From d631480c2f02d99e3cac8183600284c018646ea7 Mon Sep 17 00:00:00 2001 From: TechWizzart Date: Fri, 4 Sep 2020 18:35:28 +0200 Subject: [PATCH 1/4] Started the rewrite of the manual to correspond with the refactor of the code. Stream 1 is completely written into the new structure, now 9 other streams are still left to do --- tex-docs/CLAuDE.tex | 22 +- tex-docs/references.bib | 11 + tex-docs/streams/Stream2.tex | 2 +- tex-docs/streams/Stream3.tex | 36 +--- tex-docs/streams/Stream5.tex | 133 +----------- tex-docs/streams/TTNMETAF.tex | 49 +---- tex-docs/topics/advection.tex | 0 tex-docs/topics/control_panel.tex | 104 ++++++++++ .../Stream1.tex => topics/radiation.tex} | 134 +++++------- tex-docs/topics/util_funcs.tex | 192 ++++++++++++++++++ tex-docs/topics/velocity.tex | 0 11 files changed, 379 insertions(+), 304 deletions(-) create mode 100644 tex-docs/topics/advection.tex create mode 100644 tex-docs/topics/control_panel.tex rename tex-docs/{streams/Stream1.tex => topics/radiation.tex} (55%) create mode 100644 tex-docs/topics/util_funcs.tex create mode 100644 tex-docs/topics/velocity.tex diff --git a/tex-docs/CLAuDE.tex b/tex-docs/CLAuDE.tex index ce078d5..156468c 100644 --- a/tex-docs/CLAuDE.tex +++ b/tex-docs/CLAuDE.tex @@ -35,16 +35,12 @@ will be presented in SI units \cite{SI} between brackets like: $T$: The temperat to relate SI units to your preferred system of units, please refer to the internet for help with that. There are great calculators online where you only need to plug in a number and select the right units. -Within this manual we will not concern ourselves with plotting the data, instead we focus on the physics side of things and translating formular into code. If you are interested in how the +Within this manual we will not concern ourselves with plotting the data, instead we focus on the physics side of things and translating formulae into code. If you are interested in how the plotting of the data works, or how loading and saving data works, please refer to the relevant stream on Simon's Twitch page \cite{twitch}. -This manual is for the toy model, which is as of now still in development. Therefore this manual will be in chronological order, explaining everything in the same order as it has been done. -There are plans to eventually modularise the whole model into seperate parts that can be extended by the community. When that will hit development, a new manual for that version of the model -will be made that treats things per topic instead of chronological order. - -One important thing to note, the layout may change significantly when new sections are added. This is due to the amount of code that is added/changed. If a lot of code changes, a lot of so called +This manual is for the toy model, which is as of now still in development. One important thing to note is that the layout may change significantly when new sections are added. This is due to the amount of code that is added/changed. If a lot of code changes, a lot of so called 'algorithm' blocks are present which have different placement rules than just plain text. Therefore it may occur that an algorithm is referenced even though it is one or two pages later. This is -a pain to fix and if something later on changes the whole layout may be messed up again and is a pain to fix again. Hence I opt to let \LaTeX (the software/typeset language used to create this +a pain to fix and if something later on changes, the whole layout may be messed up again and is a pain to fix again. Hence I opt to let \LaTeX (the software/typeset language used to create this manual) figure out the placement of the algorithm blocks, which may or may not be in the right places. Lastly, the manual is now up on the Planet Factory GitHub repository\cite{claudeGit}, together with all the source code. There is also a fork \cite{nomGit} that also contains the source code. @@ -53,8 +49,6 @@ particular stream is missing in the version on the Planet Factory repository, ch patient, or you can start writing a part of the manual yourself! Don't forget to ping me in the Discord to notify me of any additions (GitHub refuses to send me emails so I have no other way of knowing). -\input{streams/Stream1.tex} - \input{streams/Stream2.tex} \input{streams/Stream3.tex} @@ -73,6 +67,16 @@ knowing). \input{streams/Stream10.tex} +\input{topics/control_panel.tex} + +\input{topics/util_funcs.tex} + +\input{topics/radiation.tex} + +%Velocity + +%Advection + \newpage \input{streams/TTNMETAF.tex} diff --git a/tex-docs/references.bib b/tex-docs/references.bib index 7429d03..e23029b 100644 --- a/tex-docs/references.bib +++ b/tex-docs/references.bib @@ -45,6 +45,17 @@ pages={1328}, edition={14th global} } +@inbook{specificHeat, +place={Harlow}, +title={Sears and Zemanskys University physics with modern physics}, +publisher={Pearson Education}, +author={Young, Hugh D. and Freedman, Roger A. and Ford, A. Lewis}, +year={2016}, +chapter={17}, +pages={581}, +edition={14th global} +} + @inbook{thermo1, place={Harlow}, title={Sears and Zemanskys University physics with modern physics}, diff --git a/tex-docs/streams/Stream2.tex b/tex-docs/streams/Stream2.tex index f88a7fd..c5d3af3 100644 --- a/tex-docs/streams/Stream2.tex +++ b/tex-docs/streams/Stream2.tex @@ -3,7 +3,7 @@ In its current state, CLaUDE has a static planet. This means that the planet rem themselves. But before we start adding layers, let's talk about a term you will hear more often: numerical instability. Numerical instability occurs when you first run the model. This is due to the nature of the equations. Nearly all equations are continuous, which means that they are always at work. However -when you start the model, the equations were not at work yet. It is as if you suddenly give a random meteor an atmosphere, place it in orbit around a star and don't touch i for a bit. You will +when you start the model, the equations were not at work yet. It is as if you suddenly give a random meteor an atmosphere, place it in orbit around a star and don't touch it for a bit. You will see that the whole system oscilates wildly as it adjusts to the sudden changes and eventually it will stabilise. Another term you might encounter is blow up, this occurs when when the model suddenly no longer behaves like it should. This is most likely caused by mistakes in the code or incorrect paramter initialisation. Be wary of the existence of both factors, and do not dismiss a model if it behaves weirdly as it has just started up. diff --git a/tex-docs/streams/Stream3.tex b/tex-docs/streams/Stream3.tex index b29ab13..db6edd3 100644 --- a/tex-docs/streams/Stream3.tex +++ b/tex-docs/streams/Stream3.tex @@ -46,35 +46,6 @@ $u$ in both $x$ and $y$ directions. Then if we write out $\nabla u$ we get \auto \end{equation} \end{subequations} -Now that we have the momentum equations sorted out, we need to define a method to do the gradient calculations for us. Therefore we define two functions \autoref{alg:gradient x} and -\autoref{alg:gradient y} that calculate the $x$ and $y$ gradients respectively. - -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{Matrix (double array) $a$, first index $i$, second index $j$} - \Output{Gradient in the $x$ direction} - $grad \leftarrow \frac{a[i, (j + 1)\text{ mod } nlon] - a[i, (j - 1) \text{ mod } nlon]}{\delta x[i]}$ \; - \Return{$grad$} \; - \caption{Calculating the gradient in the $x$ direction} - \label{alg:gradient x} -\end{algorithm} - -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{Matrix (double array) $a$, first index $i$, second index $j$} - \Output{Gradient in the $y$ direction} - \eIf{$i == 0$ or $i == nlat - 1$}{ - $grad \leftarrow 0$ \; - }{ - $grad \leftarrow \frac{a[i + 1, j] - a[i - 1 j]}{\delta y}$ \; - } - \Return $grad$ \; - \caption{Calculating the gradient in the $y$ direction} - \label{alg:gradient y} -\end{algorithm} - With the gradient functions defined, we can move on to the main code for the momentum equations. The main loop is shown in \autoref{alg:stream3}. Do note that this loop replaces the one in \autoref{alg:stream2v2} as these calculate the same thing, but the new algorithm does it better. @@ -117,8 +88,7 @@ The diffusion equation, as written in \autoref{eq:diffusion}, describes how the \end{equation} Now to get this into code we need the following algorithms \autoref{alg:laplacian} and \autoref{alg:diffusion}. \autoref{alg:laplacian} implements the laplacian operator, whereas -\autoref{alg:diffusion} implements the diffusion calculations. $\Delta_x$ and $\Delta_y$ in \autoref{alg:laplacian} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} -respectively. $\nabla^2$ in \autoref{alg:diffusion} represents the call to \autoref{alg:laplacian}. +\autoref{alg:diffusion} implements the diffusion calculations. $\nabla^2$ in \autoref{alg:diffusion} represents the call to \autoref{alg:laplacian}. \begin{algorithm} \SetKwInOut{Input}{Input} @@ -164,10 +134,6 @@ The advection equation is shown in \autoref{eq:advection}. The symbols are: \label{eq:advection} \end{equation} -As we expect to use the divergence operator more often throughout our model, let us define a seperate function for it in \autoref{alg:divergence}. $\Delta_x$ and $\Delta_y$ in -\autoref{alg:divergence} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} respectively. We do the multiplication with the velocity vector here already, as we expect -that we might use it in combination with the divergence operator more frequently. - \begin{algorithm} \SetKwInOut{Input}{Input} \SetKwInOut{Output}{Output} diff --git a/tex-docs/streams/Stream5.tex b/tex-docs/streams/Stream5.tex index 8493d2d..6d01ae0 100644 --- a/tex-docs/streams/Stream5.tex +++ b/tex-docs/streams/Stream5.tex @@ -16,90 +16,7 @@ are no longer indexed by $lat, lon$ but are indexed by $lat, lon, layer$. \label{alg:more layers} \end{algorithm} -We also need to change all the gradient functions (\autoref{alg:gradient x} and \autoref{alg:gradient y}) to incorporate the atmospheric layers. Additionally we need a new gradient function that -calculates the gradient in the $z$ direction (vertical). Let us first change the existing gradient functions to take the atmospheric layer in effect. The changes can be found in -\autoref{alg:gradient x layer} and \autoref{alg:gradient y layer}. Let us improve the gradient in the $y$ direction as well. Since we are using the central difference method (calculating the -gradient by taking the difference of the next grid cell and the previous grid cell) there is no gradient at the poles. What we can do instead of returning $0$ for those cases is forward -differencing (calculating the gradient by taking the difference of the cell and the next/previous cell, multiplied by $2$ to keep it fair). A special change in both functions is checking whether -$k$ is equal to \texttt{NULL}. We do this as sometimes we want to use this function for matrices that does not have the layer dimension. Hence we define a default value for $k$ which is -\texttt{NULL}. \texttt{NULL} is a special value in computer science. It represents nothing. This can be useful sometimes if you declare a variable to be something but it is referring to something -that has been deleted or it is returned when some function fails. It usually indicates that something special is going on. So here we use it in the special case where we do not want to consider -the layer part in the gradient. -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$ with default value \texttt{NULL}} - \Output{Gradient in the $x$ direction} - \eIf{$k == \texttt{NULL}$}{ - $grad \leftarrow \frac{a[i, (j + 1)\text{ mod } nlon] - a[i, (j - 1) \text{ mod } nlon]}{\delta x[i]}$ \; - }{ - $grad \leftarrow \frac{a[i, (j + 1)\text{ mod } nlon, k] - a[i, (j - 1) \text{ mod } nlon, k]}{\delta x[i]}$ \; - } - \Return{$grad$} \; - \caption{Calculating the gradient in the $x$ direction} - \label{alg:gradient x layer} -\end{algorithm} - -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$ with default value \texttt{NULL}} - \Output{Gradient in the $y$ direction} - \eIf{$k == \texttt{NULL}$}{ - \uIf{$i == 0$}{ - $grad \leftarrow 2 \frac{a[i + 1, j] - a[i, j]}{\delta y}$ \; - }\uElseIf{$i == nlat - 1$}{ - $grad \leftarrow 2 \frac{a[i, j] - a[i - 1, j]}{\delta y}$ \; - }\uElse{ - $grad \leftarrow \frac{a[i + 1, j] - a[i - 1 j]}{\delta y}$ \; - } - }{ - \uIf{$i == 0$}{ - $grad \leftarrow 2 \frac{a[i + 1, j, k] - a[i, j, k]}{\delta y}$ \; - }\uElseIf{$i == nlat - 1$}{ - $grad \leftarrow 2 \frac{a[i, j, k] - a[i - 1, j, k]}{\delta y}$ \; - }\uElse{ - $grad \leftarrow \frac{a[i + 1, j] - a[i - 1 j]}{\delta y}$ \; - } - } - \Return $grad$ \; - \caption{Calculating the gradient in the $y$ direction} - \label{alg:gradient y layer} -\end{algorithm} - -With those changes done, let us define the gradient in the $z$ direction. The function can be found in \autoref{alg:gradient z layer}. Here $a.dimensions$ is the attribute that tells us how -deeply nested the array $a$ is. If the result is $1$ we have just a normal array, if it is $2$ we have a double array (an array at each index of the array) which is also called a matrix and if it -is $3$ we have a triple array. We need this because we have a one-dimensional case, for when we do not use multiple layers and a three-dimensional case for when we do use multiple layers. This -distinction is needed to avoid errors being thrown when running the model with one or multiple layers. - -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$} - \Output{Gradient in the $z$ direction} - \uIf{$a.dimensions == 1$}{ - \uIf{$k == 0$}{ - $grad \leftarrow \frac{a[k + 1] - a[k]}{\delta z[k]}$ \; - }\uElseIf{$k == nlevels - 1$}{ - $grad \leftarrow \frac{a[k] - a[k - 1]}{\delta z[k]}$ \; - }\uElse{ - $grad \leftarrow \frac{a[k + 1] - a[k - 1]}{2\delta z[k]}$ \; - } - } \uElse { - \uIf{$k == 0$}{ - $grad \leftarrow \frac{a[i, j, k + 1] - a[i, j, k]}{\delta z[k]}$ \; - }\uElseIf{$k == nlevels - 1$}{ - $grad \leftarrow \frac{a[i, j, k] - a[i, j, k - 1]}{\delta z[k]}$ \; - }\uElse{ - $grad \leftarrow \frac{a[i, j, k + 1] - a[i, j, k - 1]}{2\delta z[k]}$ \; - } - } - - \Return $grad$ \; - \caption{Calculating the gradient in the $z$ direction} - \label{alg:gradient z layer} -\end{algorithm} As you can see, we have used $\delta z$ however, we have not defined it yet. Let us do that in \autoref{alg:gradient z}. @@ -112,58 +29,10 @@ As you can see, we have used $\delta z$ however, we have not defined it yet. Let \label{alg:gradient z} \end{algorithm} -Let's incorporate the changes for the Laplacian operator (\autoref{alg:laplacian}) as well. The new code can be found in \autoref{alg:laplacian layer}. - -\begin{algorithm}[hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{A matrix (double array) a} - \Output{A matrix (double array) with results for the laplacian operator for each element} - \eIf{$a.dimensions == 2$}{ - \For{$lat \in [1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - $output[lat, lon] \leftarrow \frac{\Delta_x(a, lat, (lon + 1) \text{ mod } nlon) - \Delta_x(a, lat, (lon - 1) \text{ mod } nlon)}{\delta x[lat]} + \frac{\Delta_y(a, lat + 1, lon) - - \Delta_y(a, lat - 1, lon)}{\delta y}$\; - } - } - }{ - \For{$lat \in [1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - \For{$k \in [0, nlevels - 1]$}{ - $output[lat, lon, k] \leftarrow \frac{\Delta_x(a, lat, (lon + 1) \text{ mod } nlon, k) - \Delta_x(a, lat, (lon - 1) \text{ mod } nlon, k)}{\delta x[lat]} + \frac{\Delta_y(a, - lat + 1, lon, k) - \Delta_y(a, lat - 1, lon, k)}{\delta y} + \frac{\Delta_z(a, lat, lon, k + 1) - \Delta_z(a, lat, lon, k + 1)}{2\delta z[k]}$\; - } - } - } - } - - \Return{$ouput$} \; - \caption{Calculate the laplacian operator over a matrix a} - \label{alg:laplacian layer} -\end{algorithm} - Of course we also need to incorporate the new layers in the divergence operator (\autoref{alg:divergence}). The new changes can be found in \autoref{alg:divergence layer}. Here we use $w$, the vertical wind velocity. We define $w$ in the same way as $u$ and $v$, it is all zeroes (in the beginning) and has the same dimensions as $u$ and $v$. -\begin{algorithm}[!hbt] - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{A matrix (double array) $a$} - \Output{A matrix (double array) containing the result of the divergence operator taken over that element} - $dim_1 \leftarrow \text{ Length of } a \text{ in the first dimension}$ \; - \For{$i \in [0, dim_1]$}{ - $dim_2 \leftarrow \text{ Length of } a \text{ in the second dimension (i.e. the length of the array stored at index } i)$ \; - \For{$j \in [0, dim_2]$}{ - $dim_3 \leftarrow \text{ Length of } a \text{ in the third dimension}$ \; - \For{$k \in [0, dim_3]$}{ - $output[i, j] \leftarrow \Delta_x(au, i, j, k) + \Delta_y(av, i, j, k) + \Delta_z(aw, i, j, k)$ \; - } - } - } - \Return{$output$} \; - \caption{Calculate the result of the divergence operator on a vector} - \label{alg:divergence layer} -\end{algorithm} + With all those changes in the functions done, let us incorporate the changes into the model itself. We now need to account for the temperature change throughout the layers. Let us look at the atmospheric temperature equation again (\autoref{eq:atmos change}). We need to account for one more thing, the absorbtion of energy from another layer. The new equation is shown in diff --git a/tex-docs/streams/TTNMETAF.tex b/tex-docs/streams/TTNMETAF.tex index d2f90f0..c269858 100644 --- a/tex-docs/streams/TTNMETAF.tex +++ b/tex-docs/streams/TTNMETAF.tex @@ -5,51 +5,4 @@ Potential is the energy change that occurs when the position of an object changes \cite{potential}. There are many potentials, like electric potential, gravitational potential and elastic potential. Let me explain the concept with an example. Say you are walking on a set of stairs in the upwards direction. As your muscles move to bring you one step upwards, energy that is used by your muscles is converted into gravitational potential. Now imagine you turn around and go downwards instead. Notice how that is easier? That is due to the gravitational potential being -converted back into energy so your muscles have to deliver less energy to get you down. The potential is usually tied to a force, like the gravitational force. - -\subsection{Laplacian Operator} \label{sec:laplace} -The Laplacian operator ($\nabla^2$, sometimes also seen as $\Delta$) has two definitions, one for a vector field and one for a scalar field. The two concepts are not indpendent, a vector field -is composed of scalar fields \cite{vectorscalarfields}. Let us define a vector field first. A vector field is a function whose domain and range are a subset of the Eucledian $\mathbb{R}^3$ space. -A scalar field is then a function consisting out of several real variables (meaning that the variables can only take real numbers as valid values). So for instance the circle equation -$x^2 + y^2 = r^2$ is a scalar field as $x, y$ and $r$ are only allowed to take real numbers as their values. - -With the vector and scalar fields defined, let us take a look at the Laplacian operator. For a scalar field $\phi$ the laplacian operator is defined as the divergence of the gradient of $\phi$ -\cite{laplacian}. But what are the divergence and gradient? The gradient is defined in \autoref{eq:gradient} and the divergence is defined in \autoref{eq:divergence}. Here $\phi$ is a vector -with components $x, y, z$ and $\Phi$ is a vector field with components $x, y, z$. $\Phi_1, \Phi_2$ and $\Phi_3$ refer to the functions that result in the corresponding $x, y$ and $z$ values -\cite{vectorscalarfields}. Also, $i, j$ and $k$ are the basis vectors of $\mathbb{R^3}$, and the multiplication of each term with their basis vector results in $\Phi_1, \Phi_2$ and $\Phi_3$ -respectively. If we then combine the two we get the Laplacian operator, as in \autoref{eq:laplacian scalar}. - -\begin{subequations} - \begin{equation} - \text{grad } \phi = \nabla \phi = \frac{\delta \phi}{\delta x}i + \frac{\delta \phi}{\delta y}j + \frac{\delta \phi}{\delta z}k - \label{eq:gradient} - \end{equation} - \begin{equation} - \text{div} \Phi = \nabla \cdot \Phi = \frac{\delta \Phi_1}{\delta x} + \frac{\delta \Phi_2}{\delta y} + \frac{\delta \Phi_3}{\delta z} - \label{eq:divergence} - \end{equation} - \begin{equation} - \nabla^2 \phi = \nabla \cdot \nabla \phi = \frac{\delta^2 \phi}{\delta x^2} + \frac{\delta^2 \phi}{\delta y^2} + \frac{\delta^2 \phi}{\delta z^2} - \label{eq:laplacian scalar} - \end{equation} -\end{subequations} - -For a vector field $\Phi$ the Laplacian operator is defined as in \autoref{eq:laplacian vector}. Which essential boils down to taking the Laplacian operator of each function and multiply it by -the basis vector. - -\begin{equation} - \nabla^2 \Phi = (\nabla^2 \Phi_1)i + (\nabla^2 \Phi_2)j + (\nabla^2 \Phi_3)k - \label{eq:laplacian vector} -\end{equation} - -\subsection{Interpolation} \label{sec:interpolation} -Interpolation is a form of estimation, where one has a set of data points and desires to know the values of other data points that are not in the original set of data points\cite{interpolation}. -Based on the original data points, it is estimated what the values of the new data points will be. There are various forms of interpolation like linear interpolation, polynomial interpolation -and spline interpolation. The CLAuDE model uses linear interpolation which is specified in \autoref{eq:interpolation}. Here $z$ is the point inbetween the known data points $x$ and $y$. -$\lambda$ is the factor that tells us how close $z$ is to $y$ in the interval $[0, 1]$. If $z$ is very close to $y$, $\lambda$ will have the value on the larger end of the interval, like 0.9. -Whereas if $z$ is close to $x$ then $\lambda$ will have a value on the lower end of the interval, like 0.1. - -\begin{equation} - z = (1 - \lambda)x + \lambda y - \label{eq:interpolation} -\end{equation} \ No newline at end of file +converted back into energy so your muscles have to deliver less energy to get you down. The potential is usually tied to a force, like the gravitational force. \ No newline at end of file diff --git a/tex-docs/topics/advection.tex b/tex-docs/topics/advection.tex new file mode 100644 index 0000000..e69de29 diff --git a/tex-docs/topics/control_panel.tex b/tex-docs/topics/control_panel.tex new file mode 100644 index 0000000..1e4ebd9 --- /dev/null +++ b/tex-docs/topics/control_panel.tex @@ -0,0 +1,104 @@ +\section{Control Panel} \label{sec:cp} +Before we dive in an start modelling the planet, let us first set up a control panel that will influence how the model will behave and effectively decides what type of planet we model. + +\subsection{The Beginning} +In the beginning