103 ; //How high the top of the atmosphere is with respect to the planet
surface in meters (m)

ins <— 1370 ; //Amount of energy from the star that reaches the planet per unit area
(Jm™2)

€< 0.75 ; //Absorbtivity of the atmosphere, fraction of how much of the total energy
is absorbed (unitless)

r < 6.4%10°% ; //The radius of the planet in meters (m)

1.3.3 Model Specific Parameters

These parameters cannot be found out in the wild, they only exist within our model. They control things
like the size of a cell on the latitude longitude grid (more on that in later sections), how much time the model
gets to spin up. We need the model to spin up in order to avoid numerical instability. Numerical instability
occurs when you first run the model. This is due to the nature of the equations. Nearly all equations are
continuous, which means that they are always at work. However when you start the model, the equations
were not at work yet. It is as if you suddenly give a random meteor an atmosphere, place it in orbit around
a star and don’t touch it for a bit. You will see that the whole system oscilates wildly as it adjusts to the
sudden changes and eventually it will stabilise. We define the amount of time it needs to stabilise as the spin
up time. All definitions can be found in What the adv boolean does is enabling or disabling
advection, a process described in jsection; which does not work yet.

2 Utility Functions

With the control panel defined and explained, let us move over to some utility functions. Functions that can
be used in all kinds of calculations, which we might need more often. In general it concerns functions like
calculating the gradient, the lacplacian or interpolation.



Algorithm 3: Defining the paramters that only apply to the model

resolution <— 3 ; //The amount of degrees on the latitude longitude grid that each cell
has, with this setting each cell is 3 degrees latitude high and 3 degrees
longitude wide

nlevels <— 10 ; //The amount of layers in the atmosphere

0ts <= 60 % 137 ; //The time between calculation rounds during the spin up period in
seconds (s)

ts < bxday ; //How long we let the planet spin up in seconds (s)

adv < FALSE ; //Whether we want to enable advection or not

adv_boun < 8 ; //How many cells away from the poles where we want to stop calculating
the effects of advection

C, + 287 ; //Heat capacity of the atmosphere in JKg 'K~!

Cp - 1-10° ; //Heat capacity of the planet in JKg 'K~!

oy 2?@’; ; //How far apart the gridpoints in the y direction are (degrees latitude)
Qg < 2-107° ; //The diffusivity constant for the atmosphere

ap < 1.5-107%; //The diffusivity constant for the planet surface

smooth; < 0.9 ; //the smoothing parameter for the temperature

smooth,, <~ 0.8 ; //The smoothing parameter for the u component of the velocity
smooth, < 0.8 ; //The smoothing parameter for the v component of the velocity

smooth,, < 0.3 ; //The smoothing parameter for the w component of the velocity
count < 0 ;

for j € [0,top] do
heights|j] + count ; //The height of a layer
count < count + % ;
end
or i € [0,nlat] do
dxli] <= 0y cos(lat[i]{5s) ; //How far apart the gridpoints in the x direction are
(degrees longitude)

—h

end
for k € [0, nlevels — 1] do

0z[k] < heights[k + 1] — heights ; //How far apart the gridpoints in the z direction
are (m)

end




2.1 Gradients

Let us define the gradient in the x,y and z directions. The functions can be found in [algorithm 4] [algorithm 5|
and We use these functions in various other algorithms as the gradient (also known as derivative)
is often used in physics. It denotes the rate of change, how much something changes over time. Velocity for
instance denotes how far you move in a given time. Which is a rate of change, how much your distance to a
given point changes over time.

In [algorithm 6] a.dimensions is the attribute that tells us how deeply nested the array a is. If the result
is 1 we have just a normal array, if it is 2 we have a double array (an array at each index of the array) which
is also called a matrix and if it is 3 we have a triple array. We need this because we have a one-dimensional
case, for when we do not use multiple layers and a three-dimensional case for when we do use multiple layers.
This distinction is needed to avoid errors being thrown when running the model with one or multiple layers.

This same concept can be seen in |algorithm 4] and [algorithm 5] though here we check if k is defined
or NULL. We do this as sometimes we want to use this function for matrices that does not have the third
dimension. Hence we define a default value for k which is NULL. NULL is a special value in computer science.
It represents nothing. This can be useful sometimes if you declare a variable to be something but it is
referring to something that has been deleted or it is returned when some function fails. It usually indicates
that something special is going on. So here we use it in the special case where we do not want to consider
the third dimension in the gradient. We also use forward differencing (calculating the gradient by taking the
difference of the cell and the next/previous cell, multiplied by 2 to keep it fair) in as that gives
better results for the calculations we will do later on.

Algorithm 4: Calculating the gradient in the x direction

Input : Matrix (double array) a, first index 4, second index j, third index k with default value NULL
Output: Gradient in the x direction
if k == NULL then

‘ rad ali,(j+1) mod nlon]—ali,(j—1) mod nlon]
9 ox[d] ;
else
‘ rad ali,(j+1) mod nlon,k]—ali,(j—1) mod nlon,k] .
g oali] ;
end

return grad ;

2.2 Laplacian Operator

The Laplacian operator (V2, sometimes also seen as A) has two definitions, one for a vector field and one
for a scalar field. The two concepts are not indpendent, a vector field is composed of scalar fields [2]. Let us
define a vector field first. A vector field is a function whose domain and range are a subset of the Eucledian
R3 space. A scalar field is then a function consisting out of several real variables (meaning that the variables
can only take real numbers as valid values). So for instance the circle equation 22 + y? = 72 is a scalar field
as z,y and r are only allowed to take real numbers as their values.

With the vector and scalar fields defined, let us take a look at the Laplacian operator. For a scalar field
¢ the laplacian operator is defined as the divergence of the gradient of ¢ [3]. But what are the divergence
and gradient? The gradient is defined in and the divergence is defined in Here ¢
is a vector with components x,y, z and ® is a vector field with components z,y, z. ®1, Py and P3 refer to
the functions that result in the corresponding z,y and z values [2]. Also, i,j and k are the basis vectors of
R¥, and the multiplication of each term with their basis vector results in ®;, o and P53 respectively. If we
then combine the two we get the Laplacian operator, as in

o bbb, 8
grad¢—V¢—5xz+6yj+5Zk (1a)
o 0Dy 0Py D3
divh = V& = “ob o S22 S (1b)



Algorithm 5: Calculating the gradient in the y direction

Input : Matrix (double array) a, first index 4, second index j, third index k with default value NULL
Output: Gradient in the y direction
if kK == NULL then
if 1 == 0 then
‘ grad . 2a[z+1,g]y—a[z,j] ;
else if i == nlat — 1 then
‘ grad 2“[%]]—6&;[2—1»3] :
else

‘ grad a[i+1,j]6;a[i71j] :
else
if i == 0 then

‘ grad galit+l,j.kl—ali.j.k] .
oy ’
else if i == nlat — 1 then
‘ grad < Qa[l,mk]—éa[l—la,k] :
else

| grad « dlithileliziil

oy ’

end
return grad ;

826 826 8%
2 e . —_— _ _
VA=V Vo=t 5t 5 (lc)

For a vector field ® the Laplacian operator is defined as in Which essential boils down to
taking the Laplacian operator of each function and multiply it by the basis vector.

V2 = (V2®1)i 4 (V2®2)j + (V®3)k (2)
The code can be found in A, and A, in represents the calls to and

algorithm 5| respectively.

2.3 Divergence

As we expect to use the divergence operator more often throughout our model, let us define a seperate
function for it in A, and Ay in represents the calls to [algorithm 4] and [algorithm 5|
respectively. We do the multiplication with the velocity vectors u,v and w here already, as we expect that
we might use it in combination with the divergence operator more frequently. What those vectors are and
represent we will discuss in [subsection 4.2

2.4 Interpolation

Interpolation is a form of estimation, where one has a set of data points and desires to know the values
of other data points that are not in the original set of data points [8]. Based on the original data points,
it is estimated what the values of the new data points will be. There are various forms of interpolation
like linear interpolation, polynomial interpolation and spline interpolation. The CLAuDE model uses linear
interpolation which is specified in Here z is the point inbetween the known data points x and
y. A is the factor that tells us how close z is to y in the interval [0, 1]. If z is very close to y, A will have the
value on the larger end of the interval, like 0.9. Whereas if z is close to x then A will have a value on the
lower end of the interval, like 0.1.

z=(1=XNzx+ Xy (3)



Algorithm 6: Calculating the gradient in the z direction

Input : Matrix (double array) a, first index ¢, second index j, third index k
Output: Gradient in the z direction
if a.dimensions == 1 then

if Kk == 0 then
‘ grad < 76‘[]6';;][,:]“[]“] ;
else if k == nlevels — 1 then
‘ grad 7‘1[”;]{!}“1] ;
else
alk+1]—alk—1] |
| grad - st
else
if K == 0 then
‘ grad « a[z,j,k-gi][;]a[z,j,k] ;

else if k == nlevels — 1 then
| grad ¢ dbikdliiholl
else
‘ grad < “[mvk+21(]§;[c;€5w7k—1} ;

return grad ;

2.5 3D smoothing

As you can imagine the temperature, pressure and the like vary quite a lot over the whole planet. Which is
something that we kind of want but not really. What we really want is to limit how much variety we allow
to exist. For this we are going to use Fast Fourier Transforms, also known as FFTs. A Fourier Transform
decomposes a wave into its frequences. The fast bit comes from the algorithm we use to calculate it. This is
because doing it via the obvious way is very slow, in the order of O(n?) (for what that means, please visit
[subsection A.2)). Whereas if we use the FFT, we reduce the running time to O(nlog(n)). There are various
ways to calculate the FFT, but we use the Cooley—Tukey algorithm [18]. To explain it, let us first dive into
a normal Fourier Transform.