there was nothing, and then there was "Hello World!" Or at least that is how many projects start. Why? you might ask, which is a perfectly valid question. In Computer Science, +"Hello World!" is very simple code that we use to test whether all the tools we need to get coding works. This checks whether the computer compiles the code and is able to execute it and whether +the code editor (IDE, Integrated Development Environment) starts the right processes to get the code compiled and executed. Oh right we were talking about CLAuDE, ahem. + +Every project must have its beginning. And with CLAuDE I made the decision to start explaining the Control Panel first. This is to get you familiar with notation and to lay down some basics. To +do that we start with the fixed part of the Control Panel, the physical constants. Many things vary from planet to planet, how much radiation they receive from their star, how strong their +gravity is, how fast they spin around their axis and many many more. What does not change are the physical constants, well because they are constant. The Stefan-Boltzmann constant for instance +does not change. Whether you are on Earth, in space or on Jupiter, the value of the Stefan-Boltzmann constant will remain the same. + +The Stefan-Boltzmann constant is denoted by $\sigma$ and has a value of $5.670373 \cdot 10^-8 \ (Wm^{-2}K^{-4})$ \cite{stefan-boltzmann}. The $\sigma$ is a greek letter called sigma. Greek +letters are often used in mathematics, as well as in physics or any other discipline that relies on maths (spoiler alert, quite a lot). Treat it like a normal letter in maths, representing a +number that you either do not know yet or is too long or cumbersome to write down every time. The Stefan-Boltzmann constant is denoted in scientific notation, a number followed by the order of +magnitude. It is denoted as a multiplication, because that is what you have to do to get the real number. An example: $4.3 \cdot 10^2 = 430$ and $4.3 \cdot 10^{-2} = 0.043$. The +letters behind the numbers are units, how we give meaning to the numbers. If I say that I am $1.67$ does not mean anything. Do I mean inches, centimeters, meters, miles? That is why we need units +as they give meaning to the number. they tell us whether the number is talking about speed, distance, time, energy and many other things. In this manual we will use SI units. Behind all the +letters you will find the following: [number]. This is a citation, a reference to an external source where you can check whether I can still read. If I pull a value out somewhere I will insert a +citation to show that I am not making these numbers up. This is what scientists use to back up their claims if they do not want to redo the work that others have done. I mean what is the point +of re-inventing the wheel if there is a tyre company next door? That is why scientists citate. + +So with that out of the way, let us write down some constants. Why do I do this here? Because a lot of constants are used everywhere and I am too lazy to relicate them every time. If you see a +letter or symbol that is not explicitly explained, then it is most likely a constant that we discuss here in the control panel. + +\subsection{Physical Constants} +As mentioned before, physical constants do not change based on where you are in the universe. Below you will find an overview of all the relevant constants together with their units. And a short +explanation where they are used or what they represent. To see them in action, consult the other sections of this manual, you will find them in equations all throughout this document. + +\subsubsection{The Gas Constant} +The Gas constant, $R = 8.3144621$ ($J(mol)^{-1}K$) \cite{idealGas} is the constant used to relate the temperature of the gas to the pressure and the volume. One would expect this constant to be +different per gas, but under high enough temperatures and low enough pressure the gas constant is the same for all gases. + +\subsubsection{The Specific Heat Capacity} +The specific heat capacity $c$ depicts how much energy is required to heat the object by one degree Kelvin per unit mass ($\frac{J}{Kg \cdot K}$) \cite{specificHeat}. This varies per material +and is usually indicated by a subscript. The specific heat capacity for water for instance is $c_w = 4190 JKg^{-1}K^{-1}$. Specific heat capacities also exist in the form of $Jg^{-1}K^{-1}$, +$Jmol^{-1}K^{-1}$ and $Jcm^{-3}K^{-1}$ which you can use in various circumstances, depending on what information you have. + +\subsubsection{Mole} +Mole is the amount of particles ($6.02214076 \cdot 10^{23}$) in a substance, where the average weight of one mole of particles in grams is about the same as the weight of one particle in atomic +mass units ($u$)\cite{mole}. This is not a physical constant perse, but more like a unit ($mol$). Though it is still important enough to be added here for future reference. All other units are +way more intuitive and are assumed to be known. + +\subsubsection{The Stefan-Boltzmann Constant} +The Stefan-Boltzmann constant, $\sigma = 5.670373 \cdot 10^-8 \ (Wm^{-2}K^{-4})$ \cite{stefan-boltzmann} is used in the Stefan-Boltzmann law (more on that in %insert reference here). + +\subsection{Planet Specific Variables} +The following set of variables vary per planet, that's why we call them variables since they vary. Makes sense right? We add them here as we will use them throughout the manual. The advantage +of that is quite significant. If you want to test things for a different planet, you only need to change the values in one place, instead of all places where you use it. If there is one thing +that we computer scientists hate is doing work, we like being lazy and defining things in one place means that we can be lazy if we need to change it. So we put in the extra work now, so we do +not have to do the extra work in the future. That's actually a quite accurate description of computer scientists, doing hard work so that they can be lazy in the future. + +\subsubsection{The Passage of Time} +On Earth we have various indications of how much time has passed. While most of them remain the same throughout the universe, like seconds, minutes and hours, others vary throughout the universe, +like days, months and years. Here we specify how long the variable quantities of time are for the planet we want to consider as they are used in the code. This can be seen in +\autoref{alg:time constants}. Here a $\leftarrow$ indicates that we assign a value to the variable name before it, so that we can use the variable name in the code instead of the value, which +has the advantage I indicated before. // means that we start a comment, which is text that the code ignores and does not tell the cpu about. Not that the cpu would understand it, but that just +means less work for the computer. Yes computers are lazy too. + +\begin{algorithm*} + \caption{Definition of how much time it takes for a day and a year on a planet and how much time on the planet passes before we start another calculation run} + \label{alg:time constants} + \SetKwComment{Comment}{//}{} + $day \leftarrow 60*60*24$ \Comment*[l]{Length of one day in seconds ($s$)} + $year \leftarrow 365*day$ \Comment*[l]{Length of one year in seconds ($s$)} + $\delta t \leftarrow 60 * 9$ \Comment*[l]{How much time is between each calculation run in seconds ($s$)} +\end{algorithm*} + +\subsubsection{The Planet Passport} +Each planet is different, so why should they all have the same gravity? Oh wait, they don't. Just as they are not all the same size, tilted as much and their atmospheres differ. So here we define +all the relevant variables that are unique to a planet, or well not necessarily unique but you get the idea. This can all be found in \autoref{alg:planet constants}. + +\begin{algorithm} + \caption{Defining the constants that are specific to a planet} + \label{alg:planet constants} + \SetKwComment{Comment}{//}{} + $g \leftarrow 9.81$ \Comment*[l]{Magnitude of gravity on the planet in $ms^{-2}$} + $\alpha \leftarrow -23.5$ \Comment*[l]{By how many degrees the planet is tilted with respect to the star's plane} + $top \leftarrow 50*10^3$ \Comment*[l]{How high the top of the atmosphere is with respect to the planet surface in meters ($m$)} + $ins \leftarrow 1370$ \Comment*[l]{Amount of energy from the star that reaches the planet per unit area ($Jm^{-2}$)} + $\epsilon \leftarrow 0.75$ \Comment*[l]{Absorbtivity of the atmosphere, fraction of how much of the total energy is absorbed (unitless)} + %$R \leftarrow 6.4*10^6$ \Comment*[l]{The radius of the planet in meters ($m$)} +\end{algorithm} + +\subsubsection{Model Specific Parameters} +These parameters cannot be found out in the wild, they only exist within our model. They control things like the size of a cell on the latitude longitude grid (more on that in later sections), +how much time the model gets to spin up. We need the model to spin up in order to avoid numerical instability. Numerical instability occurs when you first run the model. This is due to the nature of the equations. Nearly all equations are continuous, which means that they are always at work. However +when you start the model, the equations were not at work yet. It is as if you suddenly give a random meteor an atmosphere, place it in orbit around a star and don't touch it for a bit. You will +see that the whole system oscilates wildly as it adjusts to the sudden changes and eventually it will stabilise. We define the amount of time it needs to stabilise as the spin up time. All +definitions can be found in \autoref{alg:model constants}. What the $adv$ boolean does is enabling or disabling advection, a process described in
which does not work yet. + +\begin{algorithm} + \caption{Defining the paramters that only apply to the model} + \label{alg:model constants} + \SetKwComment{Comment}{//}{} + $resolution \leftarrow 3$ \Comment*[l]{The amount of degrees on the latitude longitude grid that each cell has, with this setting each cell is 3 degrees latitude high and 3 degrees + longitude wide} + $nlevels \leftarrow 10$ \Comment*[l]{The amount of layers in the atmosphere} + $\delta t_s \leftarrow 60*137$ \Comment*[l]{The time between calculation rounds during the spin up period in seconds ($s$)} + $t_s \leftarrow 5*day$ \Comment*[l]{How long we let the planet spin up in seconds ($s$)} + $adv \leftarrow \texttt{FALSE}$ \Comment*[l]{Whether we want to enable advection or not} + $adv\_boun \leftarrow 8$ \Comment*[l]{How many cells away from the poles where we want to stop calculating the effects of advection} +\end{algorithm} \ No newline at end of file diff --git a/tex-docs/streams/Stream1.tex b/tex-docs/topics/radiation.tex similarity index 55% rename from tex-docs/streams/Stream1.tex rename to tex-docs/topics/radiation.tex index e0d1a2a..8e05aa1 100644 --- a/tex-docs/streams/Stream1.tex +++ b/tex-docs/topics/radiation.tex @@ -1,19 +1,18 @@ -\section{The Beginning} +\section{Radiation} \subsection{The First Law of Thermodynamics and the Stefan-Boltzmann Equation} -The beginning of CLAuDE is based upon one of the most important laws of physics: "Energy is neither created nor destroyed, only changed from one form to another." In otherwords, if energy goes into an object it must -equal the outflowing energy plus the change of internal energy. This is captured in Stefan-Boltzmann's law (\autoref{eq:stefan-boltzmann}) \cite{stefan-boltzmann}. +The beginning of CLAuDE is based upon one of the most important laws of physics: "Energy is neither created nor destroyed, only changed from one form to another." In otherwords, if energy goes +into an object it must equal the outflowing energy plus the change of internal energy. This is captured in Stefan-Boltzmann's law (\autoref{eq:stefan-boltzmann}) \cite{stefan-boltzmann}. Here we assume that the planet is a black body, i.e. it absorbs all radiation (energy waves, some waves are visible like light, others are invisible like radio signals) on all wavelengths. In \autoref{eq:stefan-boltzmann} the symbols are: \begin{itemize} - \item $S$: The energy that reaches the top of the atmosphere, coming from the sun or a similar star, per meters squared $Jm^{-2}$. This is also called the insolation. + \item $S$: The energy that reaches the top of the atmosphere, coming from the sun or a similar star, per second per meters squared $Wm^{-2}$. This is also called the insolation. \item $\sigma$: The Stefan-Boltzmann constant, $5.670373 \cdot 10^-8 \ (Wm^{-2}K^{-4})$ \cite{stefan-boltzmann}. \item $T$: The temperature of the planet ($K$). \end{itemize} -Technically speaking \autoref{eq:stefan-boltzmann} is incorrect, as there is a mismatch in units. However, that is corrected in \autoref{eq:basis sphere final} so there is no need to worry about -it just yet. The energy difference between the energu that reaches the atmosphere and the temperature of the planet must be equal to the change in temperature of the planet, which is written in +The energy difference between the energy that reaches the atmosphere and the temperature of the planet must be equal to the change in temperature of the planet, which is written in \autoref{eq:sb rewritten}. The symbols on the right hand side are: \begin{itemize} @@ -22,8 +21,9 @@ it just yet. The energy difference between the energu that reaches the atmospher \item $\Delta T$: The change in temperature ($K$). \end{itemize} -We want to know the change of temperature $\Delta T$, so we rewrite the equation into \autoref{eq:sb rewritten2}. Here we added the $\delta t$ term to account for the time difference (or time step). This is needed as -we need an interval to calculate the difference in temperature over. Also we needed to make the units match, and by adding this time step the units all match up perfectly. +We want to know the change of temperature $\Delta T$, so we rewrite the equation into \autoref{eq:sb rewritten2}. Here we added the $\delta t$ term to account for the time difference (or time +step). This is needed as we need an interval to calculate the difference in temperature over. Also we need to get the energy that we get ($J$) and not the energy per second ($W$), and by adding +this time step the units all match up perfectly. \begin{subequations} \begin{equation} @@ -122,52 +122,50 @@ Pseudocode is a representation of real code. It is meant to be an abstraction of it in their language of preference. This is usually easier to read than normal code, but more difficult to read than mathematical formulae. If you are unfamiliar with code or coding, look up a tutorial online as there are numerous great ones. -The pseudocode in \autoref{alg:stream1v1} defines the main loop of the model. All values are initialised beforehand, based on either estimations, trial and error or because they are what they -are (like the Stefan-Boltzmann constant $\sigma$). The total time $t$ starts at 0 and increases by $\delta t$ after every update of the temperature. This is to account for the total time that -the model has simulated (and it is also used later). What you may notice is the $T_p[lan, lon]$ notation. This is to indicate that $T_p$ saves a value for each $lan$ and $lon$ combination. -It is initialised as all zeroes for each index pair, and the values is changed based on the calculations. You can view $T_p$ like the whole latitude longitude grid, where $T_p[lat, lon]$ is an -individual cell of that grid indexed by a specific latitude longitude combination. +The pseudocode in \autoref{alg:stream1v1} defines the main function of the radiation part of the model. All values are initialised beforehand, based on either estimations, trial and error or +because they are what they are (like the Stefan-Boltzmann constant $\sigma$), which is all done in \autoref{sec:cp}. The total time $t$ starts at 0 and increases by $\delta t$ after every +update of the temperature. This is to account for the total time that the model has simulated (and it is also used later). What you may notice is the $T_p[lan, lon]$ notation. This is to indicate +that $T_p$ saves a value for each $lan$ and $lon$ combination. It is initialised as all zeroes for each index pair, and the values is changed based on the calculations. You can view $T_p$ like +the whole latitude longitude grid, where $T_p[lat, lon]$ is an individual cell of that grid indexed by a specific latitude longitude combination. Do note that from here on most, if not all +functions need to be called \footnote{In case you are unfamiliar with calls, defining a function is defining how it works and calling a function is actually using it.} from another file which I +will call the master. The master file decides what parts of the model to use, what information it uses for plots and the like. We do it this way because we want to be able to switch out +calculations. Say that I find a more efficient way, or more detailed way, to calculate the temperature change. If everything was in one file, then I need to edit the source code of the project. +With the master file structure, I can just swap out the reference to the project's implementation with a reference to my own implementation. This makes the life of the user (in this case the +programmer who has another implementation) easier and makes changing calculations in the future easier as well. Also note that what we pass on as parameters \footnote{Parameters are variables +that a function can use but are defined elsewhere. The real values of the variables are passed on to the funciton in the call.} in \autoref{alg:stream1v1} are the +things that change during the execution of the model or that are calculated beforehand and not constants. $S$ for instance is not constant (well at this point it is but in \autoref{sec:daynight} +we change that) amd the current time is obviously not constant. All constants can be found in \autoref{sec:cp}. \begin{algorithm}[hbt] \SetAlgoLined - $\delta t \leftarrow 60 \cdot 5$ \; - $\sigma \leftarrow 5.67 \cdot 10^{-8}$ \; - $\epsilon \leftarrow 0.75$ \; - $C_p \leftarrow 10^7$ \; - $C_a \leftarrow 10^6$ \; - $S \leftarrow 1370$ \; - $R \leftarrow 6.4 \cdot 10^6$ \; - $t \leftarrow 0$ \; - - \While{\texttt{TRUE}}{ - \For{$lat \in [-90, 90]$}{ - \For{$lon \in [0, 360]$}{ - $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t (S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p}$ \; - $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; - $t \leftarrow t + \delta t$ \; - } + \SetKwInput{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{time $t$, amount of energy that hits the planet $S$} + \Output{Temperature of the planet $T_p$, temperature of the atmosphere $T_a$} + \For{$lat \in [-90, 90]$}{ + \For{$lon \in [0, 360]$}{ + $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t (S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p}$ \; + $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; } } - \caption{The main loop of the temperature calculations} + \caption{The main function of the temperature calculations} \label{alg:stream1v1} \end{algorithm} -\subsection{Day/Night Cycle} -As you can see, the amount of energy that reaches the atmopsphere is constant. However this varies based on the position of the sun relative to the planet. To fix this, we have to assign a function -to $S$ that gives the correct amount of energy that lands on that part of the planet surface. This is done in \autoref{alg:solar}. In this algorithm the term insolation is mentioned, which is $S$ -used in the previous formulae if you recall. We use the $\cos$ function here to map the strength of the sun to a number between $0$ and $1$. The strength is dependent on the latitude, but since -that is in degrees and we need it in radians we transform it to radians by multiplying it by $\frac{\pi}{180}$. This function assumes the sun is at the equinox (center of the sun is directly -above the equator) \cite{equinox} at at all times. The second $\cos$ is needed to simulate the longitude that the sun has moved over the longitude of the equator. For that we need the difference -between the longitude of the point we want to calculate the energy for, and the longitude of the sun. The longitude of the sun is of course linked to the current time (as the sun is in a different\ -position at 5:00 than at 15:00). So we need to map the current time in seconds to the interval $[0,$ seconds in a day$]$. Therefore we need the mod function. The mod function works like this: -$x$ mod $y$ means subtract all multiples of $y$ from $x$ such that $0 \leq x < y$. So to map the current time to a time within one day, we do $t$ mod $d$ where $t$ is the current time and $d$ is -the amount of seconds in a day. When we did the calculation specified in \autoref{alg:solar} we return the final value (which means that the function call is "replaced" \footnote{Replaced is not -necessarily the right word, it is more like a mathematical function $f(x)$ where $y = f(x)$. You give it an $x$ and the value that correpsonds to that $x$ is saved in $y$. So you can view the -function call in pseudocode as a value that is calculated by a different function which is then used like a regular number.} by the value that the function calculates). If the final value is less -than 0, we need to return 0 as the sun cannot suck energy out of the planet (that it does not radiate itself, which would happen if a negative value is returned). - -In the second stream, it was revealed that $t$ mod $d$ in \autoref{alg:solar} should be $-t$ mod $d$ such that the sun moves in the right direction. In the first stream the sun would move to the -right (west to east), however the sun moves to the left (east to west) and so the time must be flipped in order for the model to be correct. +\subsection{Day/Night Cycle} \label{sec:daynight} +As you can see, the amount of energy that reaches the atmopsphere is constant. However this varies based on the position of the sun relative to the planet. To fix this, we have to assign a +function to $S$ that gives the correct amount of energy that lands on that part of the planet surface. This is done in \autoref{alg:solar}. In this algorithm the term insolation is mentioned, +which is $S$ used in the previous formulae if you recall. We use the $\cos$ function here to map the strength of the sun to a number between $0$ and $1$. The strength is dependent on the latitude, +but since that is in degrees and we need it in radians we transform it to radians by multiplying it by $\frac{\pi}{180}$. This function assumes the sun is at the equinox (center of the sun is +directly above the equator) \cite{equinox} at at all times. The second $\cos$ is needed to simulate the longitude that the sun has moved over the longitude of the equator. For that we need the +difference between the longitude of the point we want to calculate the energy for, and the longitude of the sun. The longitude of the sun is of course linked to the current time (as the sun is +in a different position at 5:00 than at 15:00). So we need to map the current time in seconds to the interval $[0,$ seconds in a day$]$. Therefore we need the mod function. The mod function +works like this: $x$ mod $y$ means subtract all multiples of $y$ from $x$ such that $0 \leq x < y$. So to map the current time to a time within one day, we do $-t$ mod $d$ where $-t$ is the +current time and $d$ is the amount of seconds in a day. We need $-t$ as this ensures that the sun moves in the right direction, with $t$ the sun would move in the opposite direction in our model +than how it would move in real life. When we did the calculation specified in \autoref{alg:solar} we return the final value (which means that the function call is "replaced" +\footnote{Replaced is not necessarily the right word, it is more like a mathematical function $f(x)$ where $y = f(x)$. You give it an $x$ and the value that correpsonds to that $x$ is saved in +$y$. So you can view the function call in pseudocode as a value that is calculated by a different function which is then used like a regular number.