The best way to explain what a Fourier Transform does is to apply it to a sound. Sound is vibrations
travelling through the air that reach your air and make the inner part of your air vibrate. If you plot the
air pressure reaching your air versus the time, the result will have the form of a sinoidal wave. However, it
is only a straight forward sinoidal wave (as if you plotted the cos function) if the tone is pure. That is often
not the case, and sounds are combinations of tones. This gives waves that are sinoidal but not very alike to
the cos function. The FT will transform this ”unpure” wave and splits them up into a set of waves that are
all of pure tone. To do that we need complex numbers which are explained here [subsection A.3]

With that explanation out of the way, we now know that with Euler’s formula (Equation 4a)) we can
rotate on the complex plane. If we rotate one full circle per second, the formula changes to [Equation 4b] as
the circumference of the unit circle is 27 and t is in seconds. This rotates in the clock-wise direction, but we
want to rotate in the clockwise direction, so we need to add a — to the exponent. If we also want to control
how fast the rotation happens (which is called the frequency) then we change the equation to
Note that the frequency unit is Hz which is defined as s~!, which means that a frequency of 10Hz means
10 revolutions per second. Now we get our wave which we call g(¢) and plonk it in front of the equation up
until now. Which results in Visually, this means that we take the sound wave and wrap it
around the origin. This might sound strange at first but bear with me. If you track the center of mass (the
average of all the points that form the graph) you will notice that it hovers around the origin. If you now
change the frequency of the rotation (f) you will see that the center of mass moves a bit, usually around the
origin. However, if the frequency of the rotation matches a frequency of the wave, then the center of mass is
suddenly a relatively long distance away from the origin. This indicates that we have found a frequency that
composes the sound wave. Now how do we track the center of mass? That is done using integration, as in




Algorithm 7: Calculate the laplacian operator over a matrix a

Input : A matrix (double array) a
Output: A matrix (double array) with results for the laplacian operator for each element
if a.dimensions == 2 then
for lat € [1,nlat — 1] do
for lon € [0, nlon] do
output[lat,lon]

Ay (a,lat,(lon+1) mod nlon)—A,(a,lat,(lon—1) mod nlon) + Ay (a,lat+1,lon)—Ay(a,lat—1,lon)
dx[lat] oy ’

end
end
else
for lat € [1,nlat — 1] do
for lon € [0, nlon| do

for k € [0, nlevels — 1] do

output[lat, ZOTL, k] - Ay (a,lat,(lon+1) mod nlon,tlscx)[—lcﬁf(a,lat,(lon—l) mod nlon,k) +

Ay (a,lat+1,lon,k)— Ay (a,lat—1,lon,k) + A (a,lat,lon,k+1)—A (a,lat,lon,k+1)
oy 262z [k] ’

end

end
end

end
return ouput ;

Algorithm 8: Calculate the result of the divergence operator on a vector

Input : A matrix (double array) a
Output: A matrix (double array) containing the result of the divergence operator taken over that
element

dimy <+ Length of a in the first dimension ;
for i € [0,dim4] do
dimg < Length of a in the second dimension (i.e. the length of the array stored at index ) ;
for j € [0, dims] do

dimg < Length of a in the third dimension ;

for k € [0,dims] do

‘ output[i, j, k] < Agz(au,i, 5, k) + Ay(av, i, j, k) + A, (aw, i, j, k) ;
end

end
end
return output ;

Now to get to the final form, we forget about the fraction part. This means that the center of
mass will still hover around the origin for the main part of the rotation, but has a huge value for when the
rotation is at the same frequency as one of the waves in the sound wave. The larger the difference between
to and t1, the larger the value of the Fourier Transform. The final equation is given in

e = cos(x) 4 isin(x) (4a)
627r1t (4b)
6727Tift (4(‘,)
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g(t)e ! (4d)

e (1¢)

to —t1 t1

a(f) = / g(ye2mift (4)

t1

These Fourier Transforms have the great property that if you add them together you still have the
relatively large distances of the center of mass to the origin at the original frequencies. It is this property
that enables us to find the frequencies that compose a sound wave.

Now that we know what a Fourier Transform is, we need to make it a Fast Fourier Transform, as you can
imagine that calculating such a thing is quite difficult. Some smart people have thought about this and they
came up with quite a fast algorithm, the Cooley-Tukey algorithm [18], named after the people that thought
of it. They use something we know as a Discrete Fourier Transform which is described by Here
N is the total amount of samples from the continuous sound wave. This means that 0 < £k < N — 1 and
0<n<N-1.

Now with the DFT out of the way we can discuss the algorithm. It makes use of a clever property of the
DFT. If you replace k by (N + k), as in you can split up the exponent which will transform one
of the two parts into 1 due to e=*?™ = 1 for any integer n. This means that Xy, = X = Xpiv = Xi
for any integer ¢. This symmetry as it is called can be exploited to produce a divide and conquer algorithm,
which will recursivley calculate the FT which gives a running time of N log(n) as shown in

N—1
X = Z Tpe” NN (5a)
n=0
Nl i2m(N+k) N1 . i27 e i2m
Xnik = Z Tpe T N = Z e P g, e T N RN — Z Tpe” Nk (5b)
n=0 n=0 n=0

Algorithm 9: One dimensional Fast Fourier Transformation

Input : array A, integer i, integer N, integer s
Output: array B with length A.length — 1 containing the DF'T

if N =1 then
| B[0] « A[0] ;
else

B0],..., B[4 — 1] « FFT(4,i,%,2s) ;

B[%],...,B[N — 1] + FFT(A,i + s, §,2s) ;
fork:()to%—ldo
t + Blk| ;
Blk] + t +e 2" ¥ B[k + Y] ;
Blk+ Y]+t — e 2"%Blk+ & ;
end
return B

There is just this one problem we have, the algorithm in can only handle one dimension, and
we need to support multidimensional arrays. So let us define a multidimensional FFT first in [Equation 6
Here N and M are the amount of indices for the dimensions, where M are the amount of indices for the
first dimension and N are the amount of indices for the second dimension. This can of course be extended
in the same way for a p-dimensional array.

M—-1N-1

X1 = Z Z xm,neimﬂ(Tij%) (6)

m=0 n=0
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It is at this point that the algorithm becomes very complicated. Therefore I would like to invite you to
use a library for these kinds of calculations, like Numpy [31] for Python. If you really want to use your own
made version, you need to wait for a bit as I try to decode the literature on the algorithm for it. It is one
heck of a thing to decode, so I decided to treat that at a later point in the future. It will then be found here,
so you will have to stay tuned. Sorry about that, it’s quite complex...

With that out of the way (or rather on the TODO list), we need to create a smoothing operation out
of it. We do this in Keep in mind that FFT the call is to the multidimensional Fast Fourier
Transform algorithm, IFFT the call to the inverse of the multidimensional Fast Fourier Transform algorithm
(also on the TODO list) and that the int() function ensures that the number in brackets is an integer. Also
note that the inverse of the FFT might give complex answers, and we only want real answers which the .real
ensures. We only take the real part and return that.

Algorithm 10: Smoothing function

Input : Array a, smoothing factor s
Output: Array A with less variation

nlat < a.length ;

nlon < al0].length ;

nlevels < a[0][0].length ;

temp < FFT(a) ;

templint(nlats) : int(nlat(l — s)),:,:] < 0 ;
temp[:, int(nlons) : int(nlon(l — s)),:] < 0 ;
return IFFT(temp).real ;

3 Radiation

Radiation is energy waves, some waves are visible like light, others are invisible like radio signals. As is the
basis for physics, energy cannot be created nor destroyed, only changed from one form to another.

3.1 The First Law of Thermodynamics and the Stefan-Boltzmann Equation

If energy goes into an object it must equal the outflowing energy plus the change of internal energy. Which
is exactly what happens with the atmosphere. Radiation from the sun comes in, and radiation from the
atmosphere goes out. And along the way we heat the atmosphere and the planet which causes less radiation
to be emitted than received. At least, that is the idea for Earth which may not apply to all planets. Let
one thing be clear, more radiation cannot be emitted than is inserted, unless the planet and atmosphere are
cooling. Anyway, we assume that the planet is a black body, i.e. it absorbs all radiation on all wavelengths.
This is captured in Stefan-Boltzmann’s law [32].
In the symbols are:

e S: The energy that reaches the top of the atmosphere, coming from the sun or a similar star, per
second per meters squared Wm™2. This is also called the insolation.

e o: The Stefan-Boltzmann constant, 5.670373 - 1078 (Wm 2K ) [32].
e T: The temperature of the planet (K).

The energy difference between the energy that reaches the atmosphere and the temperature of the planet
must be equal to the change in temperature of the planet, which is written in The symbols on
the right hand side are:

e AU: The change of internal energy (J) [35].
e (' The specific heat capacity of the object, i.e. how much energy is required to heat the object by one
degree Kelvin ().
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e AT': The change in temperature (K).

We want to know the change of temperature AT, so we rewrite the equation into Here we
added the 0t term to account for the time difference (or time step). This is needed as we need an interval
to calculate the difference in temperature over. Also we need to get the energy that we get (J) and not the
energy per second (W), and by adding this time step the units all match up perfectly.