} by the value that the function calculates). +If the final value is less than 0, we need to return 0 as the sun cannot suck energy out of the planet (that it does not radiate itself, which would happen if a negative value is returned). \begin{algorithm}[hbt] \SetAlgoLined @@ -187,42 +185,20 @@ right (west to east), however the sun moves to the left (east to west) and so th \end{algorithm} By implementing \autoref{alg:solar}, \autoref{alg:stream1v1} must be changed as well, as $S$ is no longer constant for the whole planet surface. So let us do that in \autoref{alg:stream1v2}. Note -that $S$ is defined as the call to \autoref{alg:solar} (as is showcased by the text \texttt{solar}). In case you are unfamiliar with calls, defining a function is defining how it works and -calling a function is actually using it. - +that $S$ is defined as the call to \autoref{alg:solar}. \begin{algorithm}[hbt] \SetAlgoLined - $\delta t \leftarrow 60 \cdot 5$ \; - $\sigma \leftarrow 5.67 \cdot 10^{-8}$ \; - $\epsilon \leftarrow 0.75$ \; - $C_p \leftarrow 10^7$ \; - $C_a \leftarrow 10^7$ \; - $I \leftarrow 1370$ \; - $R \leftarrow 6.4 \cdot 10^6$ \; - $t \leftarrow 0$ \; - $day \leftarrow 60 \cdot 60 \cdot 24$ \; - $S \leftarrow$ \texttt{solar($I$, $lat$, $lon$, $t$, $day$)} \; - $nlat$ is the amount of latitude points in the interval $[0, 90]$, how you divide them is your own choice. \; - $nlot$ is the amount of longitude points in the interval $[0, 360]$, how you divide them is your own choice. \; + \SetKwInput{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{time $t$, amount of energy that hits the planet $S$} + \Output{Temperature of the planet $T_p$, temperature of the atmosphere $T_a$} - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlot]$}{ - $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t (S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p}$ \; - $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; - $t \leftarrow t + \delta t$ \; - } + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlot]$}{ + $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t (S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p}$ \; + $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; } } - \caption{The main loop of the temperature calculations} + \caption{The main function of the temperature calculations} \label{alg:stream1v2} -\end{algorithm} - -\autoref{alg:stream1v2} calculates the values that are plotted (which is not discussed here as that is Python specific). Due to the \texttt{WHILE(TRUE)} loop, this calculation never finishes and -allows us to simulate days, weeks, months and even years of heat exchange all conveniently plotted in a graph. In Simon's implementation, the graphs update in realtime, meaning that whenever a -round of calculations has finished, they are immediately processed to be displayed in the graph. - -However other forms of looking at the calculated data can be implemented, like writing a table to a txt file, saving the generated grpahs at a certain interval or spewing all the data into a csv -dataset. The possibilities are endless, and the whole goal of the model is for it to be modular. Meaning that if you want to do something with it (like have a multi-layered atmosphere instead of -a single layer atmosphere) you can just write some lines of code and run the model and it should still work. Therefore you can write your own extensions of the model to fit it to your needs and -requirements. \ No newline at end of file +\end{algorithm} \ No newline at end of file diff --git a/tex-docs/topics/util_funcs.tex b/tex-docs/topics/util_funcs.tex new file mode 100644 index 0000000..183813d --- /dev/null +++ b/tex-docs/topics/util_funcs.tex @@ -0,0 +1,192 @@ +\section{Utility Functions} +With the control panel defined and explained, let us move over to some utility functions. Functions that can be used in all kinds of calculations, which we might need more often. In general it +concerns functions like calculating the gradient, the lacplacian or interpolation. + +\subsection{Gradients} +Let us define the gradient in the $x, y$ and $z$ directions. The functions can be found in \autoref{alg:gradient x}, \autoref{alg:gradient y} and \autoref{alg:gradient z}. We use these functions +in various other algorithms as the gradient (also known as derivative) is often used in physics. It denotes the rate of change, how much something changes over time. Velocity for instance denotes +how far you move in a given time. Which is a rate of change, how much your distance to a given point changes over time. + +In \autoref{alg:gradient z} $a.dimensions$ is the attribute that tells us how deeply nested the array $a$ is. If the result is $1$ we have just a normal array, if it is $2$ we have a double array +(an array at each index of the array) which is also called a matrix and if it is $3$ we have a triple array. We need this because we have a one-dimensional case, for when we do not use multiple +layers and a three-dimensional case for when we do use multiple layers. This distinction is needed to avoid errors being thrown when running the model with one or multiple layers. + +This same concept can be seen in \autoref{alg:gradient x} and \autoref{alg:gradient y}, though here we check if $k$ is defined or \texttt{NULL}. We do this as sometimes we want to use this +function for matrices that does not have the third dimension. Hence we define a default value for $k$ which is \texttt{NULL}. \texttt{NULL} is a special value in computer science. It represents +nothing. This can be useful sometimes if you declare a variable to be something but it is referring to something that has been deleted or it is returned when some function fails. It usually +indicates that something special is going on. So here we use it in the special case where we do not want to consider the third dimension in the gradient. We also use forward differencing +(calculating the gradient by taking the difference of the cell and the next/previous cell, multiplied by $2$ to keep it fair) in \autoref{alg:gradient y} as that gives better results for the +calculations we will do later on. + +\begin{algorithm}[hbt] + \SetKwInOut{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$ with default value \texttt{NULL}} + \Output{Gradient in the $x$ direction} + \eIf{$k == \texttt{NULL}$}{ + $grad \leftarrow \frac{a[i, (j + 1)\text{ mod } nlon] - a[i, (j - 1) \text{ mod } nlon]}{\delta x[i]}$ \; + }{ + $grad \leftarrow \frac{a[i, (j + 1)\text{ mod } nlon, k] - a[i, (j - 1) \text{ mod } nlon, k]}{\delta x[i]}$ \; + } + \Return{$grad$} \; + \caption{Calculating the gradient in the $x$ direction} + \label{alg:gradient x} +\end{algorithm} + +\begin{algorithm}[hbt] + \SetKwInOut{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$ with default value \texttt{NULL}} + \Output{Gradient in the $y$ direction} + \eIf{$k == \texttt{NULL}$}{ + \uIf{$i == 0$}{ + $grad \leftarrow 2 \frac{a[i + 1, j] - a[i, j]}{\delta y}$ \; + }\uElseIf{$i == nlat - 1$}{ + $grad \leftarrow 2 \frac{a[i, j] - a[i - 1, j]}{\delta y}$ \; + }\uElse{ + $grad \leftarrow \frac{a[i + 1, j] - a[i - 1 j]}{\delta y}$ \; + } + }{ + \uIf{$i == 0$}{ + $grad \leftarrow 2 \frac{a[i + 1, j, k] - a[i, j, k]}{\delta y}$ \; + }\uElseIf{$i == nlat - 1$}{ + $grad \leftarrow 2 \frac{a[i, j, k] - a[i - 1, j, k]}{\delta y}$ \; + }\uElse{ + $grad \leftarrow \frac{a[i + 1, j] - a[i - 1 j]}{\delta y}$ \; + } + } + \Return $grad$ \; + \caption{Calculating the gradient in the $y$ direction} + \label{alg:gradient y} +\end{algorithm} + +\begin{algorithm}[hbt] + \SetKwInOut{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{Matrix (double array) $a$, first index $i$, second index $j$, third index $k$} + \Output{Gradient in the $z$ direction} + \uIf{$a.dimensions == 1$}{ + \uIf{$k == 0$}{ + $grad \leftarrow \frac{a[k + 1] - a[k]}{\delta z[k]}$ \; + }\uElseIf{$k == nlevels - 1$}{ + $grad \leftarrow \frac{a[k] - a[k - 1]}{\delta z[k]}$ \; + }\uElse{ + $grad \leftarrow \frac{a[k + 1] - a[k - 1]}{2\delta z[k]}$ \; + } + } \uElse { + \uIf{$k == 0$}{ + $grad \leftarrow \frac{a[i, j, k + 1] - a[i, j, k]}{\delta z[k]}$ \; + }\uElseIf{$k == nlevels - 1$}{ + $grad \leftarrow \frac{a[i, j, k] - a[i, j, k - 1]}{\delta z[k]}$ \; + }\uElse{ + $grad \leftarrow \frac{a[i, j, k + 1] - a[i, j, k - 1]}{2\delta z[k]}$ \; + } + } + + \Return $grad$ \; + \caption{Calculating the gradient in the $z$ direction} + \label{alg:gradient z} +\end{algorithm} + +\subsection{Laplacian Operator} \label{sec:laplace} +The Laplacian operator ($\nabla^2$, sometimes also seen as $\Delta$) has two definitions, one for a vector field and one for a scalar field. The two concepts are not indpendent, a vector field +is composed of scalar fields \cite{vectorscalarfields}. Let us define a vector field first. A vector field is a function whose domain and range are a subset of the Eucledian $\mathbb{R}^3$ space. +A scalar field is then a function consisting out of several real variables (meaning that the variables can only take real numbers as valid values). So for instance the circle equation +$x^2 + y^2 = r^2$ is a scalar field as $x, y$ and $r$ are only allowed to take real numbers as their values. + +With the vector and scalar fields defined, let us take a look at the Laplacian operator. For a scalar field $\phi$ the laplacian operator is defined as the divergence of the gradient of $\phi$ +\cite{laplacian}. But what are the divergence and gradient? The gradient is defined in \autoref{eq:gradient} and the divergence is defined in \autoref{eq:divergence}. Here $\phi$ is a vector +with components $x, y, z$ and $\Phi$ is a vector field with components $x, y, z$. $\Phi_1, \Phi_2$ and $\Phi_3$ refer to the functions that result in the corresponding $x, y$ and $z$ values +\cite{vectorscalarfields}. Also, $i, j$ and $k$ are the basis vectors of $\mathbb{R^3}$, and the multiplication of each term with their basis vector results in $\Phi_1, \Phi_2$ and $\Phi_3$ +respectively. If we then combine the two we get the Laplacian operator, as in \autoref{eq:laplacian scalar}. + +\begin{subequations} + \begin{equation} + \text{grad } \phi = \nabla \phi = \frac{\delta \phi}{\delta x}i + \frac{\delta \phi}{\delta y}j + \frac{\delta \phi}{\delta z}k + \label{eq:gradient} + \end{equation} + \begin{equation} + \text{div} \Phi = \nabla \cdot \Phi = \frac{\delta \Phi_1}{\delta x} + \frac{\delta \Phi_2}{\delta y} + \frac{\delta \Phi_3}{\delta z} + \label{eq:divergence} + \end{equation} + \begin{equation} + \nabla^2 \phi = \nabla \cdot \nabla \phi = \frac{\delta^2 \phi}{\delta x^2} + \frac{\delta^2 \phi}{\delta y^2} + \frac{\delta^2 \phi}{\delta z^2} + \label{eq:laplacian scalar} + \end{equation} +\end{subequations} + +For a vector field $\Phi$ the Laplacian operator is defined as in \autoref{eq:laplacian vector}. Which essential boils down to taking the Laplacian operator of each function and multiply it by +the basis vector. + +\begin{equation} + \nabla^2 \Phi = (\nabla^2 \Phi_1)i + (\nabla^2 \Phi_2)j + (\nabla^2 \Phi_3)k + \label{eq:laplacian vector} +\end{equation} + +The new code can be found in \autoref{alg:laplacian}. $\Delta_x$ and $\Delta_y$ in \autoref{alg:laplacian} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} +respectively. + +\begin{algorithm}[hbt] + \SetKwInOut{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{A matrix (double array) a} + \Output{A matrix (double array) with results for the laplacian operator for each element} + \eIf{$a.dimensions == 2$}{ + \For{$lat \in [1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + $output[lat, lon] \leftarrow \frac{\Delta_x(a, lat, (lon + 1) \text{ mod } nlon) - \Delta_x(a, lat, (lon - 1) \text{ mod } nlon)}{\delta x[lat]} + \frac{\Delta_y(a, lat + 1, lon) - + \Delta_y(a, lat - 1, lon)}{\delta y}$\; + } + } + }{ + \For{$lat \in [1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + \For{$k \in [0, nlevels - 1]$}{ + $output[lat, lon, k] \leftarrow \frac{\Delta_x(a, lat, (lon + 1) \text{ mod } nlon, k) - \Delta_x(a, lat, (lon - 1) \text{ mod } nlon, k)}{\delta x[lat]} + \frac{\Delta_y(a, + lat + 1, lon, k) - \Delta_y(a, lat - 1, lon, k)}{\delta y} + \frac{\Delta_z(a, lat, lon, k + 1) - \Delta_z(a, lat, lon, k + 1)}{2\delta z[k]}$\; + } + } + } + } + + \Return{$ouput$} \; + \caption{Calculate the laplacian operator over a matrix a} + \label{alg:laplacian} +\end{algorithm} + +\subsection{Divergence} +As we expect to use the divergence operator more often throughout our model, let us define a seperate function for it in \autoref{alg:divergence}. $\Delta_x$ and $\Delta_y$ in +\autoref{alg:divergence} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} respectively. We do the multiplication with the velocity vectors $u, v$ and $w$ here already, +as we expect that we might use it in combination with the divergence operator more frequently. What those vectors are and represent we will discuss in %insert velocity reference here + +\begin{algorithm}[!hbt] + \SetKwInOut{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{A matrix (double array) $a$} + \Output{A matrix (double array) containing the result of the divergence operator taken over that element} + $dim_1 \leftarrow \text{ Length of } a \text{ in the first dimension}$ \; + \For{$i \in [0, dim_1]$}{ + $dim_2 \leftarrow \text{ Length of } a \text{ in the second dimension (i.e. the length of the array stored at index } i)$ \; + \For{$j \in [0, dim_2]$}{ + $dim_3 \leftarrow \text{ Length of } a \text{ in the third dimension}$ \; + \For{$k \in [0, dim_3]$}{ + $output[i, j, k] \leftarrow \Delta_x(au, i, j, k) + \Delta_y(av, i, j, k) + \Delta_z(aw, i, j, k)$ \; + } + } + } + \Return{$output$} \; + \caption{Calculate the result of the divergence operator on a vector} + \label{alg:divergence} +\end{algorithm} + +\subsection{Interpolation} \label{sec:interpolation} +Interpolation is a form of estimation, where one has a set of data points and desires to know the values of other data points that are not in the original set of data points\cite{interpolation}. +Based on the original data points, it is estimated what the values of the new data points will be. There are various forms of interpolation like linear interpolation, polynomial interpolation +and spline interpolation. The CLAuDE model uses linear interpolation which is specified in \autoref{eq:interpolation}. Here $z$ is the point inbetween the known data points $x$ and $y$. +$\lambda$ is the factor that tells us how close $z$ is to $y$ in the interval $[0, 1]$. If $z$ is very close to $y$, $\lambda$ will have the value on the larger end of the interval, like 0.9. +Whereas if $z$ is close to $x$ then $\lambda$ will have a value on the lower end of the interval, like 0.1. + +\begin{equation} + z = (1 - \lambda)x + \lambda y + \label{eq:interpolation} +\end{equation} \ No newline at end of file diff --git a/tex-docs/topics/velocity.tex b/tex-docs/topics/velocity.tex new file mode 100644 index 0000000..e69de29 From e17e66b6390fffd4ee3afb80d087489bbafb435a Mon Sep 17 00:00:00 2001 From: TechWizzart Date: Sat, 5 Sep 2020 09:37:27 +0200 Subject: [PATCH 2/4] Rewritten more stuff. Finished up to stream 4 so still 6 streams to go --- tex-docs/CLAuDE.tex | 12 +- tex-docs/streams/Stream2.tex | 231 ---------------------------- tex-docs/streams/Stream3.tex | 232 ---------------------------- tex-docs/streams/Stream4.tex | 83 ---------- tex-docs/topics/advection.tex | 114 ++++++++++++++ tex-docs/topics/master.tex | 43 ++++++ tex-docs/topics/radiation.tex | 79 +++++++++- tex-docs/topics/util_funcs.tex | 4 +- tex-docs/topics/velocity.tex | 269 +++++++++++++++++++++++++++++++++ 9 files changed, 507 insertions(+), 560 deletions(-) delete mode 100644 tex-docs/streams/Stream2.tex delete mode 100644 tex-docs/streams/Stream3.tex delete mode 100644 tex-docs/streams/Stream4.tex create mode 100644 tex-docs/topics/master.tex diff --git a/tex-docs/CLAuDE.tex b/tex-docs/CLAuDE.tex index 156468c..889d464 100644 --- a/tex-docs/CLAuDE.tex +++ b/tex-docs/CLAuDE.tex @@ -49,12 +49,6 @@ particular stream is missing in the version on the Planet Factory repository, ch patient, or you can start writing a part of the manual yourself! Don't forget to ping me in the Discord to notify me of any additions (GitHub refuses to send me emails so I have no other way of knowing). -\input{streams/Stream2.tex} - -\input{streams/Stream3.tex} - -\input{streams/Stream4.tex} - \input{streams/Stream5.tex} \input{streams/Stream6.tex} @@ -73,9 +67,11 @@ knowing). \input{topics/radiation.tex} -%Velocity +\input{topics/velocity.tex} -%Advection +\input{topics/advection.tex} + +\input{topics/master.tex} \newpage \input{streams/TTNMETAF.tex} diff --git a/tex-docs/streams/Stream2.tex b/tex-docs/streams/Stream2.tex deleted file mode 100644 index c5d3af3..0000000 --- a/tex-docs/streams/Stream2.tex +++ /dev/null @@ -1,231 +0,0 @@ -\section{Let's Get the Atmosphere Moving} -In its current state, CLaUDE has a static planet. This means that the planet remains in place and does not move. However we know that planets move in orbit and more importantly, spin around -themselves. But before we start adding layers, let's talk about a term you will hear more often: numerical instability. - -Numerical instability occurs when you first run the model. This is due to the nature of the equations. Nearly all equations are continuous, which means that they are always at work. However -when you start the model, the equations were not at work yet. It is as if you suddenly give a random meteor an atmosphere, place it in orbit around a star and don't touch it for a bit. You will -see that the whole system oscilates wildly as it adjusts to the sudden changes and eventually it will stabilise. Another term you might encounter is blow up, this occurs when when the model -suddenly no longer behaves like it should. This is most likely caused by mistakes in the code or incorrect paramter initialisation. Be wary of the existence of both factors, and do not dismiss -a model if it behaves weirdly as it has just started up. - -\subsection{Equation of State and the Incompressible Atmosphere} -The equation of state relates one or more variables in a dynamical system (like the atmosphee) to another. The most common equation of state in the atmosphere is the ideal gas equation as -described by \autoref{eq:ideal gas} \cite{idealGas}. The symbols in that equation represent: - -\begin{itemize} - \item $p$: The gas pressure ($Pa$). - \item $V$: The volume of the gas ($m^3$). - \item $n$: The amount of moles\footnote{Mole is the amount of particles ($6.02214076 \cdot 10^{23}$) in a substance, where the average weight of one mole of particles in grams is about the - same as the weight of one particle in atomic mass units ($u$)\cite{mole}} in the gas. - \item $R$: The Gas constant, $8.3144621$ ($J(mol)^{-1}K$) \cite{idealGas}. - \item $T$: The temperature opf the gas ($K$). -\end{itemize} - -If we divide everything in \autoref{eq:ideal gas} by $V$ and set it to be unit (in this case, set it to be exactly $1 m^3$) we can add in the molar mass in both the top and bottom parts of the -division as show in \autoref{eq:gas unit}. We can then replace $\frac{nm}{V}$ by $\rho$ the density of the gas ($kgm^{-3}$) and $\frac{R}{m}$ by $R_s$ the specific gas constant (gas constant that varies per -gas in $J(mol)^{-1}K$) as shown in \autoref{eq:state gas}. the resulting equation is the equation of state that you get that most atmospheric physicists use when talking about the atmosphere \cite{simon}. - -\begin{subequations} - \begin{equation} - pV = nRT - \label{eq:ideal gas} - \end{equation} - \begin{equation} - p = \frac{nR}{V}T = \frac{nmR}{Vm}T - \label{eq:gas unit} - \end{equation} - \begin{equation} - p = \rho R_sT - \label{eq:state gas} - \end{equation} -\end{subequations} - -The pressure is quite important, as air moves from a high pressure point to a low pressure point. So if we know the density and the temperature, then we know the pressure and we can work out -where the air will be moving to (i.e. how the wind will blow). In our current model, we know the atmospheric temperature but we do not know the density. For simplicities sake, we will now assume -that the atmosphere is Incompressible, meaning that we have a constant density. Obviously we know that air can be compressed and hence our atmosphere can be compressed too but that is not -important enough to account for yet, especially considering the current complexity of our model. - -The code that corresponds to this is quite simple, the only change that we need to make in \autoref{eq:state gas} is that we need to replace $T$ by $T_a$, the temperature of the atmosphere. As -$T_a$ is a matrix (known to programmers as a double array), $p$ will be a matrix as well. Now we only need to fill in some values. $\rho = 1.2$\cite{densityAir}, $R_s = 287$\cite{specificGasConstantAir}. - -\subsection{The Primitive Equations and Geostrophy} -The primitive equations (also known as the momentum equations) is what makes the air move. It is actually kind of an injoke between physicists as they are called the primitive equations but -actually look quite complicated (and it says $fu$ at the end! \cite{simon}). The primitive equations are a set of equations dictating the direction in the $u$ and $v$ directions as shown in -\autoref{eq:primitive u} and \autoref{eq:primitive v}. We can make the equations simpler by using and approximation called geostrophy which means that we have no vertical motion, such that the -terms with $\omega$ in \autoref{eq:primitive u} and \autoref{eq:primitive v} become 0. We also assume that we are in a steady state, i.e. there is no acceleration which in turn means that the -whole middle part of the equations are $0$. Hence we are left with \autoref{eq:primitive u final} and \autoref{eq:primitive v final}. - -\begin{subequations} - \begin{equation} - \frac{du}{dt} = \frac{\delta u}{\delta t} + u\frac{\delta u}{ \delta x} + v\frac{\delta u}{\delta v} + \omega\frac{\delta u}{\delta p} = -\frac{\delta \Phi}{\delta x} + fv - \label{eq:primitive u} - \end{equation} - \begin{equation} - \frac{dv}{dt} = \frac{\delta v}{\delta t} + u\frac{\delta v}{ \delta x} + v\frac{\delta v}{\delta v} + \omega\frac{\delta v}{\delta p} = -\frac{\delta \Phi}{\delta y} - fu - \label{eq:primitive v} - \end{equation} - - \begin{equation} - 0 = -\frac{\delta \Phi}{\delta x} + fv - \label{eq:primitive u final} - \end{equation} - \begin{equation} - 0 = -\frac{\delta \Phi}{\delta y} - fu - \label{eq:primitive v final} - \end{equation} -\end{subequations} - -\autoref{eq:primitive u final} can be split up into to parts, the $\frac{\delta \Phi}{\delta x}$ part (the gradient force) and the $fv$ part (the coriolis force). The same applies to -\autoref{eq:primitive v final}. Effectively we have a balance between the gradient and the coriolis force as shown in \autoref{eq:pu simple} and \autoref{eq:pv simple}. The symbols in both of -these equations are: - -\begin{itemize} - \item $\Phi$: The geopotential, potential (more explanation in \autoref{sec:potential}) of the planet's gravity field ($Jkg^{-1}$). - \item $x$: The change in the East direction along the planet surface ($m$). - \item $y$: The change in the North direction along the planet surface ($m$). - \item $f$: The coriolis parameter as described by \autoref{eq:coriolis}, where $\Omega$ is the rotation rate of the planet (for Earth $7.2921 \cdot 10^{-5}$) ($rad \ s^{-1}$) and $\theta$ is the - latitude \cite{coriolis}. - \item $u$: The velocity in the latitude ($ms^{-1}$). - \item $v$: The velocity in the longitude ($ms^{-1}$). -\end{itemize} - -\begin{subequations} - \begin{equation} - f = 2\Omega\sin(\theta) - \label{eq:coriolis} - \end{equation} - \begin{equation} - \frac{\delta \Phi}{\delta x} = fv - \label{eq:pu simple} - \end{equation} - \begin{equation} - \frac{\delta \Phi}{\delta y} = -fu - \label{eq:pv simple} - \end{equation} - \begin{equation} - \frac{\delta p}{\rho \delta x} = fv - \label{eq:pu simple final} - \end{equation} - \begin{equation} - \frac{\delta p}{\rho \delta y} = -fu - \label{eq:pv simple final} - \end{equation} -\end{subequations} - -Since we want to know how the atmosphere moves, we want to get the v and u components of the velocity vector (since $v$ and $u$ are the veolicites in longitude and latitude, if we combine them in a -vector we get the direction of the overall velocity). So it is time to start coding and calculating! If we look back at \autoref{alg:stream1v2}, we can see that we already have a double for loop. -In computer science, having multiple loops is generally considered a bad coding practice as you usually can just reuse the indices of the already existing loop, so you do not need to create a new -one. However this is a special case, since we are calculating new temperatures in the double for loop. If we then also would start to calculate the velocities then we would use new information -and old information at the same time. Since at index $i - 1$ the new temperature has already been calculated, but at the index $i + 1$ the old one is still there. So in order to fix that we need -a second double for loop to ensure that we always use the new temperatures. We display this specific loop in \autoref{alg:stream2}. Do note that everything in \autoref{alg:stream1v2} is still -defined and can still be used, but since we want to focus on the new code, we leave out the old code to keep it concise and to prevent clutter. - -\begin{algorithm}[hbt] - \SetAlgoLined - - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlon]$}{ - $u[lat, lon] \leftarrow -\frac{p[lat + 1, lon] - p[lat - 1, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; - $v[lat, lon] \leftarrow \frac{p[lat, lon + 1] - p[lat, lon - 1]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; - } - } - } - \caption{The main loop of the velocity of the atmosphere calculations} - \label{alg:stream2} -\end{algorithm} - -The gradient calculation is done in \autoref{alg:gradient}. For this to work, we need the circumference of the planet. Herefore we need to assume that the planet is a sphere. While that is not -technically true, it makes little difference in practice and is good enough for our model. The equation for the circumference can be found in \autoref{eq:circumference} \cite{circumference}, -where $r$ is the radius of the planet. Here we also use the f-plane approximation, where the coriolis paramter has one value for the northern hemisphere and one value for the southern hemisphere -\cite{fplane}. - -\begin{equation} - 2 \pi r - \label{eq:circumference} -\end{equation} - -\begin{algorithm} - \SetAlgoLined - $C \leftarrow 2\pi R$ \; - $\delta y \leftarrow \frac{C}{nlat}$ \; - - \For{$lat \in [-nlat, nlat]$}{ - $\delta x[lat] \leftarrow \delta y \cos(lat \cdot \frac{\pi}{180})$ \; - - \eIf{$lat < 0$}{ - $f[lat] \leftarrow -10^{-4}$ \; - }{ - $f[lat] \leftarrow 10^{-4}$ \; - } - } - \caption{Calculating the gradient $\delta x$} - \label{alg:gradient} -\end{algorithm} - -Because of the geometry of the planet and the construction of the longitude latitude grid, we run into some problems when calculating the gradient. Since the planet is not flat ("controversial -I know"\cite{simon}) whenever we reach the end of the longitude we need to loop around to get to the right spot to calculate the gradients (as the planet does not stop at the end of the -longitude line but loops around). So to fix that we use the modulus (mod) function which does the looping for us if we exceed the grid's boundaries. We do haveanother problem though, the poles. -As the latitude grows closer to the poles, they are converging on the center point of the pole. Looping around there is much more difficult so to fix it, we just do not consider that center -point in the main loop. The changed algorithm can be found in \autoref{alg:stream2v2} - -\begin{algorithm}[hbt] - \SetAlgoLined - - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat + 1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - $u[lat, lon] \leftarrow -\frac{p[(lat + 1) \text{ mod } nlat, lon] - p[(lat -1) \text{ mod } nlat, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; - $v[lat, lon] \leftarrow \frac{p[lat, (lon + 1) \text{ mod } nlon] - p[lat, (lon -1) \text{ mod } nlon]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; - } - } - } - \caption{The main loop of the velocity of the atmosphere calculations} - \label{alg:stream2v2} -\end{algorithm} - -Do note that the pressure calculation is done between the temperature calculation in \autoref{alg:stream1v2} and the $u, v$ calculations in \autoref{alg:stream2v2}. At this point our model shows -a symmetric vortex around the sun that moves with the sun. This is not very realistic as you usually have convection and air flowing from warm to cold, but we do not have that complexity yet -(due to our single layer atmosphere). - -\subsection{Introducing an Ocean} -Now we want to introduce an ocean, because most of the Earth is covered by oceans it plays quite an important role in atmospheric physics. To do this we need a new concept called albedo. Albedo -is basically the reflectiveness of a material (in our case the planet's surface) \cite{albedo}. The average albedo of the Earth is about 0.3. Now to add an ocean to the grid, we define a few -areas where the albedo differs. Where you do this does not really matter for the current complexity. Defining the oceans is as easy as hardcoding (what we computer scientists refer to when -setting parts of an array to be a specific value, where if you want to change the value you need to change it everywhere instead of doing it in a variable) the albedo value for the specific -regions as we do in \autoref{alg:albedo}. Water also takes longer to warm up, so let us change the specific heat capacity ($C_p$ in \autoref{alg:stream1v2}) from a constant to an array. The new -$C_p$ can also be found in \autoref{alg:albedo}, where we have made the specific heat capacity of water one order of magnitude (i.e. $10$ times) larger. - -\begin{algorithm}[hbt] - $a \leftarrow 0.5$ \; - $a[5-55, 9-20] \leftarrow 0.2$ \; - $a[23-50, 45-70] \leftarrow 0.2$ \; - $a[2-30, 85-110] \leftarrow 0.2$ \; - - $C_p \leftarrow 10^7$ \; - $C_p[5-55, 9-20] \leftarrow 10^8$ \; - $C_p[23-50, 45-70] \leftarrow 10^8$ \; - $C_p[2-30, 85-110] \leftarrow 10^8$ \; - \caption{Defining the oceans} - \label{alg:albedo} -\end{algorithm} - -Now that we have that defined, we need to adjust the main loop of the program (\autoref{alg:stream1v2}). For clarity, all the defined constants have been left out. We need to add albedo into the -equation and change $C_p$ from a constant to an array. The algorithm after these changes can be found in \autoref{alg:stream2v3}. We multiply by $1 - a$ since albedo represents how much energy is -reflected instead of absorbed, where we need the amount that is absorbed which is exactly equal to $1$ minus the amount that is reflected. - -\begin{algorithm}[hbt] - \SetAlgoLined - - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlot]$}{ - $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p[lat, lon]}$ \; - $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; - $t \leftarrow t + \delta t$ \; - } - } - } - \caption{The main loop of the temperature calculations} - \label{alg:stream2v3} -\end{algorithm} \ No newline at end of file diff --git a/tex-docs/streams/Stream3.tex b/tex-docs/streams/Stream3.tex deleted file mode 100644 index db6edd3..0000000 --- a/tex-docs/streams/Stream3.tex +++ /dev/null @@ -1,232 +0,0 @@ -\section{Adding Mass to CLAuDE} -\subsection{The Momentum Equations} -The momentum equations are a set of equations that describe the flow of a fluid on the surface of a rotating body. For our model we will use the f-plane approximation. The equations corresponding -to the f-plane approximation are given in \autoref{eq:x momentum} and \autoref{eq:y momentum} \cite{momentumeqs}. Note that we are ignoring vertical moevement, as this does not have a significant -effect on the whole flow. All the symbols in \autoref{eq:x momentum} and \autoref{eq:y momentum} mean: - -\begin{itemize} - \item $u$: The east to west velocity ($ms^{-1}$). - \item $t$: The time ($s$). - \item $f$: The coriolis parameter as in \autoref{eq:coriolis}. - \item $v$: The north to south velocity ($ms^{-1}$). - \item $\rho$: The density of the atmosphere ($kgm^{-3}$). - \item $p$: The atmospheric pressure ($Pa$). - \item $x$: The local longitude coordinate ($m$). - \item $y$: The local latitude coordinate ($m$). -\end{itemize} - -If we then define a vector $\bar{u}$ as $(u, v, 0)$, we can rewrite both \autoref{eq:x momentum} as \autoref{eq:x momentum laplace}. Here $\nabla u$ is the gradient of -$u$ in both $x$ and $y$ directions. Then if we write out $\nabla u$ we get \autoref{eq:x momentum final}. Similarly, if we want to get $\delta v$ instead of $\delta u$ we rewrite -\autoref{eq:y momentum} to get \autoref{eq:y momentum laplace} and \autoref{eq:y momentum final}. - -\begin{subequations} - \begin{equation} - \frac{Du}{Dt} - fv = -\frac{1}{\rho} \frac{\delta p}{\delta x} - \label{eq:x momentum} - \end{equation} - \begin{equation} - \frac{Dv}{Dt} - fu = -\frac{1}{\rho} \frac{\delta p}{\delta y} - \label{eq:y momentum} - \end{equation} - \begin{equation} - \frac{\delta u}{\delta t} + \bar{u} \cdot \nabla u - fv = -\frac{1}{\rho}\frac{\delta p}{\delta x} - \label{eq:x momentum laplace} - \end{equation} - \begin{equation} - \frac{\delta v}{\delta t} + \bar{u} \cdot \nabla v - fu = -\frac{1}{\rho}\frac{\delta p}{\delta y} - \label{eq:y momentum laplace} - \end{equation} - \begin{equation} - \frac{\delta u}{\delta t} + u\frac{\delta u}{\delta x} + v\frac{\delta u}{\delta y} - fv = -\frac{1}{\rho}\frac{\delta p}{\delta x} - \label{eq:x momentum final} - \end{equation} - \begin{equation} - \frac{\delta v}{\delta t} + u\frac{\delta v}{\delta x} + v\frac{\delta v}{\delta y} - fu = -\frac{1}{\rho}\frac{\delta p}{\delta y} - \label{eq:y momentum final} - \end{equation} -\end{subequations} - -With the gradient functions defined, we can move on to the main code for the momentum equations. The main loop is shown in \autoref{alg:stream3}. Do note that this loop replaces the one -in \autoref{alg:stream2v2} as these calculate the same thing, but the new algorithm does it better. - -\begin{algorithm} - $S_{xu} \leftarrow \texttt{gradient\_x}(u, lan, lon)$ \; - $S_{yu} \leftarrow \texttt{gradient\_y}(u, lan, lon)$ \; - $S_{xv} \leftarrow \texttt{gradient\_x}(v, lan, lon)$ \; - $S_{yv} \leftarrow \texttt{gradient\_y}(v, lan, lon)$ \; - $S_{px} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; - $S_{py} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; - \While{\texttt{TRUE}}{ - \For{$lat \in [1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - $u[lan, lon] \leftarrow u[lan, lon] + \delta t \frac{-u[lan, lon]S_{xu} - v[lan, lon]S_{yu} + f[lan]v[lan, lon] - S_{px}}{\rho}$ \; - $v[lan, lon] \leftarrow v[lan, lon] + \delta t\frac{-u[lan, lon]S_{xv} - v[lan, lon]S_{yv} - f[lan]u[lan, lon] - S_{py}}{\rho}$ \; - } - } - } - \caption{Calculating the flow of the atmosphere (wind)} - \label{alg:stream3} -\end{algorithm} - -\subsection{Thermal Diffusion} -As of this time, what you notice if you run the model is that the winds only get stronger and stronger (and the model is hence blowing up). This is because there is no link yet between the -velocities of the atmosphere and the temperature. Currently, any air movement does not affect the temperature in the atmosphere of our model while it does in reality. So we need to change some -calculations to account for that. Thermal diffusion helps with spreading out the temperatures and tempering the winds a bit. - -The diffusion equation, as written in \autoref{eq:diffusion}, describes how the temperature spreads out over time\cite{diffusion}. The symbols in the equation represent: - -\begin{itemize} - \item $u$: A vector consisting out of 4 elements: $x, y, z, t$. $x, y, z$ are the local coordinates and $t$ is time. - \item $\alpha$: The thermal diffusivity constant. - \item $\nabla^2$: The Laplace operator, more information in \autoref{sec:laplace}. - \item $\bar{u}$: The time derivative of $u$, or in symbols $\frac{\delta u}{\delta t}$. -\end{itemize} - -\begin{equation} - \bar{u} = \alpha \nabla^2 u - \label{eq:diffusion} -\end{equation} - -Now to get this into code we need the following algorithms \autoref{alg:laplacian} and \autoref{alg:diffusion}. \autoref{alg:laplacian} implements the laplacian operator, whereas -\autoref{alg:diffusion} implements the diffusion calculations. $\nabla^2$ in \autoref{alg:diffusion} represents the call to \autoref{alg:laplacian}. - -\begin{algorithm} - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{A matrix (double array) a} - \Output{A matrix (double array) with results for the laplacian operator for each element} - \For{$lat \in [1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - $output[lat, lon] \leftarrow \frac{\Delta_x(a, lat, (lon + 1) \text{ mod } nlon) - \Delta_x(a, lat, (lon - 1) \text{ mod } nlon)}{\delta x[lat]} + \frac{\Delta_y(a, lat + 1, lon) - - \Delta_y(a, lat - 1, lon)}{\delta y}$\; - } - } - \Return{$ouput$} \; - \caption{Calculate the laplacian operator over a matrix a} - \label{alg:laplacian} -\end{algorithm} - -\begin{algorithm} - $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; - $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; - \While{\texttt{TRUE}}{ - $T_a \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a)$ \; - $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; - } - \caption{The main loop for calculating the effects of diffusion} - \label{alg:diffusion} -\end{algorithm} - -\subsection{Advection} -With thermal diffusion in place, the temperature will spread out a bit, however air is not transported yet. This means that the winds we simulate are not actually moving any air. Advection is -going to change that. Advection is a fluid flow transporting something with it as it flows. This can be temperature, gas, solids or other fluids. In our case we will be looking at temperature. -The advection equation is shown in \autoref{eq:advection}. The symbols are: - -\begin{itemize} - \item $\psi$: What is carried along (in our case temperature, $K$). - \item $t$: The time ($s$). - \item $u$: The fluid velocity vector ($ms^{-1}$). - \item $\nabla$: The divergence operator (as explained in \autoref{sec:laplace}). -\end{itemize} - -\begin{equation} - \frac{\delta \psi}{\delta t} + \nabla \cdot (\psi u) = 0 - \label{eq:advection} -\end{equation} - -\begin{algorithm} - \SetKwInOut{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{A matrix (double array) $a$} - \Output{A matrix (double array) containing the result of the divergence operator taken over that element} - $dim_1 \leftarrow \text{ Length of } a \text{ in the first dimension}$ \; - \For{$i \in [0, dim_1]$}{ - $dim_2 \leftarrow \text{ Length of } a \text{ in the second dimension (i.e. the length of the array stored at index } i)$ \; - \For{$j \in [0, dim_2]$}{ - $output[i, j] \leftarrow \Delta_x(au, i, j) + \Delta_y(av, i, j)$ \; - } - } - \Return{$output$} \; - \caption{Calculate the result of the divergence operator on a vector} - \label{alg:divergence} -\end{algorithm} - -With the divergence functon defined, we now need to adjust \autoref{alg:diffusion} to incorporate this effect. The resulting algorithm can be found in \autoref{alg:advection}. Here $\nabla$ -represents the function call to \autoref{alg:divergence}. - -\begin{algorithm} - $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; - $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; - \While{\texttt{TRUE}}{ - $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; - $T_a \leftarrow T_a + T_{add}[5:-5, :] \text{ //Only add } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + 5, nlat - 5]$. \; - $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; - } - \caption{The main loop for calculating the effects of advection} - \label{alg:advection} -\end{algorithm} - -Now that we have the air moving, we also need to account for the moving of the density. This is because moving air to a certain place will change the air density at that place if the air at that -place does not move away at the same rate. Say we are moving air to $x$ at $y \ ms^{-1}$. If air at $x$ moves at a rate $z \ ms^{-1}$ and $z \neq y$ then the air density at $x$ will change. -The equation we will need for that is the mass continuity equation as shown in \autoref{eq:mass continuity} \cite{masscontinue}. - -\begin{equation} - \frac{\delta \rho}{\delta t} + \nabla \cdot (\rho v) = 0 - \label{eq:mass continuity} -\end{equation} - -Using this equation means that we will no longer assume that the atmosphere is incompressible. Therefore we need to change a few things in the code. First we need to change the $\rho$ in -\autoref{alg:stream3}. Since $\rho$ is no longer constant we need to access the right value of $\rho$ by specifying the indices. So $\rho$ will change to $\rho[lat, lon]$. Furthermore we need -to calculate $\rho$ after the movement of air has taken place, so we need to change \autoref{alg:advection} as well to include the calculations for $\rho$. The new version can be found in -\autoref{alg:advectionv2}. Again the $\nabla$ represents the call to \autoref{alg:divergence}. - - -\begin{algorithm} - $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; - $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; - \While{\texttt{TRUE}}{ - $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; - $T_a \leftarrow T_a + T_{add}[5:-5, :] \text{ //Only add } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + 5, nlat - 5]$. \; - $\rho \leftarrow \rho + \delta t \nabla \rho$ \; - $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; - } - \caption{The main loop for calculating the effects of advection} - \label{alg:advectionv2} -\end{algorithm} - -Now that we have a varying density, we need to account for that in the temperature equations. So let us do that. We need it in the denominator as the density has a direct effect on the -heat capacity of the atmosphere. The changes are reflected in \autoref{alg:temperature with density}. - -\begin{algorithm}[hbt] - \SetAlgoLined - - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlot]$}{ - $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{\rho[lat, lon]C_p[lat, lon]}$ \; - $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{\rho[lat, lon]C_a}$ \; - $t \leftarrow t + \delta t$ \; - } - } - } - \caption{The main loop of the temperature calculations} - \label{alg:temperature with density} -\end{algorithm} - -\subsection{Improving the Coriolis Parameter} -Another change introduced is in the coriolis parameter. Up until now it has been a constant, however we know that it varies along the latitude. So let's make it vary over the latitude. Recall -\autoref{eq:coriolis}, where $\Theta$ is the latitude. Coriolis ($f$) is currently defined in \autoref{alg:gradient}, so let's incorporate the changes which are shown in \autoref{alg:coriolis}. - -\begin{algorithm} - \SetAlgoLined - $C \leftarrow 2\pi R$ \; - $\delta y \leftarrow \frac{C}{nlat}$ \; - $\Omega \leftarrow 7.2921 \cdot 10^{-5}$ \; - - \For{$lat \in [-nlat, nlat]$}{ - $\delta x[lat] \leftarrow \delta y \cos(lat \cdot \frac{\pi}{180})$ \; - $f[lat] \leftarrow 2\Omega \sin(lat \frac{\pi}{180})$ \; - } - \caption{Calculating the gradient $\delta x$} - \label{alg:coriolis} -\end{algorithm} \ No newline at end of file diff --git a/tex-docs/streams/Stream4.tex b/tex-docs/streams/Stream4.tex deleted file mode 100644 index 93f4c81..0000000 --- a/tex-docs/streams/Stream4.tex +++ /dev/null @@ -1,83 +0,0 @@ -\section{Removing Some Assumptions and Mistakes from CLAuDE} -The first half of this stream was spent looking through the code and fixing some mistakes. To spare you dear reader from making these same mistakes, they have already been incorporated into -the previous sections, hooray! This does not only save you some work, but it also spares you from staring at a model that does not function due to wrongly defined constants or using the wrong -values. - -\subsection{Adding a Spin-Up Time} -Instead of having a static start (having the planet start from rest, so no rotations allowed) we will have the model start up for some time before we start simulating the climate extensively. -To accomodate for this, we have to make some changes in the code. First we need to add two booleans (variables that can only take two values, either \texttt{TRUE} or \texttt{FALSE}) that we use -to indicate to the model whether we want to simulate the wind and whether we want to simulate advection. This means that the main loop will have some changes made to it. After performing the -calculations in \autoref{alg:temperature with density} we would calculate the velocities and afterwards we would calculate the advection. Instead let us change it to what is shown in -\autoref{alg:stream4v1}. - -\begin{algorithm} - \While{\texttt{TRUE}}{ - \autoref{alg:temperature with density} \; - \If{$velocity$}{ - \autoref{alg:stream3} \; - \If{$advection$}{ - \autoref{alg:advectionv2} \; - } - } - } - \caption{Main loop that can simulate flow and advection conditionally} - \label{alg:stream4v1} -\end{algorithm} - -Now to dynamically enable/disable the simulation of flow and advection we need to add the spin-up calculations to the main loop. So in \autoref{alg:stream4v1}, before -\autoref{alg:temperature with density} we add \autoref{alg:spinup}. What it does is it changes the timestep when spinnning up and disables flow simulation, and when a week has passed it reduces -the timestep and enables flow simulation. At this point in time, the advection is not dynamically enabled/disabled but it is done by the programmer. Currently it will break the model, so I -recommend leaving it on \texttt{FALSE} until it is fixed in \autoref{sec:advectionfix}. - -\begin{algorithm} - \eIf{$t < 7day$}{ - $\delta t \leftarrow 60 \cdot 47$ \; - $velocity \leftarrow \texttt{FALSE}$ \; - }{ - $\delta t \leftarrow 60 \cdot 9$ \; - $velocity \leftarrow \texttt{TRUE}$ \; - } - \caption{The spin-up block dynamically enabling or disabling flow simulation} - \label{alg:spinup} -\end{algorithm} - -\subsection{Varying the Albedo} -The albdeo (reflectiveness of the planet's surface) is of course not the same over the whole planet. To account for this, we instead vary the albedo slightly for each point in the latitude -longitude grid. The algorithm that does this is shown in \autoref{alg:albedo variance}. The uniform distribution basically says that each allowed value in the interval has an equal chance of -being picked \cite{uniformdist}. - -\begin{algorithm} - $V_a \leftarrow 0.02$ \; - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlon]$}{ - $R \leftarrow \text{ Pick a random number (from the uniform distribution) in the interval } [-V_a, V_a]$ \; - $a[lat, lon] \leftarrow a[lat, lon] + V_a \cdot R$\; - } - } - \caption{Varying the albedo of the planet} - \label{alg:albedo variance} -\end{algorithm} - -\subsection{Fixing the Advection} \label{sec:advectionfix} -Currently the advection does not work like it should. This is probably due to boundary issues, where we get too close to the poles and it starts freaking out there \cite{simon}. So to fix this -we are going to define boundaries and assume that the advection only works within those boundaries. We only let it change by half of the values. The changes are incorporated in -\autoref{alg:advectionfix}. The reason why we mention this seperately, in contrast to the other fixes that we have incorporated throughout the manual already, is the accompanying change with the -boundary. - -\begin{algorithm} - $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; - $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; - $boundary \leftarrow 7$ \; - \While{\texttt{TRUE}}{ - $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; - $T_a \leftarrow T_a - 0.5T_{add}[boundary:-boundary, :] \text{ //Only subtract } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + boundary, nlat - boundary]$. \; - $\rho[boundary: -boundary, :] \leftarrow \rho - 0.5(\delta t \nabla \rho) \text{ //Only change the density for indices in the interval } [-nlat + boundary, nlat - boundary]$ \; - $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; - } - \caption{The main loop for calculating the effects of advection} - \label{alg:advectionfix} -\end{algorithm} - -\subsection{Adding Friction} -In order to simulate friction, we multiply the speeds $u$ and $v$ by $0.99$. Of course there are equations for friction but that gets complicated very fast, so instead we just assume that we -have a constant friction factor. This multiplication is done directly after \autoref{alg:stream3} in \autoref{alg:stream4v1}. \ No newline at end of file diff --git a/tex-docs/topics/advection.tex b/tex-docs/topics/advection.tex index e69de29..2e6b07a 100644 --- a/tex-docs/topics/advection.tex +++ b/tex-docs/topics/advection.tex @@ -0,0 +1,114 @@ +\section{Advection} +Advection is a fluid flow transporting something with it as it flows. This can be temperature, gas, solids or other fluids. In our case we will be looking at temperature. + +\subsection{Thermal Diffusion} +As of this time, what you notice if you run the model is that the winds only get stronger and stronger (and the model is hence blowing up, which means that the numbers increase so dramatically +that it is no longer realistic). This is because there is no link yet between the velocities of the atmosphere and the temperature. Currently, any air movement does not affect the temperature +in the atmosphere of our model while it does in reality. So we need to change some calculations to account for that. Thermal diffusion helps with spreading out the temperatures and tempering +the winds a bit. + +The diffusion equation, as written in \autoref{eq:diffusion}, describes how the temperature spreads out over time\cite{diffusion}. The symbols in the equation represent: + +\begin{itemize} + \item $u$: A vector consisting out of 4 elements: $x, y, z, t$. $x, y, z$ are the local coordinates and $t$ is time. + \item $\alpha$: The thermal diffusivity constant. + \item $\nabla^2$: The Laplace operator, more information in \autoref{sec:laplace}. + \item $\bar{u}$: The time derivative of $u$, or in symbols $\frac{\delta u}{\delta t}$. +\end{itemize} + +\begin{equation} + \bar{u} = \alpha \nabla^2 u + \label{eq:diffusion} +\end{equation} + +Now to get this into code we need the following algorithms \autoref{alg:laplacian} and \autoref{alg:diffusion}. \autoref{alg:laplacian} implements the laplacian operator, whereas +\autoref{alg:diffusion} implements the diffusion calculations. $\nabla^2$ in \autoref{alg:diffusion} represents the call to \autoref{alg:laplacian}. + +\begin{algorithm} + $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; + $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; + \While{\texttt{TRUE}}{ + $T_a \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a)$ \; + $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; + } + \caption{The main loop for calculating the effects of diffusion} + \label{alg:diffusion} +\end{algorithm} + +\subsection{Adding in Advection} +With thermal diffusion in place, the temperature will spread out a bit, however air is not transported yet. This means that the winds we simulate are not actually moving any air. Advection is +going to change that. The advection equation is shown in \autoref{eq:advection}. The symbols are: + +\begin{itemize} + \item $\psi$: What is carried along (in our case temperature, $K$). + \item $t$: The time ($s$). + \item $u$: The fluid velocity vector ($ms^{-1}$). + \item $\nabla$: The divergence operator (as explained in \autoref{sec:laplace}). +\end{itemize} + +\begin{equation} + \frac{\delta \psi}{\delta t} + \nabla \cdot (\psi u) = 0 + \label{eq:advection} +\end{equation} + +With the divergence functon defined in \autoref{alg:divergence}, we now need to adjust \autoref{alg:diffusion} to incorporate this effect. The resulting algorithm can be found in +\autoref{alg:advection}. Here $\nabla$ represents the function call to \autoref{alg:divergence}. + +\begin{algorithm} + $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; + $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; + \While{\texttt{TRUE}}{ + $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; + $T_a \leftarrow T_a + T_{add}[5:-5, :] \text{ //Only add } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + 5, nlat - 5]$. \; + $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; + } + \caption{The main loop for calculating the effects of advection} + \label{alg:advection} +\end{algorithm} + +Now that we have the air moving, we also need to account for the moving of the density. This is because moving air to a certain place will change the air density at that place if the air at that +place does not move away at the same rate. Say we are moving air to $x$ at $y \ ms^{-1}$. If air at $x$ moves at a rate $z \ ms^{-1}$ and $z \neq y$ then the air density at $x$ will change. +The equation we will need for that is the mass continuity equation as shown in \autoref{eq:mass continuity} \cite{masscontinue}. + +\begin{equation} + \frac{\delta \rho}{\delta t} + \nabla \cdot (\rho v) = 0 + \label{eq:mass continuity} +\end{equation} + +Using this equation means that we will no longer assume that the atmosphere is incompressible. Therefore we need to change a few things in the code. First we need to change the $\rho$ in +\autoref{alg:stream3}. Since $\rho$ is no longer constant we need to access the right value of $\rho$ by specifying the indices. So $\rho$ will change to $\rho[lat, lon]$. Furthermore we need +to calculate $\rho$ after the movement of air has taken place, so we need to change \autoref{alg:advection} as well to include the calculations for $\rho$. The new version can be found in +\autoref{alg:advectionv2}. Again the $\nabla$ represents the call to \autoref{alg:divergence}. + + +\begin{algorithm} + $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; + $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; + \While{\texttt{TRUE}}{ + $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; + $T_a \leftarrow T_a + T_{add}[5:-5, :] \text{ //Only add } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + 5, nlat - 5]$. \; + $\rho \leftarrow \rho + \delta t \nabla \rho$ \; + $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; + } + \caption{The main loop for calculating the effects of advection} + \label{alg:advectionv2} +\end{algorithm} + +Currently the advection does not work like it should. This is probably due to boundary issues, where we get too close to the poles and it starts freaking out there \cite{simon}. So to fix this +we are going to define boundaries and assume that the advection only works within those boundaries. We only let it change by half of the values. The changes are incorporated in +\autoref{alg:advectionfix}. The reason why we mention this seperately, in contrast to the other fixes that we have incorporated throughout the manual already, is the accompanying change with the +boundary. + +\begin{algorithm} + $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; + $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; + $boundary \leftarrow 7$ \; + \While{\texttt{TRUE}}{ + $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; + $T_a \leftarrow T_a - 0.5T_{add}[boundary:-boundary, :] \text{ //Only subtract } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + boundary, nlat - boundary]$. \; + $\rho[boundary: -boundary, :] \leftarrow \rho - 0.5(\delta t \nabla \rho) \text{ //Only change the density for indices in the interval } [-nlat + boundary, nlat - boundary]$ \; + $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; + } + \caption{The main loop for calculating the effects of advection} + \label{alg:advectionfix} +\end{algorithm} \ No newline at end of file diff --git a/tex-docs/topics/master.tex b/tex-docs/topics/master.tex new file mode 100644 index 0000000..0387a3a --- /dev/null +++ b/tex-docs/topics/master.tex @@ -0,0 +1,43 @@ +\section{The Master File} +The master file is the file that controls the model calculation. This file decides what calculations are used and what is done with the calculations (which is not the scope of this manual). +In other words, the master file combines all the calculations and theory from the previous sections and puts it all together to form a model. As mentioned earlier, this structure enables the +user to create their own version of the model. If one has their own calculations, or wants to use an older version of the calculations in this manual, then the user can define it themselves +and call it instead of the calls that we use. The model is meant to be customisable, which this structure enables. + +\subsection{Adding a Spin-Up Time} +Instead of having a static start (having the planet start from rest, so no rotations allowed) we will have the model start up for some time before we start simulating the climate extensively. +To accomodate for this, we have to make some changes in the code. First we need to add two booleans (variables that can only take two values, either \texttt{TRUE} or \texttt{FALSE}) that we use +to indicate to the model whether we want to simulate the wind and whether we want to simulate advection. This means that the main loop will have some changes made to it. After performing the +calculations in \autoref{alg:temperature with density} we would calculate the velocities and afterwards we would calculate the advection. Instead let us change it to what is shown in +\autoref{alg:stream4v1}. + +\begin{algorithm} + \While{\texttt{TRUE}}{ + \autoref{alg:temperature with density} \; + \If{$velocity$}{ + \autoref{alg:stream3} \; + \If{$advection$}{ + \autoref{alg:advectionfix} \; + } + } + } + \caption{Main loop that can simulate flow and advection conditionally} + \label{alg:stream4v1} +\end{algorithm} + +Now to dynamically enable/disable the simulation of flow and advection we need to add the spin-up calculations to the main loop. So in \autoref{alg:stream4v1}, before +\autoref{alg:temperature with density} we add \autoref{alg:spinup}. What it does is it changes the timestep when spinnning up and disables flow simulation, and when a week has passed it reduces +the timestep and enables flow simulation. At this point in time, the advection is not dynamically enabled/disabled but it is done by the programmer. Currently it will break the model, so I +recommend leaving it on \texttt{FALSE} until it is fixed in \autoref{sec:advectionfix}. + +\begin{algorithm} + \eIf{$t < 7day$}{ + $\delta t \leftarrow 60 \cdot 47$ \; + $velocity \leftarrow \texttt{FALSE}$ \; + }{ + $\delta t \leftarrow 60 \cdot 9$ \; + $velocity \leftarrow \texttt{TRUE}$ \; + } + \caption{The spin-up block dynamically enabling or disabling flow simulation} + \label{alg:spinup} +\end{algorithm} \ No newline at end of file diff --git a/tex-docs/topics/radiation.tex b/tex-docs/topics/radiation.tex index 8e05aa1..d4aaa59 100644 --- a/tex-docs/topics/radiation.tex +++ b/tex-docs/topics/radiation.tex @@ -1,9 +1,13 @@ \section{Radiation} -\subsection{The First Law of Thermodynamics and the Stefan-Boltzmann Equation} -The beginning of CLAuDE is based upon one of the most important laws of physics: "Energy is neither created nor destroyed, only changed from one form to another." In otherwords, if energy goes -into an object it must equal the outflowing energy plus the change of internal energy. This is captured in Stefan-Boltzmann's law (\autoref{eq:stefan-boltzmann}) \cite{stefan-boltzmann}. +Radiation is energy waves, some waves are visible like light, others are invisible like radio signals. As is the basis for physics, energy cannot be created nor destroyed, only changed from one +form to another. + +\subsection{The First Law of Thermodynamics and the Stefan-Boltzmann Equation} +If energy goes into an object it must equal the outflowing energy plus the change of internal energy. Which is exactly what happens with the atmosphere. Radiation from the sun comes in, and +radiation from the atmosphere goes out. And along the way we heat the atmosphere and the planet which causes less radiation to be emitted than received. At least, that is the idea for Earth which +may not apply to all planets. Let one thing be clear, more radiation cannot be emitted than is inserted, unless the planet and atmosphere are cooling. Anyway, we assume that the planet is a black +body, i.e. it absorbs all radiation on all wavelengths. This is captured in Stefan-Boltzmann's law (\autoref{eq:stefan-boltzmann}) \cite{stefan-boltzmann}. -Here we assume that the planet is a black body, i.e. it absorbs all radiation (energy waves, some waves are visible like light, others are invisible like radio signals) on all wavelengths. In \autoref{eq:stefan-boltzmann} the symbols are: \begin{itemize} @@ -201,4 +205,71 @@ that $S$ is defined as the call to \autoref{alg:solar}. } \caption{The main function of the temperature calculations} \label{alg:stream1v2} +\end{algorithm} + +\subsection{Albedo} +Albedo is basically the reflectiveness of a material (in our case the planet's surface) \cite{albedo}. The average albedo of the Earth is about 0.2. Do note that we change $C_p$ from a constant +to an array. We do this to allow adding in oceans or other terrain in the future. Same thing for the albedo, different terrain has different reflectiveness. + +\begin{algorithm}[hbt] + $a \leftarrow 0.2$ \; + + $C_p \leftarrow 10^7$ \; + \caption{Defining the oceans} + \label{alg:albedo} +\end{algorithm} + +Now that we have that defined, we need to adjust the main loop of the program (\autoref{alg:stream1v2}). For clarity, all the defined constants have been left out. We need to add albedo into the +equation and change $C_p$ from a constant to an array. The algorithm after these changes can be found in \autoref{alg:stream2v3}. We multiply by $1 - a$ since albedo represents how much energy is +reflected instead of absorbed, where we need the amount that is absorbed which is exactly equal to $1$ minus the amount that is reflected. + +\begin{algorithm}[hbt] + \SetAlgoLined + \SetKwInput{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{time $t$, amount of energy that hits the planet $S$} + \Output{Temperature of the planet $T_p$, temperature of the atmosphere $T_a$} + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlot]$}{ + $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{C_p[lat, lon]}$ \; + $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{C_a}$ \; + } + } + \caption{The main loop of the temperature calculations} + \label{alg:stream2v3} +\end{algorithm} + +\subsection{Temperature with Varying Density} +\begin{algorithm}[hbt] + \SetAlgoLined + \SetKwInput{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{time $t$, amount of energy that hits the planet $S$} + \Output{Temperature of the planet $T_p$, temperature of the atmosphere $T_a$} + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlot]$}{ + $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + 4\epsilon \sigma (T_a[lat, lon])^4 - 4\sigma (T_p[lat, lon])^4)}{\rho[lat, lon]C_p[lat, lon]}$ \; + $T_a[lat, lon] \leftarrow T_a[lat, lon] + \frac{\delta t (\sigma (T_p[lat, lon])^4 - 2\epsilon\sigma (T_a[lat, lon])^4)}{\rho[lat, lon]C_a}$ \; + $t \leftarrow t + \delta t$ \; + } + } + \caption{The main loop of the temperature calculations} + \label{alg:temperature with density} +\end{algorithm} + +\subsection{Varying the Albedo} +The albdeo (reflectiveness of the planet's surface) is of course not the same over the whole planet. To account for this, we instead vary the albedo slightly for each point in the latitude +longitude grid. The algorithm that does this is shown in \autoref{alg:albedo variance}. The uniform distribution basically says that each allowed value in the interval has an equal chance of +being picked \cite{uniformdist}. + +\begin{algorithm} + $V_a \leftarrow 0.02$ \; + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlon]$}{ + $R \leftarrow \text{ Pick a random number (from the uniform distribution) in the interval } [-V_a, V_a]$ \; + $a[lat, lon] \leftarrow a[lat, lon] + V_a \cdot R$\; + } + } + \caption{Varying the albedo of the planet} + \label{alg:albedo variance} \end{algorithm} \ No newline at end of file diff --git a/tex-docs/topics/util_funcs.tex b/tex-docs/topics/util_funcs.tex index 183813d..f8cfba3 100644 --- a/tex-docs/topics/util_funcs.tex +++ b/tex-docs/topics/util_funcs.tex @@ -123,7 +123,7 @@ the basis vector. \label{eq:laplacian vector} \end{equation} -The new code can be found in \autoref{alg:laplacian}. $\Delta_x$ and $\Delta_y$ in \autoref{alg:laplacian} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} +The code can be found in \autoref{alg:laplacian}. $\Delta_x$ and $\Delta_y$ in \autoref{alg:laplacian} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} respectively. \begin{algorithm}[hbt] @@ -157,7 +157,7 @@ respectively. \subsection{Divergence} As we expect to use the divergence operator more often throughout our model, let us define a seperate function for it in \autoref{alg:divergence}. $\Delta_x$ and $\Delta_y$ in \autoref{alg:divergence} represents the calls to \autoref{alg:gradient x} and \autoref{alg:gradient y} respectively. We do the multiplication with the velocity vectors $u, v$ and $w$ here already, -as we expect that we might use it in combination with the divergence operator more frequently. What those vectors are and represent we will discuss in %insert velocity reference here +as we expect that we might use it in combination with the divergence operator more frequently. What those vectors are and represent we will discuss in \autoref{sec:momentum}. \begin{algorithm}[!hbt] \SetKwInOut{Input}{Input} diff --git a/tex-docs/topics/velocity.tex b/tex-docs/topics/velocity.tex index e69de29..080a9aa 100644 --- a/tex-docs/topics/velocity.tex +++ b/tex-docs/topics/velocity.tex @@ -0,0 +1,269 @@ +\section{Air Velocity} +Did you ever feel the wind blow? Most probably. That's what we will be calculating here. How hard the wind will blow. This is noted as velocity, how fast something moves. + +\subsection{Equation of State and the Incompressible Atmosphere} +The equation of state relates one or more variables in a dynamical system (like the atmosphere) to another. The most common equation of state in the atmosphere is the ideal gas equation as +described by \autoref{eq:ideal gas} \cite{idealGas}. The symbols in that equation represent: + +\begin{itemize} + \item $p$: The gas pressure ($Pa$). + \item $V$: The volume of the gas ($m^3$). + \item $n$: The amount of moles\footnote{Mole is the amount of particles ($6.02214076 \cdot 10^{23}$) in a substance, where the average weight of one mole of particles in grams is about the + same as the weight of one particle in atomic mass units ($u$)\cite{mole}} in the gas. + \item $R$: The Gas constant, $8.3144621$ ($J(mol)^{-1}K$) \cite{idealGas}. + \item $T$: The temperature opf the gas ($K$). +\end{itemize} + +If we divide everything in \autoref{eq:ideal gas} by $V$ and set it to be unit (in this case, set it to be exactly $1 m^3$) we can add in the molar mass in both the top and bottom parts of the +division as show in \autoref{eq:gas unit}. We can then replace $\frac{nm}{V}$ by $\rho$ the density of the gas ($kgm^{-3}$) and $\frac{R}{m}$ by $R_s$ the specific gas constant (gas constant that varies per +gas in $J(mol)^{-1}K$) as shown in \autoref{eq:state gas}. the resulting equation is the equation of state that you get that most atmospheric physicists use when talking about the atmosphere \cite{simon}. + +\begin{subequations} + \begin{equation} + pV = nRT + \label{eq:ideal gas} + \end{equation} + \begin{equation} + p = \frac{nR}{V}T = \frac{nmR}{Vm}T + \label{eq:gas unit} + \end{equation} + \begin{equation} + p = \rho R_sT + \label{eq:state gas} + \end{equation} +\end{subequations} + +The pressure is quite important, as air moves from a high pressure point to a low pressure point. So if we know the density and the temperature, then we know the pressure and we can work out +where the air will be moving to (i.e. how the wind will blow). In our current model, we know the atmospheric temperature but we do not know the density. For simplicities sake, we will now assume +that the atmosphere is Incompressible, meaning that we have a constant density. Obviously we know that air can be compressed and hence our atmosphere can be compressed too but that is not +important enough to account for yet, especially considering the current complexity of our model. + +The code that corresponds to this is quite simple, the only change that we need to make in \autoref{eq:state gas} is that we need to replace $T$ by $T_a$, the temperature of the atmosphere. As +$T_a$ is a matrix (known to programmers as a double array), $p$ will be a matrix as well. Now we only need to fill in some values. $\rho = 1.2$\cite{densityAir}, $R_s = 287$\cite{specificGasConstantAir}. + +\subsection{The Primitive Equations and Geostrophy} +\textbf{NOTE:} This whole subsection is obsolete. We have replaced these calculations with \autoref{sec:momentum}. The folloing subsection is left in for historical value, and maybe for a simpler +calculation if you want your own model to do less heavy calculations. This is where the previously mentioned master file strucutre comes in. You can create a new file with the following +calculations and replace the call that you would make to \autoref{sec:momentum} with a call to the algorithm listed in this subsection. Your choice, though the model Simon has made opted to use +the more complicated calculations. So here are the original calculations and if you want an up to date overview of the calculations please have a look at \autoref{sec:momentum}. + +The primitive equations (also known as the momentum equations) is what makes the air move. It is actually kind of an injoke between physicists as they are called the primitive equations but +actually look quite complicated (and it says $fu$ at the end! \cite{simon}). The primitive equations are a set of equations dictating the direction in the $u$ and $v$ directions as shown in +\autoref{eq:primitive u} and \autoref{eq:primitive v}. We can make the equations simpler by using and approximation called geostrophy which means that we have no vertical motion, such that the +terms with $\omega$ in \autoref{eq:primitive u} and \autoref{eq:primitive v} become 0. We also assume that we are in a steady state, i.e. there is no acceleration which in turn means that the +whole middle part of the equations are $0$. Hence we are left with \autoref{eq:primitive u final} and \autoref{eq:primitive v final}. + +\begin{subequations} + \begin{equation} + \frac{du}{dt} = \frac{\delta u}{\delta t} + u\frac{\delta u}{ \delta x} + v\frac{\delta u}{\delta v} + \omega\frac{\delta u}{\delta p} = -\frac{\delta \Phi}{\delta x} + fv + \label{eq:primitive u} + \end{equation} + \begin{equation} + \frac{dv}{dt} = \frac{\delta v}{\delta t} + u\frac{\delta v}{ \delta x} + v\frac{\delta v}{\delta v} + \omega\frac{\delta v}{\delta p} = -\frac{\delta \Phi}{\delta y} - fu + \label{eq:primitive v} + \end{equation} + + \begin{equation} + 0 = -\frac{\delta \Phi}{\delta x} + fv + \label{eq:primitive u final} + \end{equation} + \begin{equation} + 0 = -\frac{\delta \Phi}{\delta y} - fu + \label{eq:primitive v final} + \end{equation} +\end{subequations} + +\autoref{eq:primitive u final} can be split up into to parts, the $\frac{\delta \Phi}{\delta x}$ part (the gradient force) and the $fv$ part (the coriolis force). The same applies to +\autoref{eq:primitive v final}. Effectively we have a balance between the gradient and the coriolis force as shown in \autoref{eq:pu simple} and \autoref{eq:pv simple}. The symbols in both of +these equations are: + +\begin{itemize} + \item $\Phi$: The geopotential, potential (more explanation in \autoref{sec:potential}) of the planet's gravity field ($Jkg^{-1}$). + \item $x$: The change in the East direction along the planet surface ($m$). + \item $y$: The change in the North direction along the planet surface ($m$). + \item $f$: The coriolis parameter as described by \autoref{eq:coriolis}, where $\Omega$ is the rotation rate of the planet (for Earth $7.2921 \cdot 10^{-5}$) ($rad \ s^{-1}$) and $\theta$ is the + latitude \cite{coriolis}. + \item $u$: The velocity in the latitude ($ms^{-1}$). + \item $v$: The velocity in the longitude ($ms^{-1}$). +\end{itemize} + +\begin{subequations} + \begin{equation} + f = 2\Omega\sin(\theta) + \label{eq:coriolis} + \end{equation} + \begin{equation} + \frac{\delta \Phi}{\delta x} = fv + \label{eq:pu simple} + \end{equation} + \begin{equation} + \frac{\delta \Phi}{\delta y} = -fu + \label{eq:pv simple} + \end{equation} + \begin{equation} + \frac{\delta p}{\rho \delta x} = fv + \label{eq:pu simple final} + \end{equation} + \begin{equation} + \frac{\delta p}{\rho \delta y} = -fu + \label{eq:pv simple final} + \end{equation} +\end{subequations} + +Since we want to know how the atmosphere moves, we want to get the v and u components of the velocity vector (since $v$ and $u$ are the veolicites in longitude and latitude, if we combine them +in a vector we get the direction of the overall velocity). So it is time to start coding and calculating! If we look back at \autoref{alg:stream1v2}, we can see that we already have a double +for loop. In computer science, having multiple loops is generally considered a bad coding practice as you usually can just reuse the indices of the already existing loop, so you do not need to +create a new one. However this is a special case, since we are calculating new temperatures in the double for loop. If we then also would start to calculate the velocities then we would use new +information and old information at the same time. Since at index $i - 1$ the new temperature has already been calculated, but at the index $i + 1$ the old one is still there. So in order to fix +that we need a second double for loop to ensure that we always use the new temperatures. We display this specific loop in \autoref{alg:stream2}. Do note that everything in \autoref{alg:stream1v2} +is still defined and can still be used, but since we want to focus on the new code, we leave out the old code to keep it concise and to prevent clutter. + +\begin{algorithm}[hbt] + \SetAlgoLined + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlon]$}{ + $u[lat, lon] \leftarrow -\frac{p[lat + 1, lon] - p[lat - 1, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; + $v[lat, lon] \leftarrow \frac{p[lat, lon + 1] - p[lat, lon - 1]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; + } + } + \caption{The main loop of the velocity of the atmosphere calculations} + \label{alg:stream2} +\end{algorithm} + +The gradient calculation is done in \autoref{alg:gradient}. For this to work, we need the circumference of the planet. Herefore we need to assume that the planet is a sphere. While that is not +technically true, it makes little difference in practice and is good enough for our model. The equation for the circumference can be found in \autoref{eq:circumference} \cite{circumference}, +where $r$ is the radius of the planet. Here we also use the f-plane approximation, where the coriolis paramter has one value for the northern hemisphere and one value for the southern hemisphere +\cite{fplane}. + +\begin{equation} + 2 \pi r + \label{eq:circumference} +\end{equation} + +\begin{algorithm} + \SetAlgoLined + $C \leftarrow 2\pi R$ \; + $\delta y \leftarrow \frac{C}{nlat}$ \; + + \For{$lat \in [-nlat, nlat]$}{ + $\delta x[lat] \leftarrow \delta y \cos(lat \cdot \frac{\pi}{180})$ \; + + \eIf{$lat < 0$}{ + $f[lat] \leftarrow -10^{-4}$ \; + }{ + $f[lat] \leftarrow 10^{-4}$ \; + } + } + \caption{Calculating the gradient $\delta x$ (note that this algorithm is obsolete)} + \label{alg:gradient} +\end{algorithm} + +Because of the geometry of the planet and the construction of the longitude latitude grid, we run into some problems when calculating the gradient. Since the planet is not flat ("controversial +I know"\cite{simon}) whenever we reach the end of the longitude we need to loop around to get to the right spot to calculate the gradients (as the planet does not stop at the end of the +longitude line but loops around). So to fix that we use the modulus (mod) function which does the looping for us if we exceed the grid's boundaries. We do haveanother problem though, the poles. +As the latitude grows closer to the poles, they are converging on the center point of the pole. Looping around there is much more difficult so to fix it, we just do not consider that center +point in the main loop. The changed algorithm can be found in \autoref{alg:stream2v2} + +\begin{algorithm}[hbt] + \SetAlgoLined + \For{$lat \in [-nlat + 1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + $u[lat, lon] \leftarrow -\frac{p[(lat + 1) \text{ mod } nlat, lon] - p[(lat -1) \text{ mod } nlat, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; + $v[lat, lon] \leftarrow \frac{p[lat, (lon + 1) \text{ mod } nlon] - p[lat, (lon -1) \text{ mod } nlon]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; + } + } + \caption{The main loop of the velocity of the atmosphere calculations} + \label{alg:stream2v2} +\end{algorithm} + +Do note that the pressure calculation is done between the temperature calculation in \autoref{alg:stream1v2} and the $u, v$ calculations in \autoref{alg:stream2v2}. At this point our model shows +a symmetric vortex around the sun that moves with the sun. This is not very realistic as you usually have convection and air flowing from warm to cold, but we do not have that complexity yet +(due to our single layer atmosphere). + +\subsection{The Momentum Equations} \label{sec:momentum} +The momentum equations are a set of equations that describe the flow of a fluid on the surface of a rotating body. For our model we will use the f-plane approximation. The equations corresponding +to the f-plane approximation are given in \autoref{eq:x momentum} and \autoref{eq:y momentum} \cite{momentumeqs}. Note that we are ignoring vertical movement, as this does not have a significant +effect on the whole flow. All the symbols in \autoref{eq:x momentum} and \autoref{eq:y momentum} mean: + +\begin{itemize} + \item $u$: The east to west velocity ($ms^{-1}$). + \item $t$: The time ($s$). + \item $f$: The coriolis parameter as in \autoref{eq:coriolis}. + \item $v$: The north to south velocity ($ms^{-1}$). + \item $\rho$: The density of the atmosphere ($kgm^{-3}$). + \item $p$: The atmospheric pressure ($Pa$). + \item $x$: The local longitude coordinate ($m$). + \item $y$: The local latitude coordinate ($m$). +\end{itemize} + +If we then define a vector $\bar{u}$ as $(u, v, 0)$, we can rewrite both \autoref{eq:x momentum} as \autoref{eq:x momentum laplace}. Here $\nabla u$ is the gradient of +$u$ in both $x$ and $y$ directions. Then if we write out $\nabla u$ we get \autoref{eq:x momentum final}. Similarly, if we want to get $\delta v$ instead of $\delta u$ we rewrite +\autoref{eq:y momentum} to get \autoref{eq:y momentum laplace} and \autoref{eq:y momentum final}. + +\begin{subequations} + \begin{equation} + \frac{Du}{Dt} - fv = -\frac{1}{\rho} \frac{\delta p}{\delta x} + \label{eq:x momentum} + \end{equation} + \begin{equation} + \frac{Dv}{Dt} - fu = -\frac{1}{\rho} \frac{\delta p}{\delta y} + \label{eq:y momentum} + \end{equation} + \begin{equation} + \frac{\delta u}{\delta t} + \bar{u} \cdot \nabla u - fv = -\frac{1}{\rho}\frac{\delta p}{\delta x} + \label{eq:x momentum laplace} + \end{equation} + \begin{equation} + \frac{\delta v}{\delta t} + \bar{u} \cdot \nabla v - fu = -\frac{1}{\rho}\frac{\delta p}{\delta y} + \label{eq:y momentum laplace} + \end{equation} + \begin{equation} + \frac{\delta u}{\delta t} + u\frac{\delta u}{\delta x} + v\frac{\delta u}{\delta y} - fv = -\frac{1}{\rho}\frac{\delta p}{\delta x} + \label{eq:x momentum final} + \end{equation} + \begin{equation} + \frac{\delta v}{\delta t} + u\frac{\delta v}{\delta x} + v\frac{\delta v}{\delta y} - fu = -\frac{1}{\rho}\frac{\delta p}{\delta y} + \label{eq:y momentum final} + \end{equation} +\end{subequations} + +With the gradient functions defined in \autoref{alg:gradient x} and \autoref{alg:gradient y}, we can move on to the main code for the momentum equations. The main loop is shown in +\autoref{alg:stream3}. Do note that this loop replaces the one in \autoref{alg:stream2v2} as these calculate the same thing, but the new algorithm does it better. + +\begin{algorithm} + $S_{xu} \leftarrow \texttt{gradient\_x}(u, lan, lon)$ \; + $S_{yu} \leftarrow \texttt{gradient\_y}(u, lan, lon)$ \; + $S_{xv} \leftarrow \texttt{gradient\_x}(v, lan, lon)$ \; + $S_{yv} \leftarrow \texttt{gradient\_y}(v, lan, lon)$ \; + $S_{px} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; + $S_{py} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; + \While{\texttt{TRUE}}{ + \For{$lat \in [1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + $u[lan, lon] \leftarrow u[lan, lon] + \delta t \frac{-u[lan, lon]S_{xu} - v[lan, lon]S_{yu} + f[lan]v[lan, lon] - S_{px}}{\rho}$ \; + $v[lan, lon] \leftarrow v[lan, lon] + \delta t\frac{-u[lan, lon]S_{xv} - v[lan, lon]S_{yv} - f[lan]u[lan, lon] - S_{py}}{\rho}$ \; + } + } + } + \caption{Calculating the flow of the atmosphere (wind)} + \label{alg:stream3} +\end{algorithm} + +\subsection{Improving the Coriolis Parameter} +Another change introduced is in the coriolis parameter. Up until now it has been a constant, however we know that it varies along the latitude. So let's make it vary over the latitude. Recall +\autoref{eq:coriolis}, where $\Theta$ is the latitude. Coriolis ($f$) is currently defined in \autoref{alg:gradient}, so let's replace it with \autoref{alg:coriolis}. + +\begin{algorithm} + \SetAlgoLined + $\Omega \leftarrow 7.2921 \cdot 10^{-5}$ \; + + \For{$lat \in [-nlat, nlat]$}{ + $f[lat] \leftarrow 2\Omega \sin(lat \frac{\pi}{180})$ \; + } + \caption{Calculating the coriolis force} + \label{alg:coriolis} +\end{algorithm} + +\subsection{Adding Friction} +In order to simulate friction, we multiply the speeds $u$ and $v$ by $0.99$. Of course there are equations for friction but that gets complicated very fast, so instead we just assume that we +have a constant friction factor. This multiplication is done directly after \autoref{alg:stream3} in \autoref{alg:stream4v1}. \ No newline at end of file From 47a20e14d60de534b2183aa3f7ac02ac5c918ae9 Mon Sep 17 00:00:00 2001 From: TechWizzart Date: Mon, 7 Sep 2020 21:22:30 +0200 Subject: [PATCH 3/4] Finished the rewrite, only need to brush up the algorithms a bit --- tex-docs/CLAuDE.tex | 33 +- tex-docs/{streams => appendices}/TTNMETAF.tex | 0 tex-docs/appendices/history.tex | 138 ++++++++ tex-docs/appendices/vars.tex | 54 +++ tex-docs/streams/Stream.aux | 29 -- tex-docs/streams/Stream10.tex | 81 ----- tex-docs/streams/Stream5.tex | 144 -------- tex-docs/streams/Stream6.tex | 25 -- tex-docs/streams/Stream7.tex | 47 --- tex-docs/streams/Stream8.tex | 117 ------- tex-docs/streams/Stream9.tex | 79 ----- tex-docs/topics/advection.tex | 26 +- tex-docs/topics/control_panel.tex | 21 +- tex-docs/topics/master.tex | 58 ++- tex-docs/topics/radiation.tex | 331 +++++++++++++++++- tex-docs/topics/velocity.tex | 172 ++------- 16 files changed, 664 insertions(+), 691 deletions(-) rename tex-docs/{streams => appendices}/TTNMETAF.tex (100%) create mode 100644 tex-docs/appendices/history.tex create mode 100644 tex-docs/appendices/vars.tex delete mode 100644 tex-docs/streams/Stream.aux delete mode 100644 tex-docs/streams/Stream10.tex delete mode 100644 tex-docs/streams/Stream5.tex delete mode 100644 tex-docs/streams/Stream6.tex delete mode 100644 tex-docs/streams/Stream7.tex delete mode 100644 tex-docs/streams/Stream8.tex delete mode 100644 tex-docs/streams/Stream9.tex diff --git a/tex-docs/CLAuDE.tex b/tex-docs/CLAuDE.tex index 889d464..1380d41 100644 --- a/tex-docs/CLAuDE.tex +++ b/tex-docs/CLAuDE.tex @@ -26,9 +26,16 @@ The CLimate Analysis using Digital Estimations model is a simplified planetary climate model. It will be used to educate people on how climate physics works and to experiment with different parameters and see how much influence a tiny change can have (like for instance the rotation rate of the planet around its axis). It is built to be accessible to and runnable by everyone, -whether they have a super computer or a dated laptop. The model is written in Python and written during the weekly streams of Dr. Simon Clark \cite{twitch}. Each subsequent section starts with a -number, this number indicates which coding stream corresponds to that section. This does not only make it easier to cross reference but if the explanation is unclear or you just want to watch -the stream about that specific topic, you know which stream to watch. There is a useful playlist on Simon's Twitch which has all the streams without ad breaks or interruptions \cite{playlist}. +whether they have a super computer or a dated laptop. The model is written in Python and written during the weekly streams of Dr. Simon Clark \cite{twitch}. There is a useful playlist on +Simon's Twitch which has all the streams without ad breaks or interruptions \cite{playlist}. + +The manual itself is split up into distinct sections, each explaining one particular part of the model. Each section will be treating one topic, like radiation, advection or the control panel. +Although many concepts cannot be seen in isolation, as the wind has influence on how much temperature is distributed throughout the atmosphere, the calculations can be split up. The manual is +cumulative, starting with the basics and slowly building up to the current form of the algorithm. All changes to the algorithms can therefore be found here. An important distinction needs to be +made regarding the changes though. If the changes only change one part of the calculations, then it is considered an evolution, which will be added to the relevant section. However if the changes +are significant and not based on the previous code then the old alghorithms will be relocated to \autoref{sec:history}. Though the relevant theory will remain, as that is required to gain an +understanding of what the algorithm does. Do note that the radiation \autoref{sec:rad} is an exception for the first calculations as this forms the basis of the beginning of CLAuDE and the +fundamentals of the theory which I deem important enough to be left in place even if the calculations end up significantly different. This manual will provide an overview of the formulae used and will explain aspects of these formulae. For each equation each symbol will be explained what it is. In such an explanation, the units will be presented in SI units \cite{SI} between brackets like: $T$: The temperature of the planet ($K$). Which indicates that $T$ is the temperature of the planet in degrees Kelvin. If you need @@ -43,24 +50,12 @@ This manual is for the toy model, which is as of now still in development. One i a pain to fix and if something later on changes, the whole layout may be messed up again and is a pain to fix again. Hence I opt to let \LaTeX (the software/typeset language used to create this manual) figure out the placement of the algorithm blocks, which may or may not be in the right places. -Lastly, the manual is now up on the Planet Factory GitHub repository\cite{claudeGit}, together with all the source code. There is also a fork \cite{nomGit} that also contains the source code. +The manual is now up on the Planet Factory GitHub repository\cite{claudeGit}, together with all the source code. There is also a fork \cite{nomGit} that also contains the source code. The fork will usually be more up to date than the version on the Planet Factory repository as Simon needs to merge pull requests into the repository. However I can update the fork freely so if a particular stream is missing in the version on the Planet Factory repository, check the fork/Discord whether there is a newer version. If that is not the case, you just have to be a bit more patient, or you can start writing a part of the manual yourself! Don't forget to ping me in the Discord to notify me of any additions (GitHub refuses to send me emails so I have no other way of knowing). -\input{streams/Stream5.tex} - -\input{streams/Stream6.tex} - -\input{streams/Stream7.tex} - -\input{streams/Stream8.tex} - -\input{streams/Stream9.tex} - -\input{streams/Stream10.tex} - \input{topics/control_panel.tex} \input{topics/util_funcs.tex} @@ -74,7 +69,11 @@ knowing). \input{topics/master.tex} \newpage -\input{streams/TTNMETAF.tex} +\input{appendices/TTNMETAF.tex} + +\input{appendices/history.tex} + +\input{appendices/vars.tex} \newpage \bibliography{references} diff --git a/tex-docs/streams/TTNMETAF.tex b/tex-docs/appendices/TTNMETAF.tex similarity index 100% rename from tex-docs/streams/TTNMETAF.tex rename to tex-docs/appendices/TTNMETAF.tex diff --git a/tex-docs/appendices/history.tex b/tex-docs/appendices/history.tex new file mode 100644 index 0000000..cbef370 --- /dev/null +++ b/tex-docs/appendices/history.tex @@ -0,0 +1,138 @@ +\section{History of the Algorithms} \label{sec:history} +Back when I was a young naive programmer, I made a thing. Now a few years down the line I made the thing again, but infinitely better. So I have no use for the old thing anymore. But fear not, +old algorithms (used by CLAuDE) will be collected here. This is just for historical purposes. + +\subsection{Velocity} +\subsubsection{The Primitive Equations and Geostrophy} +The primitive equations (also known as the momentum equations) is what makes the air move. It is actually kind of an injoke between physicists as they are called the primitive equations but +actually look quite complicated (and it says $fu$ at the end! \cite{simon}). The primitive equations are a set of equations dictating the direction in the $u$ and $v$ directions as shown in +\autoref{eq:primitive u} and \autoref{eq:primitive v}. We can make the equations simpler by using and approximation called geostrophy which means that we have no vertical motion, such that the +terms with $\omega$ in \autoref{eq:primitive u} and \autoref{eq:primitive v} become 0. We also assume that we are in a steady state, i.e. there is no acceleration which in turn means that the +whole middle part of the equations are $0$. Hence we are left with \autoref{eq:primitive u final} and \autoref{eq:primitive v final}. + +\begin{subequations} + \begin{equation} + \frac{du}{dt} = \frac{\delta u}{\delta t} + u\frac{\delta u}{ \delta x} + v\frac{\delta u}{\delta v} + \omega\frac{\delta u}{\delta p} = -\frac{\delta \Phi}{\delta x} + fv + \label{eq:primitive u} + \end{equation} + \begin{equation} + \frac{dv}{dt} = \frac{\delta v}{\delta t} + u\frac{\delta v}{ \delta x} + v\frac{\delta v}{\delta v} + \omega\frac{\delta v}{\delta p} = -\frac{\delta \Phi}{\delta y} - fu + \label{eq:primitive v} + \end{equation} + + \begin{equation} + 0 = -\frac{\delta \Phi}{\delta x} + fv + \label{eq:primitive u final} + \end{equation} + \begin{equation} + 0 = -\frac{\delta \Phi}{\delta y} - fu + \label{eq:primitive v final} + \end{equation} +\end{subequations} + +\autoref{eq:primitive u final} can be split up into to parts, the $\frac{\delta \Phi}{\delta x}$ part (the gradient force) and the $fv$ part (the coriolis force). The same applies to +\autoref{eq:primitive v final}. Effectively we have a balance between the gradient and the coriolis force as shown in \autoref{eq:pu simple} and \autoref{eq:pv simple}. The symbols in both of +these equations are: + +\begin{itemize} + \item $\Phi$: The geopotential, potential (more explanation in \autoref{sec:potential}) of the planet's gravity field ($Jkg^{-1}$). + \item $x$: The change in the East direction along the planet surface ($m$). + \item $y$: The change in the North direction along the planet surface ($m$). + \item $f$: The coriolis parameter as described by \autoref{eq:coriolis}, where $\Omega$ is the rotation rate of the planet (for Earth $7.2921 \cdot 10^{-5}$) ($rad \ s^{-1}$) and $\theta$ is the + latitude \cite{coriolis}. + \item $u$: The velocity in the latitude ($ms^{-1}$). + \item $v$: The velocity in the longitude ($ms^{-1}$). +\end{itemize} + +\begin{subequations} + \begin{equation} + f = 2\Omega\sin(\theta) + \label{eq:coriolis} + \end{equation} + \begin{equation} + \frac{\delta \Phi}{\delta x} = fv + \label{eq:pu simple} + \end{equation} + \begin{equation} + \frac{\delta \Phi}{\delta y} = -fu + \label{eq:pv simple} + \end{equation} + \begin{equation} + \frac{\delta p}{\rho \delta x} = fv + \label{eq:pu simple final} + \end{equation} + \begin{equation} + \frac{\delta p}{\rho \delta y} = -fu + \label{eq:pv simple final} + \end{equation} +\end{subequations} + +Since we want to know how the atmosphere moves, we want to get the v and u components of the velocity vector (since $v$ and $u$ are the veolicites in longitude and latitude, if we combine them +in a vector we get the direction of the overall velocity). So it is time to start coding and calculating! If we look back at \autoref{alg:stream1v2}, we can see that we already have a double +for loop. In computer science, having multiple loops is generally considered a bad coding practice as you usually can just reuse the indices of the already existing loop, so you do not need to +create a new one. However this is a special case, since we are calculating new temperatures in the double for loop. If we then also would start to calculate the velocities then we would use new +information and old information at the same time. Since at index $i - 1$ the new temperature has already been calculated, but at the index $i + 1$ the old one is still there. So in order to fix +that we need a second double for loop to ensure that we always use the new temperatures. We display this specific loop in \autoref{alg:stream2}. Do note that everything in \autoref{alg:stream1v2} +is still defined and can still be used, but since we want to focus on the new code, we leave out the old code to keep it concise and to prevent clutter. + +\begin{algorithm}[hbt] + \SetAlgoLined + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlon]$}{ + $u[lat, lon] \leftarrow -\frac{p[lat + 1, lon] - p[lat - 1, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; + $v[lat, lon] \leftarrow \frac{p[lat, lon + 1] - p[lat, lon - 1]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; + } + } + \caption{The main loop of the velocity of the atmosphere calculations} + \label{alg:stream2} +\end{algorithm} + +The gradient calculation is done in \autoref{alg:gradient}. For this to work, we need the circumference of the planet. Herefore we need to assume that the planet is a sphere. While that is not +technically true, it makes little difference in practice and is good enough for our model. The equation for the circumference can be found in \autoref{eq:circumference} \cite{circumference}, +where $r$ is the radius of the planet. Here we also use the f-plane approximation, where the coriolis paramter has one value for the northern hemisphere and one value for the southern hemisphere +\cite{fplane}. + +\begin{equation} + 2 \pi r + \label{eq:circumference} +\end{equation} + +\begin{algorithm} + \SetAlgoLined + $C \leftarrow 2\pi R$ \; + $\delta y \leftarrow \frac{C}{nlat}$ \; + + \For{$lat \in [-nlat, nlat]$}{ + $\delta x[lat] \leftarrow \delta y \cos(lat \cdot \frac{\pi}{180})$ \; + + \eIf{$lat < 0$}{ + $f[lat] \leftarrow -10^{-4}$ \; + }{ + $f[lat] \leftarrow 10^{-4}$ \; + } + } + \caption{Calculating the gradient $\delta x$ (note that this algorithm is obsolete)} + \label{alg:gradient} +\end{algorithm} + +Because of the geometry of the planet and the construction of the longitude latitude grid, we run into some problems when calculating the gradient. Since the planet is not flat ("controversial +I know"\cite{simon}) whenever we reach the end of the longitude we need to loop around to get to the right spot to calculate the gradients (as the planet does not stop at the end of the +longitude line but loops around). So to fix that we use the modulus (mod) function which does the looping for us if we exceed the grid's boundaries. We do haveanother problem though, the poles. +As the latitude grows closer to the poles, they are converging on the center point of the pole. Looping around there is much more difficult so to fix it, we just do not consider that center +point in the main loop. The changed algorithm can be found in \autoref{alg:stream2v2} + +\begin{algorithm}[hbt] + \SetAlgoLined + \For{$lat \in [-nlat + 1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + $u[lat, lon] \leftarrow -\frac{p[(lat + 1) \text{ mod } nlat, lon] - p[(lat -1) \text{ mod } nlat, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; + $v[lat, lon] \leftarrow \frac{p[lat, (lon + 1) \text{ mod } nlon] - p[lat, (lon -1) \text{ mod } nlon]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; + } + } + \caption{The main loop of the velocity of the atmosphere calculations} + \label{alg:stream2v2} +\end{algorithm} + +Do note that the pressure calculation is done between the temperature calculation in \autoref{alg:stream1v2} and the $u, v$ calculations in \autoref{alg:stream2v2}. At this point our model shows +a symmetric vortex around the sun that moves with the sun. This is not very realistic as you usually have convection and air flowing from warm to cold, but we do not have that complexity yet +(due to our single layer atmosphere). \ No newline at end of file diff --git a/tex-docs/appendices/vars.tex b/tex-docs/appendices/vars.tex new file mode 100644 index 0000000..067bd9c --- /dev/null +++ b/tex-docs/appendices/vars.tex @@ -0,0 +1,54 @@ +\section{List of Variables} +Are you ever confused about what something is? Do you ever forget what a variable represents? Then I got the solution for you. The following overview will explain what each variable is and +represents. I will try to not use one variable for the same thing, though that is sometimes very difficult to do. I'll do my best. In the meantime, enjoy this exstensive list. Note that this +only applies to variables in code, every symbol in equations are explained at the equations themselves. + +\begin{itemize} + \item $R$: The Gas Constant with value $8.3144621$ ($J(mol)^{-1}K$). + \item $day$: Length of one day in seconds ($s$). + \item $year$: Length of one year in seconds ($s$). + \item $\delta t$: How much time is between each calculation run in seconds ($s$). + \item $g:$ Magnitude of gravity on the planet in $ms^{-2}$. + \item $\alpha$: By how many degrees the planet is tilted with respect to the star's plane, also called axial tilt. + \item $top$: How high the top of the atmosphere is with respect to the planet surface in meters ($m$). + \item $ins$: Amount of energy from the star that reaches the planet per unit area ($Jm^{-2}$). + \item $\epsilon$: Absorbtivity of the atmosphere, fraction of how much of the total energy is absorbed (unitless). + \item $resolution$: The amount of degrees on the latitude longitude grid that each cell has, with this setting each cell is 3 degrees latitude high and 3 degrees longitude wide. + \item $nlevels \leftarrow 10$: The amount of layers in the atmosphere. + \item $\delta t_s$: The time between calculation rounds during the spin up period in seconds ($s$). + \item $t_s$: How long we let the planet spin up in seconds ($s$). + \item $adv$: Whether we want to enable advection or not. + \item $velocity$: Whether we want to calculate the air velocity or not. + \item $adv\_boun$: How many cells away from the poles where we want to stop calculating the effects of advection. + \item $nlon$: The amount of longitude gridpoints that we use, which depends on the resolution. + \item $nlat$: The amount of latitude gridpoints that we use, which depends on the resolution. + \item $T_p$: The temperature of the planet, a 2D array representing a latitude, longitude grid cell. + \item $T_a$: The temperature of the atmosphere, a 3D array representing a grid cell on the latitude, longitude, atmospheric layer grid. + \item $\sigma$: The Stefan-Boltzmann constant equal to $5.670373 \cdot 10^{-8} \ (Wm^{-2}K^{-4})$. + \item $C_a$: Specific heat capacity of the air, equal to $1.0035 Jg^{-1}K^{-1}$. + \item $C_p$: Specific heat capacity of the planet, equal to $1.0 \cdot 10^{6} Jg^{-1}K^{-1}$. + \item $a$: Albedo, the reflectiveness of a substance. Note that $a$ is used in general functions as an array that is supplied as input. If that is the case it can be read at the top of the + algorithm. + \item $\rho$: The density of the atmosphere, a 3D array representing a grid cell on the latitude, longitude, atmospheric layer grid. + \item $\delta x$: How far apart the gridpoints are in the $x$ direction in degrees longitude. + \item $\delta y$: How far apart the gridpoints are in the $y$ direction in degrees latitude. + \item $\delta z$: How far apart the gridpoints are in the $z$ direction in $m$. + \item $heights$: How high an atmospheric layer is in $m$. + \item $\tau$: The optical depth for an atmospheric layer. + \item $\tau_0$: The optical depth at the planet surface. + \item $f_l$: The optical depth parameter. + \item $pressureProfile$: The average pressure taken over all atmospheric layers in a latitude, longitude gridcell. + \item $densityProfile$:The average density taken over all atmospheric layers in a latitude, longitude gridcell. + \item $temperatureProfile$: The average temperature taken over all atmospheric layers in a latitude, longitude gridcell. + \item $U$: Upward flux of radiation, 1D array representing an atmospheric layer. + \item $D$: Downward flux of radiation, 1D array representing an atmospheric layer. + \item $u$: The east to west air velocity in $ms^{-1}$. + \item $v$: The north to south air velocity in $ms^{-1}$. + \item $w$: The bottom to top air velocity in $ms^{-1}$. + \item $f$: The coriolis parameter. + \item $\Omega$: The rotation rate of the planet in $rads^{-1}$. + \item $p$: The pressure of a latitude, longitude, atmospheric layer gridcell. + \item $p_0$: The pressure of a latitude, longitude, atmospheric layer gridcell from the previous calculation round. + \item $\alpha_a$: The thermal diffusivity constant for air. + \item $\alpha_p$: The thermal diffusivity constant for the planet surface. +\end{itemize} \ No newline at end of file diff --git a/tex-docs/streams/Stream.aux b/tex-docs/streams/Stream.aux deleted file mode 100644 index f4cf3d7..0000000 --- a/tex-docs/streams/Stream.aux +++ /dev/null @@ -1,29 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\@setckpt{Streams/"Stream}{ -\setcounter{page}{2} -\setcounter{equation}{0} -\setcounter{enumi}{0} -\setcounter{enumii}{0} -\setcounter{enumiii}{0} -\setcounter{enumiv}{0} -\setcounter{footnote}{0} -\setcounter{mpfootnote}{0} -\setcounter{part}{0} -\setcounter{section}{0} -\setcounter{subsection}{0} -\setcounter{subsubsection}{0} -\setcounter{paragraph}{0} -\setcounter{subparagraph}{0} -\setcounter{figure}{0} -\setcounter{table}{0} -\setcounter{Item}{0} -\setcounter{Hfootnote}{0} -\setcounter{bookmark@seq@number}{1} -\setcounter{parentequation}{0} -\setcounter{AlgoLine}{0} -\setcounter{algocfline}{0} -\setcounter{algocfproc}{0} -\setcounter{algocf}{0} -\setcounter{section@level}{1} -} diff --git a/tex-docs/streams/Stream10.tex b/tex-docs/streams/Stream10.tex deleted file mode 100644 index 293f3c6..0000000 --- a/tex-docs/streams/Stream10.tex +++ /dev/null @@ -1,81 +0,0 @@ -\section{Putting Our Homemade Climate Model Through Its Paces} -Big stream this stream as we got some working code! Always great when stuff works. This stream, we tackled the radiation problem, added axial tilt to the planet, fixed vertical motion (but not -advection), added stratospheric heating and some other code clean up stuff. This means that the big rework is getting closer and closer. How exciting! -%TESTSSSS WE GOT WORKING CODE! HELLO WORLD! - -\subsection{Fixing Up the Code} -First thing to mention is that vertical advection is still broken. Why? Because the gradient in the $z$ direction is broken. This is due to finite differencing on an exponential function. The way -we calculate the differenc from one layer to the other is by differencing them (subtracting) which is always finite. Therefore we always get some inaccuracies. Usually that is fine, but with an -exponential function the differences, you guessed it, become exponentially wrong. As such, the function would eventually be so far off that the model would blow up. So we need to fix it. To -prevent a blow up, we have disabled the call to the gradient $z$ funciton in \autoref{alg:divergence layer}. This ensures that the horizontal bits still work, but the vertical stuff does not. -As always, we will try to fix this in a future stream. - -We also fixed up the radiation scheme, as shown in \autoref{alg:optical depth}. Basically we had the definition of $U[k + 1] = \text{something something} U[k + 1]$. This means that the definition -was relying on itself, which is obviously impossible and wrong. So we changed it to it's current form and it is fixed, hooray! - -Vertical motion has also been fixed, as shown in \autoref{alg:velocity}. Due to some error in the representation of the vertical motion it did not work. So we changed from that representation to -another. Now the vertical velocity is proportional to the rate of change of the pressure which does work like it should. - -\subsection{Tilting the Planet} -In order to model a planet that has seasons, like Earth, we need to tilt the planet. This has as effect that the sun is not always directly above the equator but is above a certain band around -the equator as the year moves on. This means that some hemispheres receive more/less sun based on what part of the year it is. Which corresponds to the various seasons we have on Earth. But in -order to do that, we have to change the \texttt{solar} function. The new version as shown in \autoref{alg:solar tilt} will replace \autoref{alg:solar}. Here $\alpha$ is the tilt in degrees. - -\begin{algorithm} - \SetKwInput{Input}{Input} - \SetKwInOut{Output}{Output} - \Input{insolation $ins$, latitude $lat$, longitude $lon$, time $t$, time in a day $d$} - \Output{Amount of energy $S$ that hits the planet surface at the given latitude, longitude and time combination.} - $sun\_lon \leftarrow -t \text{ mod } d$ \; - $sun\_lon \leftarrow sun\_lon \cdot \frac{360}{d}$ \; - $sun\_lat \leftarrow \alpha\cos(\frac{2t\pi}{year})$ \; - $S \leftarrow insolation\cos(\frac{\pi(lat - sun\_lat)}{180})$ \; - - \uIf{$S < 0$}{ - \Return{$0$} \; - } \uElse { - $lon\_diff \leftarrow lon - sun\_lon$ \; - $S \leftarrow S\cos(\frac{lon\_diff\pi}{180})$ \; - - \uIf{$S < 0$}{ - \uIf{$lat + sun\_lat > 90$ or $lat + sun\_lat < -90$}{ - \Return{$insolation\cos(\frac{\pi(lat + sun\_lat)}{180})\cos(\frac{lon\_diff\pi}{180})$} \; - } \uElse { - \Return{$0$} \; - } - } \uElse { - \Return{$S$} \; - } - } - \caption{Calculating the energy from the sun (or similar star) that reaches a part of the planet surface at a given latitude and time} - \label{alg:solar tilt} -\end{algorithm} - -What the code in \autoref{alg:solar tilt} does boils down to calculating the latitude and longitude of the sun and checking whether the planet receives any energy. If not return $0$ immediately. -If so we check if the difference between the sun's longitude and the planet's longitude and calculate how much energy would hit the planet given that the sun is not straight above the equator. -We do this by multiplying the energy it would receive from the sun if it were above the equator $S$ by the cosine of the difference in longitudes, which represents the tilt. Then we check again -if the planet is receiving energy, if not we check if it happens around the poles. We do this because due to the tilt it can be the case that at certain points in the year the pole is in constant -sunlight, i.e. the sun does not go down. This creates a sort of overshoot which needs to be accounted for. If it does this then we add the latitudes of the sun and the planet together and use -that to calculate the energy that would hit that spot. If it is not the case that we are around the poles and we do not receive energy, then we return $0$. If it happens to be that we do receive -energy (so no negative values) then we return $S$. - -\subsection{Adding In Some Ozone (Or Something Else That Approximates It)} -Adding in ozone in the stratosphere is hella complicated, so we leave that as an exercise to the reader as in true academic fashion. Just joking, if you want you can work on implementing ozone -however we opt not to because it is quite complicated. Instead we approximate it, which is decent enough for our purpose. We need to do it in \autoref{alg:optical depth} as we need to adjust the -$Q$. We add in a check to see if we are currently calculating the radiation in the stratosphere. If so we add some radiation extra to replicate the effect of ozone. As can be seen in -\autoref{alg:ozone}, where we only focus on the $Q$ part of \autoref{alg:optical depth}, we add in some extra radiation based on how high the current layer calculation is, which scales with the -height. - -\begin{algorithm} - \For{$level \in [0, nlevels]$}{ - $Q[level] \leftarrow - \frac{S_z(U - D, 0, 0, level)}{10^3 \cdot densityProfile[level]}$ \; - \uIf{$heights[level] > 20 \cdot 10^3$}{ - $Q[level] \leftarrow Q[level] + \texttt{solar}(5, lat, lon, t) \frac{24 \cdot 60 \cdot 60(\frac{heights[level] - 20 \cdot 10^3}{10^3})^2}{30^2}$ \; - } - } - \caption{Replicating the effect of ozone} - \label{alg:ozone} -\end{algorithm} - -It is at this point that we reached the state that CLAuDE is in a testable state. This means that we have the model working in such a way that we can do some simple experiments like altering how -long a day is, what would happen if the sun would send out more energy (which usually means that it is bigger) or what would happen if you tidally lock a planet (stop it rotating completely). \ No newline at end of file diff --git a/tex-docs/streams/Stream5.tex b/tex-docs/streams/Stream5.tex deleted file mode 100644 index 6d01ae0..0000000 --- a/tex-docs/streams/Stream5.tex +++ /dev/null @@ -1,144 +0,0 @@ -\section{Up up and away! Adding More Layers to the Atmosphere} -Up until now we have neglected any vertical movement. This hampers the model, as the rising of warm air that then flows to the poles, cools down and flows back to the tropics is not possible -as the warm air cannot rise. So let us change that, let's add some vertical motion and some more layers to the atmosphere. - -Remember \autoref{eq:atmos change}? We need this equation for every layer in the atmosphere. This also means that we have to adjust the main loop of the code, which is described in -\autoref{alg:temperature with density}. The $T_a$ needs to change, we need to either add a dimension (to indicate which layer of the atmosphere we are talking about) or we need to add different -matrices for each atmosphere layer. Let us define some useful variables in \autoref{alg:more layers}. We opt for adding a dimension as that costs less memory than defining new arrays -\footnote{This has to do with pointers, creating a new object always costs a bit more space than adding a dimension as we need a pointer to the object and what type of object it is whereas with -adding a dimension we do not need this additional information as it has already been defined}. So $T_a$, and all other matrices that have to do with the atmosphere (so not $T_p$ for instance) -are no longer indexed by $lat, lon$ but are indexed by $lat, lon, layer$. - -\begin{algorithm} - $nlevels \leftarrow 4$ \; - $heights \leftarrow \text{Array with } nlevels \text{ layers, each with a