S=8B=o0T" (7a)

S —oT* = AU = CAT (7b)
_ 4

AT — MSiCCfT) (7)

The set of equations in form the basis of the temperature exchange of the planet. However
two crucial aspects are missing. Only half of the planet will be receiving light from the sun at once, and
the planet is a sphere. So we need to account for both in our equation. We do that in We
view the energy reacing the atmosphere as a circular area of energy, with the equation for the are of a circle
being [4]. The area of a sphere is in [Equation 8b| [5]. In both equations,  is the radius of the
circle/sphere. By using [Equation 8aj and [Equation 8b|in [Equation 7c¢|we get [Equation 8c| where r is replaced
by R. It is common in physics literature to use capitals for large objects like planets. However we are not
done yet since we can divide some stuff out. We end up with as the final equation we are going
to use.

mr? (8a)
4arr? (8b)
St(rR%S — A7 R%0T*)
AT = AnCR? (Be)
_6t(S —40T)
AT = — (8d)

3.2 Insolation

With the current equation we calculate the global average surface temperature of the planet itself. However,
this planet does not have an atmosphere just yet. Basically we modelled the temperature of a rock floating
in space, let’s change that with Here we assume that the area of the atmosphere is equal to the
area of the planet surface. Obviously this assumption is false, as the atmosphere is a sphere that is larger in
radius than the planet, however the difference is not significant enough to account for it. We also define the
atmosphere as a single layer. This is due to the accessibility of the model, we want to make it accessible,
not university simulation grade. One thing to take into account for the atmosphere is that it only partially
absorbs energy. The sun (or a similar star) is relatively hot and sends out energy waves (radiation) with
relatively low wavelengths. The planet is relatively cold and sends out energy at long wavelengths. As a
side note, all objects radiate energy. You can verify this by leaving something in the sun on a hot day for a
while and almost touch it later. You can feel the heat radiating from the object. The planet is no exception
and radiates heat as well, though at a different wavelength than the sun. The atmosphere absorbs longer
wavelengths better than short wavelengths. For simplicity’s sake we say that all of the sun’s energy does not
get absorbed by the atmosphere. The planet’s radiation will be absorbed partially by the atmosphere. Some
of the energy that the atmosphere absorbs is radiated into space and some of that energy is radiated back
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onto the planet’s surface. We need to adjust to account for the energy being radiated from the
atmosphere back at the planet surface.

So let us denote the temperature of the planet surface as 7}, and the temperature of the atmosphere as
T,. Let us also write the specific heat capacity of the planet surface as C), instead of C. We add the term
in [Equation 9b| to [Equation 8d| in [Equation 9¢ In [Equation 9al € is the absorbtivity of the atmosphere,
the fraction of energy that the atmosphere absorbs. We divided [Equation 9a) by 7R? as we did that with
as well, so we needed to make it match that division.

4nR%ea T} (9a)
4eaTy (9b)

5t(S + deoT: — 40TY)
AT, = 10 L (9¢c)
P

As you probably expected, the atmosphere can change in temperature as well. This is modelled by
which is very similar to There are some key differences though. Instead of
subtracting the radiated heat of the atmosphere once we do it twice. This is because the atmosphere
radiates heat into space and towards the surface of the planet, which are two outgoing streams of energy
instead of one for the planet (as the planet obviously cannot radiate energy anywhere else than into the
atmosphere). C, is the specific heat capacity of the atmosphere.

6t(oT, — 2eaT))

AT, =
Ca

(10)

3.3 The Latitude Longitude Grid

With the current model, we only calculate the global average temperature. To calculate the temperature
change along the surface and atmosphere at different points, we are going to use a grid. Fortunately the
world has already defined such a grid for us, the latitude longitude grid [20]. The latitude is the coordinate
running from the south pole to the north pole, with -90 being the south pole and 90 being the north pole.
The longitude runs parallel to the equator and runs from 0 to 360 which is the amount of degrees that an
angle can take when calculating the angle of a circle. So 0 degrees longitude is the same place as 360 degrees
longitude. To do this however we need to move on from mathematical formulae to code (or in this case
pseudocode).

Pseudocode is a representation of real code. It is meant to be an abstraction of code such that it does
not matter how you present it, but every coder should be able to read it and implement it in their language
of preference. This is usually easier to read than normal code, but more difficult to read than mathematical
formulae. If you are unfamiliar with code or coding, look up a tutorial online as there are numerous great
ones.

The pseudocode in defines the main function of the radiation part of the model. All values
are initialised beforehand, based on either estimations, trial and error or because they are what they are
(like the Stefan-Boltzmann constant o), which is all done in The total time ¢ starts at 0 and
increases by 0t after every update of the temperature. This is to account for the total time that the model
has simulated (and it is also used later). What you may notice is the T}, [lan, lon] notation. This is to indicate
that 7, saves a value for each lan and lon combination. It is initialised as all zeroes for each index pair,
and the values is changed based on the calculations. You can view T}, like the whole latitude longitude grid,
where T)[lat, lon] is an individual cell of that grid indexed by a specific latitude longitude combination. Do
note that from here on most, if not all functions need to be called E| from another file which I will call the
master. The master file decides what parts of the model to use, what information it uses for plots and the
like. We do it this way because we want to be able to switch out calculations. Say that I find a more efficient
way, or more detailed way, to calculate the temperature change. If everything was in one file, then I need

1In case you are unfamiliar with calls, defining a function is defining how it works and calling a function is actually using it.
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to edit the source code of the project. With the master file structure, I can just swap out the reference to
the project’s implementation with a reference to my own implementation. This makes the life of the user
(in this case the programmer who has another implementation) easier and makes changing calculations in
the future easier as well. Also note that what we pass on as parameters E| in are the things
that change during the execution of the model or that are calculated beforehand and not constants. S for
instance is not constant (well at this point it is but in we change that) amd the current time
is obviously not constant. All constants can be found in

Algorithm 11: The main function of the temperature calculations

Input: time ¢, amount of energy that hits the planet S
Output: Temperature of the planet T},, temperature of the atmosphere T,
for lat € [-90,90] do

for lon € [0, 360] do

T,[lat,lon] < Tp[lat,lon

5t(S+4eo(Ta[lat,lon))* —4o (T, [lat,lon])*) .
]+ C

)

]+ §t(a'(Tp[lat,lon])4—26po’(Ta[lat,lon])4) .

)

Tu[lat,lon] + T,[lat,lon
end

a

end

3.4 Day/Night Cycle

As you can see, the amount of energy that reaches the atmopsphere is constant. However this varies based
on the position of the sun relative to the planet. To fix this, we have to assign a function to S that gives
the correct amount of energy that lands on that part of the planet surface. This is done in
In this algorithm the term insolation is mentioned, which is S used in the previous formulae if you recall.
We use the cos function here to map the strength of the sun to a number between 0 and 1. The strength is
dependent on the latitude, but since that is in degrees and we need it in radians we transform it to radians
by multiplying it by 755. This function assumes the sun is at the equinox (center of the sun is directly above
the equator) [25] at at all times. The second cos is needed to simulate the longitude that the sun has moved
over the longitude of the equator. For that we need the difference between the longitude of the point we
want to calculate the energy for, and the longitude of the sun. The longitude of the sun is of course linked
to the current time (as the sun is in a different position at 5:00 than at 15:00). So we need to map the
current time in seconds to the interval [0, seconds in a day]. Therefore we need the mod function. The mod
function works like this: z mod y means subtract all multiples of y from z such that 0 < x < y. So to
map the current time to a time within one day, we do —t mod d where —t is the current time and d is the
amount of seconds in a day. We need —t as this ensures that the sun moves in the right direction, with ¢
the sun would move in the opposite direction in our model than how it would move in real life. When we
did the calculation specified in we return the final value (which means that the function call is
”replaced” E| by the value that the function calculates). If the final value is less than 0, we need to return
0 as the sun cannot suck energy out of the planet (that it does not radiate itself, which would happen if a
negative value is returned).

By implementing [algorithm 12| [algorithm 11| must be changed as well, as .S is no longer constant for the

whole planet surface. So let us do that in Note that S is defined as the call to

3.5 Albedo

Albedo is basically the reflectiveness of a material (in our case the planet’s surface) [1]. The average albedo
of the Earth is about 0.2. Do note that we change C}, from a constant to an array. We do this to allow

2Parameters are variables that a function can use but are defined elsewhere. The real values of the variables are passed on
to the funciton in the call.

3Replaced is not necessarily the right word, it is more like a mathematical function f(z) where y = f(x). You give it an
x and the value that correpsonds to that z is saved in y. So you can view the function call in pseudocode as a value that is
calculated by a different function which is then used like a regular number.
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Algorithm 12: Calculating the energy from the sun (or similar star) that reaches a part of the
planet surface at a given latitude and time

Input: insolation ins, latitude lat, longitude lon, time ¢, time in a day d
Output: Amount of energy S that hits the planet surface at the given latitude-time combination.
longitude < 360 - w ;
S ¢ ins - cos(lat g5) cos((lon — longitude) - 155) ;
if S <0 then
| return 0
else
| return S

end

Algorithm 13: The main function of the temperature calculations

Input: amount of energy that hits the planet S
Output: Temperature of the planet T},, temperature of the atmosphere T,
for lat € [-nlat,nlat] do

for lon € [0, nlot] do

T,[lat,lon] < Tp[lat,lon

]+ §t(S+4eo(Ta[lat,lon]))* —4o (T, [lat,lon])*) .
Cp )
]+ 5t(o(Tp[lat,lon])* —2e0 (T, [lat,lon])?) .

)

Tu[lat,lon] + T,[lat,lon
end

a

end

adding in oceans or other terrain in the future. Same thing for the albedo, different terrain has different
reflectiveness.

Algorithm 14: Defining albedo

a<+ 0.2
Cp%lOG;

Now that we have that defined, we need to adjust the main loop of the program . We
need to add albedo into the equation and change C, from a constant to an array. The algorithm after these
changes can be found in We multiply by 1 — a since albedo represents how much energy is
reflected instead of absorbed, where we need the amount that is absorbed which is exactly equal to 1 minus
the amount that is reflected.

3.6 Temperature with Varying Density

The air density is not at all points exactly the same. This may be due to the winds blowing, or due to height
changes in the terrain. We need to account for that, which is done in

3.7 Adding Layers

Remember We need this equation for every layer in the atmosphere. This also means that
we have to adjust the main calculation of the code, which is described in The T, needs to
change, we need to either add a dimension (to indicate which layer of the atmosphere we are talking about)
or we need to add different matrices for each atmosphere layer. We opt for adding a dimension as that costs
less memory than defining new arrays ﬁ So T, and all other matrices that have to do with the atmosphere

4This has to do with pointers, creating a new object always costs a bit more space than adding a dimension as we need a
pointer to the object and what type of object it is whereas with adding a dimension we do not need this additional information
as it has already been defined
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Algorithm 15: The main loop of the temperature calculations

Input: amount of energy that hits the planet S
Output: Temperature of the planet T},, temperature of the atmosphere 7T,
for lat € [-nlat,nlat] do
for lon € [0, nlot] do
4 4
T,[lat,lon] < Tp[lat,lon] + &((Pa[latlon])S+4E(2*(§?¢Elt(,li;l:]n]) Lt bt ;
] + 5t(o(Tp[lat,lon])* —2e0 (T, [lat,lon])?) .

)

T,[lat,lon] + T,[lat,lon
end

a

end

Algorithm 16: The main loop of the temperature calculations

Input: amount of energy that hits the planet S
Output: Temperature of the planet T},, temperature of the atmosphere T,
for lat € [—nlat,nlat] do

for lon € [0, nlot] do

Tp[lat,lon] - Tp[l(lt,lOTL} + §t((1—a[lat,lon])S+4eo(Ty[lat,lon])* —4o (T, [lat,lon])*) |

pllat,lon]Cy[lat,lon] )
o (Ty[lat,lon])* —2e0 (T, [lat,lon])*) .
pllat,lon]Cyq ’

Tu[lat,lon] < T,[lat,lon] + o
end
end

(so not T, for instance) are no longer indexed by lat,lon but are indexed by lat,lon,layer. We need to
account for one more thing, the absorbtion of energy from another layer. The new equation is shown in
Here k is the layer of the atmosphere, k = —1 means that you use T}, and k = nlevels means
that T5,,...,. = 0 as that is space. Also, let us rewrite the equation a bit such that the variables that are

repeated are only written once and stuff that is divided out is removed, which is done in [Equafion 11b] Let
us also clean up the equation for the change in the surface temperature (Equation 9d) in [Equation 11d}

AT, = 5t(06k71T§k—1 + 02+1T§k+1 B QEkJT;Lk) (11a)
ATak _ (Sto’(ék,lTék_l + 2+1T§k+1 — QEkTﬁk) (llb)
SH(S + o(4e, T4 — 4T*
ATp _ ( 0( 6? p)) (].].C)
iC,

With the changes made to the equation, we need to make those changes in the code as well. We need to
add the new dimension to all matrices except T, and a as they are unaffected (with regards to the storage
of the values) by the addition of multiple atmospheric layers. Every other matrix is affected. The new code

can be found in 6z
We also need to initialise the € value for each layer. We do that in

3.8 Grey Radiation Scheme

Inspired by the Isca project |30] and a paper describing the grey radiation scheme [19)].

A radiation scheme is a model for how energy is redistributed using light in a system. Such a model
is a Grey radiation scheme if you split it into two parts, short and long wavelength radiation. So you
have two redistribution systems, one for short wavelength light and one for long wavelength light. Another
assumption we make when using the Grey radiation scheme, is that the atmosphere is transparent to short
wavelength radiation, meaning it lets through light with short wavelengths. Additionally we use a two stream
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Algorithm 17: The main loop of the temperature calculations

Input: amount of energy that hits the planet S

Output: Temperature of the planet T},, temperature of the atmosphere 7T,
for lat € [-nlat,nlat] do

for lon € [0, nlot] do

for layer € [0, nlevels] do

Ty(lat,lon] < Tp[lat, lon] +
if layer == 0 then

o6t((1—allat,lon])S+o(4€[0](T, [lat,lon,O])474(Tp llat,lon])*)) .
4C)p[lat,lon] ’

Sto ((Tp[lat,lon])* —2¢[layer] (T, [lat,lon,layer])*)
pllat,lon,layer|Cyéz[layer] ’

‘ Tu[lat, lon, layer] «+ T,[lat, lon, layer] +
else if layer == nlevels — 1 then
T,[lat,lon, layer] +

T, [l(lt, lon, layer] + Sto(e[layer—1](Ta [lat,lon layer—1])* —2¢[layer](Ta[lat,lon,layer])*) .

pllat,lon,layer]Cydz[layer] ’

else
Tu[lat, lon, layer] <+ T,[lat, lon, layer] +

Sto(e[llayer—1)(Ta[lat,lon,layer—1])*+e[layer+1]T, [lat,lon,layer+1]—2¢[layer](Ta[lat,lon,layer])*) .
pllat,lon,layer]Cqdz[layer] ’

end

end
end

Algorithm 18: Intialisation of the insulation of each layer (also known as €)

€[0] + 0.75 ;

for i € [1,nlevels] do
| e[é] « 0.5¢[i — 1]

end

approximation, which means that we have a stream of radiation going up, and another stream of radiation
going down. Note that these two streams are both long wavelength radiation, because we said earlier we
assume the atmosphere completely ignores short wavelength radiation.

The two long wavelength radiation streams are described in [Equation 12al and [Equation 12b| [19]. In
those equations, the symbols are:

e U: Upward flux.

e D: Downward flux.

e B: The Stefan-Boltzmann equation (see [Equation 7al).

e 7: Optical depth.

dU

—~ —_U-B 12
I U (12a)
dD

—=B-D 12b
dr (12b)

With |[Equation 12a] and [Equation 12b| written down, we can discuss how they work. These equations
need a boundary condition to work, a starting point if you like. For those equations the boundary conditions
are that U is at the surface equal to B and that D at the top of the atmosphere is equal to 0. Meaning
that in the beginning the top of the atmosphere has no downward flux as there is no heat there, and that
the bottom of the atmosphere has a lot of upward flux as most if not all of the heat is located there. Then
after the spin up time this should stabilise. We are interested in the change of the fluxes, so dU and dD, to
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get those we need to multiply the right hand side by dr. Then we have the flow of radiation that we need.
However we cannot solely use these two equations to calculate the heat of a given layer. For that we need
a few more components. These are described in Here Qg is the amount of heat in a layer,
¢p s the specific heat capacity of dry air (our atmosphere), p is the density of the air in that layer and dz
is the change in height. U — D are the change in net radiation, meaning the amount of radiation that is
left over after you transferred the upward and downward flux. See it as incoming and outgoing energy for a
given layer, the net change (either cooling down or heating up) is what remains after you have subtracted
the incoming energy from the outgoing energy. While this explanation is not entirely true (as flux is not
entirely equivalent to energy), it explains the concept the best.

1 6(U-D)

@r = cpp 0% (13)
Now only one question remains: what is optical depth? Optical depth is the amount of work a photon
has had to do to get to a certain point. This might sound really vague, but bear with me. Optical depth
describes how much stuff a certain photon has had to go through to get to a point. As you’d expect this is
0 at the top of the atmosphere as space is a big vacuum so no stuff to move through, so no work. Then the
further the photon moves into the atmosphere, the more work the photon has had to do to get there. This
is because it now needs to move through gases, like air, water vapour and other gases. Hence the closer the
photon gets to the surface of the planet, the larger the optical depth is because the photon has had to work

more to get there. This phenomenon is described in The symbols in the equation mean:

e 7: Optical depth at the surface.
e p: Atmospheric pressure (Pa).
e ps: Atmospheric pressure at the surface (Pa).

e f;: The linear optical depth parameter, with a value of 0.1.

™= 1olfi(2) + (1= f)(2)] (14)
Ps Ds

As one can see, has two parts, a linear part and a quatric part (to the power 4). The quatric
term approximates the structure of water vapour in the atmosphere, which roughly scales with % with respect
to the height. The linear term is present to fix numerical behaviour because this is an approximation which
will not be completely correct (that’s why it is an approximation) so we add this term to make it roughly
right. The same thing holds for f; which can be manually tuned to fix weird numerical behaviour.

With these equations in our mind, let’s get coding. First we add the pressure profile, the pressure of all
atmospheric layers at a lat lon point. We need this to accurately represent the optical depth per atmospheric
layer. Then we need to use the pressure profile with regards to The resulting code can be
found in This algorithm replaces the temperature calculations we have done in
as this is basically a better version of the calculations done in that algorithm. f; has a value of 0.1 and is
located near all the other constants in the code, henceforth we will refer to this section in the code as the
control panel, since most if not all of the constants can be tweaked here. 7y is a function that gives the
surface optical depth for a given latitude. The corresponding equation can be found in [15].
Translating this into code is left as an exercise to the reader. U[0] is the boundary condition discussed before
(being the same as , just as Dinlevels| is the boundary condition. S, represents the call to

solar represents the call to

4.5
To = 3.75 + cos(la?ﬁ1

90) 2 (15)

3.9 Adding In Some Ozone (Or Something Else That Approximates It)

Adding in ozone in the stratosphere is hella complicated, so we leave that as an exercise to the reader as in
true academic fashion. Just joking, if you want you can work on implementing ozone however we opt not to
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Algorithm 19: Adding in radiation

Input: amount of energy that hits the planet S

Output: Temperature of the planet T},, temperature of the atmosphere 7T,
for lat € [-nlat,nlat] do

for lon € [0, nlon] do

pressureProfile < pllat,lon,:] ;

_ pressureProfile pressureProfile \4\ .
T= To(lat)fl pressurePro file[0] + (]' o fl)(pressureProfile[O]) ) ’

U[0] « oTp[lat,lon]* ;
for level € [1,nlevels] do

T[level]—T[level — o-(mean(T,[:,:,level]))*
| el  Ulevt 1) - (el ettty

end
Dinlevels — 1] - 0 ;
for level € [nlevels — 1,0] do

‘ Dllevel] + Dllevel + 1] — (T[level+1]Ilgieﬁ:ﬂgl(ﬁ%:::l(fﬁ[;,:»level]))“) ;

end
for level € [0, nlevels] do
S.(U—-D,0,0,level) .
‘ QUCUGZ] N 103-densityProfile[level]
end

Tullat,lon,:] < Tgyllat,lon,:] + @ ;
S + solar(1,lat,lon,t) ;

T, [lat,lon] < Tp[lat, lon]

end

st((1—a[lat,lon])S+S,(D,0,0,0)—oTy[lat,lon]*) .
Cpllat,lon] ’

end

because it is quite complicated. Instead we approximate it, which is decent enough for our purpose. We need
to do it in as we need to adjust the Q. We add in a check to see if we are currently calculating
the radiation in the stratosphere. If so we add some radiation extra to replicate the effect of ozone. As can
be seen in [algorithm 20] where we only focus on the @) part of we add in some extra radiation
based on how high the current layer calculation is, which scales with the height.

Algorithm 20: Replicating the effect of ozone

for level € [0, nlevels] do

S.(U—D,0,0,level) .
Q[level] - 103-densityProfile[level]

if heights|level] > 20 - 10® then

24.60.60( heightslicvel] ~20-10% y2
Qllevel] + Q[level] + solar(5,lat,lon, ) Se— 2.

end

3.10 Tilting the Planet

In order to model a planet that has seasons, like Earth, we need to tilt the planet. This has as effect that
the sun is not always directly above the equator but is above a certain band around the equator as the year
moves on. This means that some hemispheres receive more/less sun based on what part of the year it is.
Which corresponds to the various seasons we have on Earth. But in order to do that, we have to change the
solar function. The new version as shown in will replace Here « is the tilt in
degrees.

What the code in does boils down to calculating the latitude and longitude of the sun and
checking whether the planet receives any energy. If not return 0 immediately. If so we check if the difference
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Algorithm 21: Calculating the energy from the sun (or similar star) that reaches a part of the
planet surface at a given latitude and time

Input: insolation ins, latitude lat, longitude lon, time ¢, time in a day d

Output: Amount of energy S that hits the planet surface at the given latitude, longitude and time
combination.

sun_lon < —t mod d ;

sun_lon + sun_lon - 360 .

d
sun_lat < «acos(

2t ) .
year/
7(lat—sun_lat) )
180

)

S < insolation cos(
if S <0 then
‘ return 0 ;
else
lon_dif f < lon — sun_lon ;

S« SCOS(ZO7Ldiff7r) :

180
if S <0 then
if lat + sun_lat > 90 or lat 4+ sun_lat < —90 then
‘ return insolation cos(iﬂ(latﬁ‘;&"’lm))cos(ilon’ldgoffﬂ) ;
else
‘ return 0 ;
else
‘ return S ;

between the sun’s longitude and the planet’s longitude and calculate how much energy would hit the planet
given that the sun is not straight above the equator. We do this by multiplying the energy it would receive
from the sun if it were above the equator S by the cosine of the difference in longitudes, which represents
the tilt. Then we check again if the planet is receiving energy, if not we check if it happens around the poles.
We do this because due to the tilt it can be the case that at certain points in the year the pole is in constant
sunlight, i.e. the sun does not go down. This creates a sort of overshoot which needs to be accounted for. If
it does this then we add the latitudes of the sun and the planet together and use that to calculate the energy
that would hit that spot. If it is not the case that we are around the poles and we do not receive energy,
then we return 0. If it happens to be that we do receive energy (so no negative values) then we return S.

3.11 The Theory Behind the Planar Approximation

It is time to deal with the pole situation. The north and south poles that is, not the lovely people over
in Poland. We run into problems because the latitude longitude grid cells become to small near the poles.
Therefore, the magnitudes no longer fit into one cell and overflow into other cells which makes everything
kind of funky. So we need to fix that, and we do that by a planar approximation.

As said earlier, the grid cells on the latitude longitude grid get closer together the closer you get to the
poles which poses problems. To fix this, we will be using a planar approximation of the poles. What this
means is that we will map the 3D grid near the poles onto a 2D plane parallel to the poles, as if we put a
giant flat plane in the exact center of the poles and draw lines from the grid directly upwards to the plane.
For a visual representation, please consult the stream with timestamp 1:38:25 [17], which includes some
explanation. In the streamm we use r to indicate the radius of the planet (which we assume is a sphere),
0 for the longitude and A for the latitude. So we have spherical coordinates, which we need to transform
into « and y coordinates on the plane. We also need the distance between the center point (the point where
the plane touches the planet which is the center of the pole) and the projected point on the plane from the
grid (the location on the plane where a line from the gird upwards to the plane hits it). This distance is
denoted by a (Simon chose this one, not me). We then get the following equations as shown in
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|Equation 16b|and |[Equation 16c}

a = rcos(0) (16a)
x = asin(\) (16b)
y = acos(\) (16¢)

But what if we know = and y and want to know 6 and A? Pythagoras’ Theorem then comes into play .
We know that (due to Pythagoras) [Equation 17| must always be true. Then if we substitue a by /2?2 + y?

in we get Then we transform that equation such that we only have 6 on one
side and the rest on the other side (since we want to know 6) and we get [Equation 18¢

2?4 9% = a? (17)

Va2 +y? =rcos(6) (18a)
R $2r+ v = cos(0) (18b)

/22 2
cosfl(xi—'_y) =4 (18¢)
r
For A we need another trigonometric function which is the tangent (tan). The tangent is defined in
If we then take a look at [Equation 16b| and [Equation 16c¢, we see that A is present in both
equations. So we need to use both to get A} So let’s combine [Equation 16b] and [Equation 16d in [Equa]
transform it such that we end up with only A on one side and the rest on the other side and we

end up with

tan(a) = 2:;8 (19)

= o)~ ) -
g = tan()\) (20b)

A= tan*l(i) (20c)

With this math we can fix a lot of stuff in the model. With this we can resample (mapping from sphere
to plane) the pressure, density, temperarature and advection to the plane and ensure that there are no more
overflows and funky business. The implementation (code) for this will be done in a follow up stream, so stay
tuned!

4 Air Velocity

Did you ever feel the wind blow? Most probably. That’s what we will be calculating here. How hard the
wind will blow. This is noted as velocity, how fast something moves.

5Yes you could only use one but since we both know x and y it is a bit easier to use both than to only use one as you need
to know 6 at that point as well which may or may not be the case.
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4.1 Equation of State and the Incompressible Atmosphere

The equation of state relates one or more variables in a dynamical system (like the atmosphere) to another.
The most common equation of state in the atmosphere is the ideal gas equation as described by
[33]. The symbols in that equation represent:

e p: The gas pressure (Pa).

e V: The volume of the gas (m?).

e n: The amount of molesﬁ in the gas.

e R: The Gas constant, 8.3144621 (J(mol) 1K) [33].

e T: The temperature opf the gas (K).

If we divide everything in [Equation 21a|by V and set it to be unit (in this case, set it to be exactly 1m?)
we can add in the molar mass in both the top and bottom parts of the division as show in
We can then replace 2 by p the density of the gas (kgm~>) and £ by R, the specific gas constant (gas
constant that varies per gas in J(mol) ' K) as shown in [Equation 21c| the resulting equation is the equation

of state that you get that most atmospheric physicists use when talking about the atmosphere [15].

pV =nRT (21a)

nR nmR
=—T= T 21b
P=; Vo (21b)
p = pRT (21c)

The pressure is quite important, as air moves from a high pressure point to a low pressure point. So if we
know the density and the temperature, then we know the pressure and we can work out where the air will be
moving to (i.e. how the wind will blow). In our current model, we know the atmospheric temperature but we
do not know the density. For simplicities sake, we will now assume that the atmosphere is Incompressible,
meaning that we have a constant density. Obviously we know that air can be compressed and hence our
atmosphere can be compressed too but that is not important enough to account for yet, especially considering
the current complexity of our model.

The code that corresponds to this is quite simple, the only change that we need to make in
is that we need to replace T by T,, the temperature of the atmosphere. As T, is a matrix (known to
programmers as a double array), p will be a matrix as well. Now we only need to fill in some values.
p=1.2[36], Rs = 287 [26].

4.2 The Momentum Equations

The momentum equations are a set of equations that describe the flow of a fluid on the surface of a rotating
body. For our model we will use the f-plane approximation. The equations corresponding to the f-plane
approximation are given in[Equation 22aland [Equation 22b[[|27]. Note that we are ignoring vertical movement,
as this does not have a significant effect on the whole flow. All the symbols in|Equation 22aland [Equation 22b|
mean:

e u: The east to west velocity (ms™!).
e ¢: The time (s).

e f: The coriolis parameter as in [Equation 27a

e v: The north to south velocity (ms~1).

6Mole is the amount of particles (6.02214076 - 1023) in a substance, where the average weight of one mole of particles in
grams is about the same as the weight of one particle in atomic mass units (u) [12]
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e p: The density of the atmosphere (kgm=3).

e p: The atmospheric pressure (Pa).

e z: The local longitude coordinate (m).

e y: The local latitude coordinate (m).

If we then define a vector % as (u,v,0), we can rewrite both [Equation 22a) as [Equation 22c| Here Vu is
the gradient of u in both x and y directions. Then if we write out Vu we get Similarly, if we

want to get dv instead of du we rewrite to get [Equation 22d| and [Equation 221

Du_ . 1d

Dt - pox

Dv_ . i

Dt  pdy
ou ~ 1dp
E+U~Vuffv——;£
v B 14p
E-i—u-Vv—fu- 2oy
ou ou ou 1dp
FTAMRY T Rt o
v ov ov 1dp
ot e Ty T Ty

(22a)

(22b)

(22¢)

(22d)

(22e)

(22f)

With the gradient functions defined in [algorithm 4] and [algorithm 5] we can move on to the main code
for the momentum equations. The main loop is shown in Do note that this loop replaces the

one in as these calculate the same thing, but the new algorithm does it better.

Algorithm 22: Calculating the flow of the atmosphere (wind)

Sy < gradient_x(u,lan,lon) ;
Syu + gradient_y(u,lan,lon

Szv < gradient x(v,lan,lon
Syv < gradient_y(v,lan, lon
Spe < gradient _x(p, lan,lon
Spy < gradient_x(p, lan,lon
for lat € [1,nlat — 1] do

for lon € [0, nlon] do

ullan, lon] < u[lan,lon] + dt

v[lan,lon] < v[lan,lon] + dt

end
end

)
)
)
)

)

b

)

Y

bl

P

P
—ullan,lon]) Sz, —v[lan,lon]Sy, — f[lan]ullan,lon]— Sy, .

)

—uflan,lon]Syw—v[lan,lon]Sy.+ f[lan]v[lan,lon]—Sp. .

)

4.3 Improving the Coriolis Parameter

Another change introduced is in the coriolis parameter. Up until now it has been a constant, however we
know that it varies along the latitude. So let’s make it vary over the latitude. Recall [Equation 27a] where

© is the latitude. Coriolis (f) is currently defined in [algorithm 39} so let’s replace it with [algorithm 23}
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Algorithm 23: Calculating the coriolis force

Q< 7.2921-1077 ;
for lat € [—nlat,nlat] do

| fllat] « 2Qsin(lat{%5)
end

4.4 Adding Friction

In order to simulate friction, we multiply the speeds v and v by 0.99. Of course there are equations for
friction but that gets complicated very fast, so instead we just assume that we have a constant friction
factor. This multiplication is done directly after [algorithm 22| in [algorithm 30}

4.5 Adding in Layers

With adding in atmospheric layers we need to add vertical winds, or in other words add the w component

of the velocity vectors. We do that by editing We change it to Here we use

gravity (g) instead of the coriolis force (f) and calculate the change in pressure. Therefore we need to store
a copy of the pressure before we do any calculations. This needs to be a copy due to aliasing [Z]

Algorithm 24: Calculating the flow of the atmosphere (wind)

Syu < gradient_x(u,lan,lon) ;
Syu < gradient_y(u,lan,lon) ;
Syv « gradient_x(v,lan,lon) ;
Sy < gradient_y(v,lan,lon) ;
Spe < gradient_x(p,lan,lon)
+ gradient_y(p, lan,lon)
lat € [1,nlat — 1] do

for lon € [0, nlon] do

for layer € [0, nlevels] do

u[lan, lon, layer] <
+ ot —ullat,lon,layer] Sy —v[lat,lon,layer]Sy.+ f[lat]v[lat,lon,layer] —Spe .
p )

)

b

u[lat, lon, layer]

vllan, lon, layer] +
v[lat,lon, layer] + 6t —u[lat,lon,layer]sm,—v[lat,lon,la@:}er]syv—f[lat]u[lat,lon,layer]—Spy :
_ pllat,lon,layer]—po[lat,lon,layer] |
wllan, lon, layer] < w(lat, lon, layer] Sipllatlon lagerlg ;

end
end

Po < copy(p) ;
end

5 Advection

Advection is a fluid flow transporting something with it as it flows. This can be temperature, gas, solids or
other fluids. In our case we will be looking at temperature.

7 Aliasing is assigning a different name to a variable, while it remains the same variable. Take for instance that we declare
a variable x and set it to be 4. Then we say y < x, which you might think is the same as saying they y <— 4 but behind the
screen it is pointing to x. So if x changes, then so does y.
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5.1 Thermal Diffusion

As of this time, what you notice if you run the model is that the winds only get stronger and stronger (and
the model is hence blowing up, which means that the numbers increase so dramatically that it is no longer
realistic). This is because there is no link yet between the velocities of the atmosphere and the temperature.
Currently, any air movement does not affect the temperature in the atmosphere of our model while it does in
reality. So we need to change some calculations to account for that. Thermal diffusion helps with spreading
out the temperatures and tempering the winds a bit.

The diffusion equation, as written in describes how the temperature spreads out over
time [28]. The symbols in the equation represent:

e u: A vector consisting out of 4 elements: x,y, z,t. x,y, z are the local coordinates and ¢ is time.
e «o: The thermal diffusivity constant.

e V?2: The Laplace operator, more information in [subsection 2.2

e %: The time derivative of u, or in symbols %.

i = aViu (23)

Now to get this into code we need the following algorithms [algorithm 7] and jalgorithm 25| [algorithm 7]
implements the laplacian operator, whereas |algorithm 25| implements the diffusion calculations. V2 in

represents the call to

Algorithm 25: The main calculations for calculating the effects of diffusion

Ty + Ty + 0ta,V3(T,) ;
Ty < Ty + 6ta, V(1)) 5

5.2 Adding in Advection

With thermal diffusion in place, the temperature will spread out a bit, however air is not transported yet.
This means that the winds we simulate are not actually moving any air. Advection is going to change that.
The advection equation is shown in The symbols are:

e ¢: What is carried along (in our case temperature, K).
e t: The time (s).
e u: The fluid velocity vector (ms™1).

e V: The divergence operator (as explained in [subsection 2.2)).

o9

With the divergence functon defined in falgorithm 8 we now need to adjust to incorporate
this effect. The resulting algorithm can be found in [algorithm 26] Here V represents the function call to
algorithm §

Now that we have the air moving, we also need to account for the moving of the density. This is because
moving air to a certain place will change the air density at that place if the air at that place does not move
away at the same rate. Say we are moving air to x at y ms—!. If air at £ moves at a rate z ms~! and z £y
then the air density at x will change. The equation we will need for that is the mass continuity equation as

shown in [Equation 25| [29].

%—FV-(pv):O (25)
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Algorithm 26: The main calculations for calculating the effects of diffusion
Todaa < Ty + (5t0¢aV2(Ta) + V(Ta) ;
T, + T, + Toaald : —5,:] //Only add Tyaq to T, for indices in the interval [—nlat + 5, nlat — 5]. ;
T, + T, + 0ta, V3(T,) ;

Using this equation means that we will no longer assume that the atmosphere is incompressible. Therefore
we need to change a few things in the code. First we need to change the p in Since p is
no longer constant we need to access the right value of p by specifying the indices. So p will change to
pllat,lon]. Furthermore we need to calculate p after the movement of air has taken place, so we need to
change as well to include the calculations for p. The new version can be found in
Again the V represents the call to

Algorithm 27: The main calculations for calculating the effects of diffusion
Tadd — Ta + 6taaV2(Ta) + V(Ta) )
Ty + Ty + Toaal5 : —5,:] //Only add Tyaq to T, for indices in the interval [—nlat + 5, nlat — 5]. ;
p—p+itVp;
Ty < Ty + 6ta, V*(T)) ;

Currently the advection does not work like it should. This is probably due to boundary issues, where
we get too close to the poles and it starts freaking out there [15]. So to fix this we are going to define
boundaries and assume that the advection only works within those boundaries. We only let it change by half
of the values. The changes are incorporated in The reason why we mention this seperately, in
contrast to the other fixes that we have incorporated throughout the manual already, is the accompanying
change with the boundary.

Algorithm 28: The main calculations for calculating the effects of diffusion
Tadd < Ta + 6taaV*(To) + V(Ty) ;
T, < T, — 0.5Tgqq4[adv_bound : —adv_boun,:
] //Only subtract Tyqq to Ty, for indices in the interval [—nlat + adv_boun, nlat — adv_boun]. ;
pladv_boun : —adv_boun,:] < p —
0.5(0tVp) //Only change the density for indices in the interval [—nlat + adv_boun, nlat — adv_boun)]

T, + T, + 0ta,V3(T,) ;

5.3 Layers, layers and layers

With the atmospheric layers, and all matrices that have an extra dimension to account for it, we need to
add the correct indices to the advection algorithm [algorithm 28 Let us add it, with as a result.
Here the ;" means all indices of the 3 dimensional matrix.

First thing to mention is that vertical advection is still broken. Why? Because the gradient in the z
direction is broken. This is due to finite differencing on an exponential function. The way we calculate the
difference from one layer to the other is by differencing them (subtracting) which is always finite. Therefore
we always get some inaccuracies. Usually that is fine, but with an exponential function the differences, you
guessed it, become exponentially wrong. As such, the function would eventually be so far off that the model
would blow up. So we need to fix it. To prevent a blow up, we have disabled the call to the gradient z
function in This ensures that the horizontal bits still work, but the vertical stuff does not. As
always, we will try to fix this in a future stream.
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Algorithm 29: The main calculations for calculating the effects of diffusion
Todaa < Ty + (5t0¢aV2(Ta) + V(Ta) ;
T, + T, — 0.5Tgq4[adv_boun : —adv_boun, :,:
] //Only subtract Ty4q to T, for indices in the interval [—nlat + adv_boun, nlat — adv_boun]. ;
pladv_boun : —adv_boun,:,:] + p —
0.5(6tVp) //Only change the density for indices in the interval [—nlat + adv_boun, nlat — adv_boun)

T, « T, + 6ta, V2(T}) ;

6 The Master File

The master file is the file that controls the model calculation. This file decides what calculations are used
and what is done with the calculations (which is not the scope of this manual). In other words, the master
file combines all the calculations and theory from the previous sections and puts it all together to form a
model. As mentioned earlier, this structure enables the user to create their own version of the model. If one
has their own calculations, or wants to use an older version of the calculations in this manual, then the user
can define it themselves and call it instead of the calls that we use. The model is meant to be customisable,
which this structure enables.

6.1 Adding a Spin-Up Time

Instead of having a static start (having the planet start from rest, so no rotations allowed) we will have the
model start up for some time before we start simulating the climate extensively. To accomodate for this, we
have to make some changes in the code. First we need to add two booleans (variables that can only take two
values, either TRUE or FALSE) that we use to indicate to the model whether we want to simulate the wind
and whether we want to simulate advection. This means that the main loop will have some changes made
to it. After performing the calculations in we would calculate the velocities and afterwards we
would calculate the advection. Instead let us change it to what is shown in

Algorithm 30: Main loop that can simulate flow and advection conditionally
while TRUE do

algorithm 16| ;

if velocity then

algorithm 22| ;

if advection then

| plgorithun 29

end

end

end

Now to dynamically enable/disable the simulation of flow and advection we need to add the spin-up

calculations to the main loop. So in before we add What it does
is it changes the timestep when spinnning up and disables flow simulation, and when a week has passed it
reduces the timestep and enables flow simulation. At this point in time, the advection is not dynamically
enabled/disabled but it is done by the programmer.

6.2 Varying the Albedo

The albdeo (reflectiveness of the planet’s surface) is of course not the same over the whole planet. To account
for this, we instead vary the albedo slightly for each point in the latitude longitude grid. The algorithm that
does this is shown in The uniform distribution basically says that each allowed value in the
interval has an equal chance of being picked [24].
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Algorithm 31: The spin-up block dynamically enabling or disabling flow simulation

if t < 7day then

ot <+ 60 -47 ;
velocity < FALSE ;
else

0t <+ 60-9;
velocity < TRUE ;
end

Algorithm 32: Varying the albedo of the planet
V, + 0.02;
for lat € [-nlat,nlat] do
for lon € [0, nlon] do
R + Pick a random number (from the uniform distribution) in the interval [-V,, V,] ;
allat,lon] + allat,lon] + V, - R;
end

end

6.3 Non-uniform air density

While air density on the surface is in general consistent, this does not hold if you move up through the
atmosphere. The planet will pull air down due to gravity, which means that more air is at the planet surface
than at the top of the atmosphere. Hence the air density changes throughout the atmosphere and we need
to account for that. This is done in Because this is used in radiation, velocity and advection,
we initialise this in the master file. Though one could argue it could be part of the control panel, we opt
not to include any code other than variable declarations in the control panel for greater clarity. This also
means that we give the user the option to have only one layer (by skipping implementing this algorithm).
Note that the p[:,: i] notation means that for every index in the first and second dimension, only change the
value for the index i in the third dimension.

Algorithm 33: Initialisation of the air density p
pl:,:, 0] + 1.3
for i € [1,nlevels — 1] do
‘ p[:?:?i] <;Olp[777’71]
end

6.4 Interpolating the Air Density

In order to interpolate (see the air density, to have a better estimation at each grid cell, we
need data. However currently we are just guessing the air density at higher levels, instead of taking real
values. So let us change that. For that we are going to use the U.S. Standard Atmosphere, an industry
standard measure of the atmosphere on Earth |6]. This data was provided in a text (TXT) file which of course
needs to be read in order for the data to be used in the model. Here we only care for the density and the
temperature at a specific height. So the text file only contains those two columns of the data (and the height
in km of course as that is the index of the row, the property that uniquely identifies a row).

With that in mind, let’s get coding and importing the data. We do this in As one can
see we do not specify how to open the file or how to split the read line, as this is language specific and
not interesting to describe in detail. I refer you to the internet to search for how to open a text file in the
language you are working in. Keep in mind in which magnitude you are working and in which magnitude
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the data is. If you work with km for height and the data is in m, you need to account for that somewhere
by either transforming the imported data or work in the other magnitude.

Algorithm 34: Loading in the U.S. Standard Atmosphere

data < open text file containing the us standard atmosphere data ;

foreach line € data do
Split line into three components, sh, st and sd, representing the height, temperature and density

respectively ;

standardHeight.add(sh) ;

standardTemperature.add(st) ;

standardDensity.add(sd) ;
end
densityProfile < interpolate(heights, standardH eight, standardDensity) ;
temperatureProfile + interpolate(heights, standardH eight, standardT emperature) ;
for alt € [0, nlevels] do

pl:, 5, alt] « densityProfilelalt] ;

T.[:,:, alt] < temperatureProfilealt] ;
end

Note that the function interpolate takes three arguments, the first one being the data points that we
want to have values for, the second one is the data points that we know and the third one is the values for
the data points that we know. This function may or may not exist in your programming language of choice,
which might mean that you have to write it yourself. The formula that we use for interpolation can be found

in [Equation 3| though you still need to figure out what value you need for A (see[subsection 2.4)). This is left

as an exercise for the reader.

6.5 Clamping the Velocities

Due to the boundaries in the advection calculations (see we get weird instabilities as the velocity
calculations are executed on more cells. Which means that air is trying to displace temperature (advect
it) by flowing faster to those cells, but actually don’t carry any temperature because we turned it off for
those cells. This is something that we need to fix to get rid of weirdness around the edges. This is done in
Here the bla : means from bla to the last valid index, if the : is in front of bla then it means
from the first valid index to bla.

Algorithm 35: Clamping the Velocities

algorithm 24| u[(adv_boun, —adv_boun — 1),:,:] < 0.5u[(adv_boun, —adv_boun — 1),:,:] ;
v[(adv_boun, —adv_boun — 1),:,:] < 0.5v[(adv_boun, —adv_boun — 1),:,:] ;

w(adv_boun, —adv_boun — 1), :,:] < 0.5w[(adv_boun, —adv_boun — 1),:,:] ;
ul: adv_boun,:,:] + 0;

v[: adv_boun,:,:] < 0;

wl: adv_boun,:,:] + 0;

u[—adv_boun :,:,:] < 0

v[—adv_boun :,:,:] + 0 ;

w[—adv_boun :,:,:] < 0 ;

6.6 Smoothing all the things

On a planet wide scale, you have a lot of variety in the data. To counteract that we filter out the high
frequency data. Which means that we filter out the data that occurs sporadically. So we do not consider
the data that occurs so infrequently that it means nothing. We do this for the radiation (temperature)
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and the velocity which is shown in [algorithm 36| and [algorithm 37| respectively. It is worth mentioning that
algorithm 36| is executed after we do the calculations for T, (shown in [algorithm 19)). [algorithm 37| is done

after falgorithm 24] but before

Algorithm 36: Smoothing the atmospheric temperature
T, + Smooth(T,, smoothy) ;

Algorithm 37: Smoothing the velocity

u < Smooth(u, smooth,,) ;
v < Smooth(v, smooth,) ;
w < Smooth(w, smooth,,) ;
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Appendices

A Terms That Need More Explanation Then A Footnote

A.1 Potential

Potential is the energy change that occurs when the position of an object changes [37]. There are many
potentials, like electric potential, gravitational potential and elastic potential. Let me explain the concept
with an example. Say you are walking on a set of stairs in the upwards direction. As your muscles move to
bring you one step upwards, energy that is used by your muscles is converted into gravitational potential.
Now imagine you turn around and go downwards instead. Notice how that is easier? That is due to the
gravitational potential being converted back into energy so your muscles have to deliver less energy to get
you down. The potential is usually tied to a force, like the gravitational force.

A.2 Asymptotic Runtime

Asymptotic runtime is what we use in computer science to indicate how fast an algorithm works. We do
it this way because concrete time indications (seconds, minutes, hours) are very machine dependent. It
matters a lot if your CPU, RAM and GPU are fast or not for the runtime. Therefore, we needed something
to compare algorithms by which is machine independent. That is what asymptotic runtime is. We have
3 notations for asymptotic runtime, €2 which is the lower bound of the runtime: not faster than; O which
is the upperbound of the runtime: not slower than; and we have © which is the tight bound: not slower
but also not faster than. After these 3 notations we usually denote the runtime in algebraic letters which
stand for the input size. O(n) for instance means that for an input of size n the algorithm will not run
slower than n operations. Whereas Q(n3) means that the algorithm needs for an input of size n at least
n3 operations. Now this is not an exact match, as there are constants and other terms in the real runtime,
but for asymptotic runtime we look at the most dominant factor, as that outgrows all the other factors if
the input size increases. You can compare this by plotting the functions ¥y = x and z = 22 on a graphical
calculator. No matter which constant a you put in front of the z, z = 22 will at some point (note we don’t
specify when or where) be larger than y = az. What you need to remember for all this is that polynomials
are faster than exponentials (n? < 2") and logarithms are faster than polynomials (log(n) < n). n! is very
slow, log(n) is very fast.

A.3 Complex Numbers

As you all know in the real numbers (R) negative roots are not allowed as they do not exist. But what
would happen if we would allow them to exist? Then we move into the area of complex numbers. A complex
number consists out of two parts, a real part and an imaginary part in the form a + bi where i = /—1.
Complex numbers have all kinds of properties, but what we need them for are rotations. This is captured
in Euler’s formula e = cos(x) + isin(x) [9). Which means that for time ¢ we rotate around the origin (of
the complex plane) forming a circle with radius one (the unit circle). Now if you would set ¢ = 7 then the
result is 0. What this means is that we have come full circle (hah) when t = 27.

B History of the Algorithms

Back when I was a young naive programmer, I made a thing. Now a few years down the line I made the
thing again, but infinitely better. So I have no use for the old thing anymore. But fear not, old algorithms
(used by CLAuDE) will be collected here. This is just for historical purposes.
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B.1 Velocity

B.1.1 The Primitive Equations and Geostrophy

The primitive equations (also known as the momentum equations) is what makes the air move. It is actually
kind of an injoke between physicists as they are called the primitive equations but actually look quite
complicated (and it says fu at the end! ) The primitive equations are a set of equations dictating the

direction in the u and v directions as shown in [Equation 26al and [Equation 26bl We can make the equations

simpler by using and approximation called geostrophy which means that we have no vertical motion, such

that the terms with w in [Equation 26al and [Equation 26b|become 0. We also assume that we are in a steady

state, i.e. there is no acceleration which in turn means that the whole middle part of the equations are 0.

Hence we are left with [Equation 26¢| and [Equation 26d}

du _ou ou ouw  ou
at ot e T %0 TY%p
dv_ov  ov  ov . ov
ar — ot " Yer V0 "5 T
5
O—*@‘i’f’l}
5

Equation 26¢| can be split up into to parts, the

P
=5 T fv (26a)
P
=% (26Db)
(26¢)
(26d)

‘;—i part (the gradient force) and the fv part (the coriolis

force). The same applies to [Equation 26d| Effectively we have a balance between the gradient and the
coriolis force as shown in [Equation 27b| and [Equation 27¢] The symbols in both of these equations are:

e ®: The geopotential, potential (more explanation in [subsection A.l)) of the planet’s gravity field

(Jkg™1).

f: The coriolis parameter as described by
Earth 7.2921-107°) (rad s7')

u: The velocity in the latitude (ms™1).

v: The velocity in the longitude (ms™1!).

Equation 27a)
and 6 is the latitude [22].

f =2Qsin(0)

x: The change in the East direction along the planet surface (m).

y: The change in the North direction along the planet surface (m).

where  is the rotation rate of the planet (for

(27a)

(27b)

(27¢)

(27d)

(27e)

Since we want to know how the atmosphere moves, we want to get the v and u components of the
velocity vector (since v and u are the veolicites in longitude and latitude, if we combine them in a vector we
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get the direction of the overall velocity). So it is time to start coding and calculating! If we look back at
algorithm 13| we can see that we already have a double for loop. In computer science, having multiple loops
is generally considered a bad coding practice as you usually can just reuse the indices of the already existing
loop, so you do not need to create a new one. However this is a special case, since we are calculating new
temperatures in the double for loop. If we then also would start to calculate the velocities then we would
use new information and old information at the same time. Since at index i — 1 the new temperature has
already been calculated, but at the index ¢ 4+ 1 the old one is still there. So in order to fix that we need a
second double for loop to ensure that we always use the new temperatures. We display this specific loop in

Do note that everything in is still defined and can still be used, but since we

want to focus on the new code, we leave out the old code to keep it concise and to prevent clutter.

Algorithm 38: The main loop of the velocity of the atmosphere calculations

for lat € [-nlat,nlat] do

for lon € [0, nlon] do
[lat+1,lon]—p[lat—1,lon] 1 .
ullat,lon] + —E 5;’  FTadlp

pllat,lon+1]—p[lat,lon—1] 1 .
vllat,lon] + SaTlat] S rrk

end
end

The gradient calculation is done in For this to work, we need the circumference of the
planet. Herefore we need to assume that the planet is a sphere. While that is not technically true, it makes
little difference in practice and is good enough for our model. The equation for the circumference can be
found in [23], where r is the radius of the planet. Here we also use the f-plane approximation,
where the coriolis paramter has one value for the northern hemisphere and one value for the southern
hemisphere [21].

27r (28)

Algorithm 39: Calculating the gradient dx (note that this algorithm is obsolete)

C + 2R ;
8y 4 et
for lat € [—nlat,nlat] do
dxllat] < 0y cos(lat - 155) ;
if lat < 0 then
| fllat] « —107*;
else
| fllat] < 107* ;
end

end

Because of the geometry of the planet and the construction of the longitude latitude grid, we run into
some problems when calculating the gradient. Since the planet is not flat (”controversial I know” [15])
whenever we reach the end of the longitude we need to loop around to get to the right spot to calculate the
gradients (as the planet does not stop at the end of the longitude line but loops around). So to fix that we
use the modulus (mod) function which does the looping for us if we exceed the grid’s boundaries. We do
haveanother problem though, the poles. As the latitude grows closer to the poles, they are converging on
the center point of the pole. Looping around there is much more difficult so to fix it, we just do not consider
that center point in the main loop. The changed algorithm can be found in

Do note that the pressure calculation is done between the temperature calculation in and
the u, v calculations in [algorithm 40} At this point our model shows a symmetric vortex around the sun that
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Algorithm 40: The main loop of the velocity of the atmosphere calculations

for lat € [—nlat + 1,nlat — 1] do
for lon € [0, nlon] do

u[lat lon] “ _ pl(lat+1) mod nlat,lon]—p[(lat—1) mod nlat,lon] 1 .
’ [lat,(lon+1) mod nlon] 62[’1 (lon—1) mod nlon] Jetle
pllat,(lon+1) mod nlon|—p|lat,(lon—1) mod nlon 1 .
v[lat,lon] — ox[lat] " fllat]p >
end
end

moves with the sun. This is not very realistic as you usually have convection and air flowing from warm to
cold, but we do not have that complexity yet (due to our single layer atmosphere).

C List of Variables

Are you ever confused about what something is? Do you ever forget what a variable represents? Then I got
the solution for you. The following overview will explain what each variable is and represents. I will try to
not use one variable for the same thing, though that is sometimes very difficult to do. I'll do my best. In
the meantime, enjoy this exstensive list. Note that this only applies to variables in code, every symbol in
equations are explained at the equations themselves.

e R: The Gas Constant with value 8.3144621 (J(mol) ' K).

e day: Length of one day in seconds (s).

e year: Length of one year in seconds (s).

e 0t: How much time is between each calculation run in seconds (s).
e g : Magnitude of gravity on the planet in ms=2.

e a: By how many degrees the planet is tilted with respect to the star’s plane, also called axial tilt.
e top: How high the top of the atmosphere is with respect to the planet surface in meters (m).

e ins: Amount of energy from the star that reaches the planet per unit area (Jm=2).

e ¢: Absorbtivity of the atmosphere, fraction of how much of the total energy is absorbed (unitless).

e resolution: The amount of degrees on the latitude longitude grid that each cell has, with this setting
each cell is 3 degrees latitude high and 3 degrees longitude wide.

e nlevels < 10: The amount of layers in the atmosphere.

e Jts: The time between calculation rounds during the spin up period in seconds (s).
e t;: How long we let the planet spin up in seconds (s).

e adv: Whether we want to enable advection or not.

e velocity: Whether we want to calculate the air velocity or not.

e adv_boun: How many cells away from the poles where we want to stop calculating the effects of
advection.

e nlon: The amount of longitude gridpoints that we use, which depends on the resolution.

e nlat: The amount of latitude gridpoints that we use, which depends on the resolution.
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T,: The temperature of the planet, a 2D array representing a latitude, longitude grid cell.

T,: The temperature of the atmosphere, a 3D array representing a grid cell on the latitude, longitude,
atmospheric layer grid.

o: The Stefan-Boltzmann constant equal to 5.670373 - 1078 (Wm 2K ~1).
C,: Specific heat capacity of the air, equal to 1.0035J¢ 'K 1.
Cp: Specific heat capacity of the planet, equal to 1.0 - 1061 K 1.

a: Albedo, the reflectiveness of a substance. Note that a is used in general functions as an array that
is supplied as input. If that is the case it can be read at the top of the algorithm.

p: The density of the atmosphere, a 3D array representing a grid cell on the latitude, longitude,
atmospheric layer grid.

dx: How far apart the gridpoints are in the x direction in degrees longitude.
Jy: How far apart the gridpoints are in the y direction in degrees latitude.
6z: How far apart the gridpoints are in the z direction in m.

heights: How high an atmospheric layer is in m.

7: The optical depth for an atmospheric layer.

79: The optical depth at the planet surface.

fi: The optical depth parameter.

pressureProfile: The average pressure taken over all atmospheric layers in a latitude, longitude
gridcell.

densityProfile:The average density taken over all atmospheric layers in a latitude, longitude gridcell.

temperatureProfile: The average temperature taken over all atmospheric layers in a latitude, longi-
tude gridcell.

U: Upward flux of radiation, 1D array representing an atmospheric layer.
D: Downward flux of radiation, 1D array representing an atmospheric layer.

u: The east to west air velocity in ms~1.

v: The north to south air velocity in ms—!.

w: The bottom to top air velocity in ms!.
f+ The coriolis parameter.
Q: The rotation rate of the planet in rads™!.

p: The pressure of a latitude, longitude, atmospheric layer gridcell.

po: The pressure of a latitude, longitude, atmospheric layer gridcell from the previous calculation
round.

ag: The thermal diffusivity constant for air.

oyp: The thermal diffusivity constant for the planet surface.

smooth;: The smoothing parameter for the temperature.

smooth,: The smoothing parameter for the u component of the velocity.
smooth,: The smoothing parameter for the v component of the velocity.

smooth,,: The smoothing parameter for the w component of the velocity.
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