uniform thickness of } \frac{100 \cdot 10^3}{nlevels} m$ \; - \caption{Definition of variables that are used throughout the code} - \label{alg:more layers} -\end{algorithm} - - - -As you can see, we have used $\delta z$ however, we have not defined it yet. Let us do that in \autoref{alg:gradient z}. - -\begin{algorithm}[hbt] - \For{$k \in [0, nlevels - 1]$}{ - $\delta z[k] \leftarrow heights[k + 1] - heights[k]$ \; - } - $\delta z[nlevels - 1] \leftarrow \delta z [nlevels - 2]$ \; - \caption{Defining $\delta z$ for later use throughout the code} - \label{alg:gradient z} -\end{algorithm} - -Of course we also need to incorporate the new layers in the divergence operator (\autoref{alg:divergence}). The new changes can be found in \autoref{alg:divergence layer}. Here we use $w$, the -vertical wind velocity. We define $w$ in the same way as $u$ and $v$, it is all zeroes (in the beginning) and has the same dimensions as $u$ and $v$. - - - -With all those changes in the functions done, let us incorporate the changes into the model itself. We now need to account for the temperature change throughout the layers. Let us look at the -atmospheric temperature equation again (\autoref{eq:atmos change}). We need to account for one more thing, the absorbtion of energy from another layer. The new equation is shown in -\autoref{eq:atmos change layer}. Here $k$ is the layer of the atmosphere, $k = -1$ means that you use $T_p$ and $k = nlevels$ means that $T_{a_{nlevels}} = 0$ as that is space. Also, let us -rewrite the equation a bit such that the variables that are repeated are only written once and stuff that is divided out is removed, which is done in \autoref{eq:atmos change layer improved}. -Let us also clean up the equation for the change in the surface temperature (\autoref{eq:surface change}) in \autoref{eq:surface change improved}. - -\begin{subequations} - \begin{equation} - \Delta T_{a_k} = \frac{\delta t (\sigma \epsilon_{k - 1}T_{a_{k - 1}}^4 + \sigma \epsilon_{k + 1}T_{a_{k + 1}}^4 - 2\epsilon_k\sigma T_{a_k}^4)}{C_a} - \label{eq:atmos change layer} - \end{equation} - \begin{equation} - \Delta T_{a_k} = \frac{\delta t \sigma (\epsilon_{k - 1}T_{a_{k - 1}}^4 + \epsilon_{k + 1}T_{a_{k + 1}}^4 - 2\epsilon_kT_{a_k}^4)}{C_a} - \label{eq:atmos change layer improved} - \end{equation} - \begin{equation} - \Delta T_p = \frac{\delta t (S + \sigma(4\epsilon_pT_a^4 - 4T_p^4))}{4C_p} - \label{eq:surface change improved} - \end{equation} -\end{subequations} - -With the changes made to the equation, we need to make those changes in the code as well. We need to add the new dimension to all matrices except $T_p$ and $a$ as they are unaffected (with -regards to the storage of the values) by the addition of multiple atmospheric layers. Every other matrix is affected. The new code can be found in \autoref{alg:temperature layer}. - -\begin{algorithm}[hbt] - \SetAlgoLined - - \While{\texttt{TRUE}}{ - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlot]$}{ - \For{$layer \in [0, nlevels]$}{ - $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + \sigma(4\epsilon[0](T_a[lat, lon, 0])^4 - 4(T_p[lat, lon])^4))} - {4C_p[lat, lon]}$ \; - \uIf{$layer == 0$}{ - $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma((T_p[lat, lon])^4 - 2\epsilon[layer](T_a[lat, lon, layer])^4)} - {\rho[lat, lon, layer]C_a\delta z[layer]}$ \; - }\uElseIf{$layer == nlevels - 1$}{ - $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma(\epsilon[layer - 1](T_a[lat, lon, layer - 1])^4 - 2\epsilon[layer](T_a[lat, lon, layer])^4)} - {\rho[lat, lon, layer]C_a\delta z[layer]}$ \; - }\uElse{ - $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma(\epsilon[layer - 1](T_a[lat, lon, layer - 1])^4 + \epsilon[layer + 1]T_a[lat, lon, layer + 1] - - 2\epsilon[layer](T_a[lat, lon, layer])^4)}{\rho[lat, lon, layer]C_a\delta z[layer]}$ \; - } - $t \leftarrow t + \delta t$ \; - } - } - } - } - \caption{The main loop of the temperature calculations} - \label{alg:temperature layer} -\end{algorithm} - -We also need to initialise the $\epsilon$ value for each layer. We do that in \autoref{alg:epsilon}. - -\begin{algorithm} - $\epsilon[0] \leftarrow 0.75$ \; - \For{$i \in [1, nlevels]$}{ - $\epsilon[i] \leftarrow 0.5\epsilon[i - 1]$ - } - \caption{Intialisation of the insulation of each layer (also known as $\epsilon$)} - \label{alg:epsilon} -\end{algorithm} - -Now we need to add vertical winds, or in other words add the $w$ component of the velocity vectors. We do that by editing \autoref{alg:stream3}. We change it to \autoref{alg:velocity}. Here we -use gravity ($g$) instead of the coriolis force ($f$) and calculate the change in pressure. Therefore we need to store a copy of the pressure before we do any calculations. This needs to be a -copy due to aliasing \footnote{Aliasing is assigning a different name to a variable, while it remains the same variable. Take for instance that we declare a variable $x$ and set it to be $4$. -Then we say $y \leftarrow x$, which you might think is the same as saying they $y \leftarrow 4$ but behind the screen it is pointing to $x$. So if $x$ changes, then so does $y$.} - -\begin{algorithm} - $S_{xu} \leftarrow \texttt{gradient\_x}(u, lan, lon)$ \; - $S_{yu} \leftarrow \texttt{gradient\_y}(u, lan, lon)$ \; - $S_{xv} \leftarrow \texttt{gradient\_x}(v, lan, lon)$ \; - $S_{yv} \leftarrow \texttt{gradient\_y}(v, lan, lon)$ \; - $S_{px} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; - $S_{py} \leftarrow \texttt{gradient\_y}(p, lan, lon)$ \; - \While{\texttt{TRUE}}{ - \For{$lat \in [1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - \For{$layer \in [0, nlevels]$}{ - $u[lan, lon, layer] \leftarrow u[lat, lon, layer] + \delta t \frac{-u[lat, lon, layer]S_{xu} - v[lat, lon, layer]S_{yu} + f[lat]v[lat, lon, layer] - S_{px}}{\rho}$ \; - $v[lan, lon, layer] \leftarrow v[lat, lon, layer] + \delta t \frac{-u[lat, lon, layer]S_{xv} - v[lat, lon, layer]S_{yv} - f[lat]u[lat, lon, layer] - S_{py}}{\rho}$ \; - $w[lan, lon, layer] \leftarrow w[lat, lon, layer] - \frac{p[lat, lon, layer] - p_o[lat, lon, layer]}{\delta t\rho[lat, lon, layer]g}$ \; - } - } - } - - $p_o \leftarrow copy(p)$ \; - } - \caption{Calculating the flow of the atmosphere (wind)} - \label{alg:velocity} -\end{algorithm} - -Lastly, we need to add the correct indices to the advection algorithm \autoref{alg:advectionfix}. Let us add it, with \autoref{alg:advection layer} as a result. Here the ':' means all indices -of the 3 dimensional matrix. - -\begin{algorithm} - $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; - $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; - $boundary \leftarrow 7$ \; - \While{\texttt{TRUE}}{ - $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; - $T_a \leftarrow T_a - 0.5T_{add}[boundary:-boundary, :, :] \text{ //Only subtract } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + boundary, nlat - boundary]$. \; - $\rho[boundary: -boundary, :, :] \leftarrow \rho - 0.5(\delta t \nabla \rho) \text{ //Only change the density for indices in the interval } [-nlat + boundary, nlat - boundary]$ \; - $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; - } - \caption{The main loop for calculating the effects of advection} - \label{alg:advection layer} -\end{algorithm} \ No newline at end of file diff --git a/tex-docs/streams/Stream6.tex b/tex-docs/streams/Stream6.tex deleted file mode 100644 index 03cb526..0000000 --- a/tex-docs/streams/Stream6.tex +++ /dev/null @@ -1,25 +0,0 @@ -\section{Making a Dummy THICC Atmospheric Model*} -* The naming of this section is decided by the stream name, I did not come up with this \cite{twitch}. During this stream, a lot of plotting improvements have been made, which is not the scope of -this manual and hence has been left out. The plan was to add vertical momentum and advection, though things did not go according to plan\dots - -\subsection{Discovering That Things Are Broken} -While trying to add vertical momentum, it appears that some parts of the model are broken in their current state. The horizontal advection is one of the things that is broken. If you recall, -we needed to use the Laplacian operator in the advection equations (as shown in \autoref{eq:diffusion}, diffusion is considered a part of advection since diffusion transports energy and matter -which is what advection does as well). The Laplacian operator (as shown in \autoref{alg:laplacian layer}) did not work. This is because there was a misplaced bracket causing weird numerical errors. -This has been fixed in the code (but was never present in the manual, yay for me) and can be safely enabled, though for this stream we disabled the Laplacian operator as it has a small effect on -the total advection (and because it was at this time broken). %The Laplacian has been re-enabled in Stream 8 (\autoref{sec:stream8}). - -Another thing that we found out was broken is the vertical momentum. We tried to add it, ran into problems and just set it to 0 to fix the other problems that occured. One of those problems was -a wrong initialisation of the density. We basically told the model that the density is the same on every layer of the atmosphere, which is obviously not true. Hence we need to adjust that. The -new initialisation is described in \autoref{alg:density}. Note that the $\rho[:,: i]$ notation means that for every index in the first and second dimension, only change the value for the index $i$ -in the third dimension. As soon as the vertical momentum has been fixed it will be fixed in the correct spot. If a lot of the code changes then it will probably be in another section and I will -insert a reference to that section. - -\begin{algorithm} - $\rho[:, :, 0] \leftarrow 1.3$ \; - \For{$i \in [1, nlevels-1]$}{ - $\rho[:, :, i] \leftarrow 0.1\rho[:, :, i - 1]$ - } - \caption{Initialisation of the air density $\rho$} - \label{alg:density} -\end{algorithm} \ No newline at end of file diff --git a/tex-docs/streams/Stream7.tex b/tex-docs/streams/Stream7.tex deleted file mode 100644 index 95aa9e6..0000000 --- a/tex-docs/streams/Stream7.tex +++ /dev/null @@ -1,47 +0,0 @@ -\section{Using Python to Model the Earth's Atmosphere} -This stream Simon was not feeling that well and it felt like his brain was not working, so be wary of errors! You have been warned. also the resolutin (size of an individual cell on the latitude -longitude grid) has been decreased to 5 degrees per cell instead of 3 degrees. - -\subsection{Interpolating the Air Density} -In order to interpolate (see \autoref{sec:interpolation}) the air density, we need data. However currently we are just guessing the air density at higher levels, instead of taking real values. -So let us change that. For that we are going to use the U.S. Standard Atmosphere, an industry standard measure of the atmosphere on Earth \cite{usatmosp}. This data was provided in a text -(\texttt{TXT}) file which of course needs to be read in order for the data to be used in the model. Here we only care for the density and the temperature at a specific height. So the text file -only contains those two columns of the data (and the height in km of course as that is the index of the row, the property that uniquely identifies a row). - -With that in mind, let's get coding and importing the data. We do this in \autoref{alg:usatmosp}. As one can see we do not specify how to open the file or how to split the read line, as this -is language specific and not interesting to describe in detail. I refer you to the internet to search for how to open a text file in the language you are working in. Keep in mind in which -magnitude you are working and in which magnitude the data is. If you work with $km$ for height and the data is in $m$, you need to account for that somewhere by either transforming the imported -data or work in the other magnitude. - -\begin{algorithm} - $data \leftarrow \text{open text file containing the us standard atmosphere data}$ \; - \ForEach{$line \in data$}{ - Split $line$ into three components, $sh, st$ and $sd$, representing the height, temperature and density respectively \; - $standardHeight.add(sh)$ \; - $standardTemperature.add(st)$ \; - $standardDensity.add(sd)$ \; - } - - $densityProfile \leftarrow \texttt{interpolate}(heights, standardHeight, standardDensity)$ \; - $temperatureProfile \leftarrow \texttt{interpolate}(heights, standardHeight, standardTemperature)$ \; - - \For{$alt \in [0, nlevels]$}{ - $\rho[:, :, alt] \leftarrow densityProfile[alt]$ \; - $T_a[:, :, alt] \leftarrow temperatureProfile[alt]$ \; - } - \caption{Loading in the U.S. Standard Atmosphere} - \label{alg:usatmosp} -\end{algorithm} - -Note that the function \texttt{interpolate} takes three arguments, the first one being the data points that we want to have values for, the second one is the data points that we know and the -third one is the values for the data points that we know. This function may or may not exist in your programming language of choice, which might mean that you have to write it yourself. -The formula that we use for interpolation can be found in \autoref{eq:interpolation}, though you still need to figure out what value you need for $\lambda$ (see \autoref{sec:interpolation}). -This is left as an exercise for the reader. - -\subsection{Fixing Vertical Motion} -Another attempt was made at fixing the vertical motion. The changes are incorporated in \autoref{alg:advection layer}. Do keep in mind that the low air density in the upper layers messes a lot -with the vertical motion. In other words, it kinda works but not really. Another idea to help fix it, is to introduce a variable called $top$ which indicates the highest point that the -atmosphere may have. This value is initialised as $8 \cdot 10^3$ in meters (so 8 $km$). We then change the definition of $heights$ to: An array of uniform thickness of $\frac{top}{nlevels} m$. -We also added the $\delta z$ to \autoref{alg:temperature layer} as that was something that was still missing. - -The current theory why the vertical velocity is not right is that the vertical thermodynamics may be wrong. This will be investigated further and we will report on this in future sections. \ No newline at end of file diff --git a/tex-docs/streams/Stream8.tex b/tex-docs/streams/Stream8.tex deleted file mode 100644 index 34b8549..0000000 --- a/tex-docs/streams/Stream8.tex +++ /dev/null @@ -1,117 +0,0 @@ -\section{Getting Radiation Right in our Climate Model! 3D Motion Here We Come} \label{sec:stream8} -The time has come to finally fix 3D motion. For this to work, we need to use a radiation scheme, which Simon \sout{shamelessly stole} got inspired by the Isca project \cite{isca}. So he followed -the references and found a paper which he is going to use in our model \cite{greyRad}. Great, so let's get into it shall we. - -\subsection{Grey Radiation Scheme} -A radiation scheme is a model for how energy is redistributed using light in a system. Such a model is a Grey radiation scheme if you split it into two parts, short and long wavelength radiation. -So you have two redistribution systems, one for short wavelength light and one for long wavelength light. Another assumption we make when using the Grey radiation scheme, is that the atmosphere -is transparent to short wavelength radiation, meaning it lets through light with short wavelengths. Additionally we use a two stream approximation, which means that we have a stream of radiation -going up, and another stream of radiation going down. Note that these two streams are both long wavelength radiation, because we said earlier we assume the atmosphere completely ignores short -wavelength radiation. - -The two long wavelength radiation streams are described in \autoref{eq:upward radiation} and \autoref{eq:downward radiation} \cite{greyRad}. In those equations, the symbols are: - -\begin{itemize} - \item $U$: Upward flux. - \item $D$: Downward flux. - \item $B$: The Stefan-Boltzmann equation (see \autoref{eq:stefan-boltzmann}). - \item $\tau$: Optical depth. -\end{itemize} - -\begin{subequations} - \begin{equation} - \frac{dU}{d\tau} = U - B - \label{eq:upward radiation} - \end{equation} - \begin{equation} - \frac{dD}{d\tau} = B - D - \label{eq:downward radiation} - \end{equation} -\end{subequations} - -With \autoref{eq:upward radiation} and \autoref{eq:downward radiation} written down, we can discuss how they work. These equations need a boundary condition to work, a starting point if you like. -For those equations the boundary conditions are that $U$ is at the surface equal to $B$ and that $D$ at the top of the atmosphere is equal to $0$. Meaning that in the beginning the top of the -atmosphere has no downward flux as there is no heat there, and that the bottom of the atmosphere has a lot of upward flux as most if not all of the heat is located there. Then after the spin up -time this should stabilise. We are interested in the change of the fluxes, so $dU$ and $dD$, to get those we need to multiply the right hand side by $d\tau$. Then we have the flow of radiation -that we need. However we cannot solely use these two equations to calculate the heat of a given layer. For that we need a few more components. These are described in \autoref{eq:heat layer}. -Here $Q_R$ is the amount of heat in a layer, $c_p$ is the specific heat capacity of dry air (our atmosphere), $\rho$ is the density of the air in that layer and $\delta z$ is the change in height. -$\delta U - D$ are the change in net radiation, meaning the amount of radiation that is left over after you transferred the upward and downward flux. See it as incoming and outgoing energy for a -given layer, the net change (either cooling down or heating up) is what remains after you have subtracted the incoming energy from the outgoing energy. While this explanation is not entirely true -(as flux is not entirely equivalent to energy), it explains the concept the best. - -\begin{equation} - Q_R = \frac{1}{c_p\rho}\frac{\delta(U - D)}{\delta z} - \label{eq:heat layer} -\end{equation} - -Now only one question remains: what is optical depth? Optical depth is the amount of work a photon has had to do to get to a certain point. This might sound really vague, but bear with me. -Optical depth describes how much stuff a certain photon has had to go through to get to a point. As you'd expect this is $0$ at the top of the atmosphere as space is a big vacuum so no stuff to -move through, so no work. Then the further the photon moves into the atmosphere, the more work the photon has had to do to get there. This is because it now needs to move through gases, like air, -water vapour and other gases. Hence the closer the photon gets to the surface of the planet, the larger the optical depth is because the photon has had to work more to get there. This phenomenon -is described in \autoref{eq:optical depth}. The symbols in the equation mean: - -\begin{itemize} - \item $\tau_0$: Optical depth at the surface. - \item $p$: Atmospheric pressure ($Pa$). - \item $p_s$: Atmospheric pressure at the surface ($Pa$). - \item $f_l$: The linear optical depth parameter, with a value of 0.1. -\end{itemize} - -\begin{equation} - \tau = \tau_0[f_l(\frac{p}{p_s}) + (1 - f_l)(\frac{p}{p_s})^4] - \label{eq:optical depth} -\end{equation} - -As one can see, \autoref{eq:optical depth} has two parts, a linear part and a quatric part (to the power $4$). The quatric term approximates the structure of water vapour in the atmosphere, which -roughly scales with $\frac{1}{4}$ with respect to the height. The linear term is present to fix numerical behaviour because this is an approximation which will not be completely correct (that's -why it is an approximation) so we add this term to make it roughly right. The same thing holds for $f_l$ which can be manually tuned to fix weird numerical behaviour. - - -\subsection{Getting the equations to code} -With these equations in our mind, let's get coding. First we add the pressure profile, the pressure of all atmospheric layers at a lat lon point. We need this to accurately represent the optical -depth per atmospheric layer. Then we need to use the pressure profile with regards to \autoref{eq:optical depth}. The resulting code can be found in \autoref{alg:optical depth}. This algorithm -replaces the temperature calculations we have done in \autoref{alg:temperature layer}, as this is basically a better version of the calculations done in that algorithm. $f_l$ has a value of $0.1$ -and is located near all the other constants in the code, henceforth we will refer to this section in the code as the control panel, since most if not all of the constants can be tweaked here. -$\tau_0$ is a function that gives the surface optical depth for a given latitude. The corresponding equation can be found in \autoref{eq:optical depth surface} \cite{simon}. Translating this -into code is left as an exercise to the reader. $U[0]$ is the boundary condition discussed before (being the same as \autoref{eq:stefan-boltzmann}), just as $D[nlevels]$ is the boundary condition. -$S_z$ represents the call to \autoref{alg:gradient z layer}. \texttt{solar} represents the call to \autoref{alg:solar}. - -\begin{algorithm} - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlon]$}{ - $pressureProfile \leftarrow p[i,j,:]$ \; - $\tau = \tau_0(lat)f_l\frac{pressureProfile}{pressureProfile[0]} + (1 - f_l)(\frac{pressureProfile}{pressureProfile[0]})^4)$ \; - $U[0] \leftarrow \sigma T_p[lat, lon]^4$ \; - - \For{$level \in [1, nlevels]$}{ - $U[level] \leftarrow U[level - 1] - \frac{(\tau[level] - \tau[level - 1])(\sigma \cdot (mean(T_a[:, :, level]))^4)}{1 + (\tau[level - 1] - \tau[level])}$ \; - } - - $D[nlevels - 1] \leftarrow 0$ \; - - \For{$level \in [nlevels - 1, 0]$}{ - $D[level] \leftarrow D[level + 1] - \frac{(\tau[level + 1] - \tau[level])(\sigma \cdot (mean(T_a[:, :, level]))^4)}{1 + (\tau[level] - \tau[level + 1])}$ \; - } - - \For{$level \in [0, nlevels]$}{ - $Q[level] \leftarrow - \frac{S_z(U - D, 0, 0, level)}{10^3 \cdot densityProfile[level]}$ \; - } - - $T_a[lat, lon, :] \leftarrow T_a[lat, lon, :] + Q$ \; - - $S \leftarrow \texttt{solar}(I, lat, lon, t)$ \; - - $T_p[lat, lon] \leftarrow T_p[lat, lon] \frac{\delta t((1 - a[lat, lon]) S + S_z(D, 0, 0, 0) - \sigma T_p[lat, lon]^4)}{C_p[lat ,lon]}$ \; - } - } - \caption{Adding in radiation} - \label{alg:optical depth} -\end{algorithm} - -\begin{equation} - \tau_0 = 3.75 + \cos(lat \frac{\pi}{90})\frac{4.5}{2} - \label{eq:optical depth surface} -\end{equation} - -%Note that in this form, it did not work on stream yet. This may be due to a coding error or to a missing equation, constant or something similar. If it turns out to be a simple fix, then it will -%be fixed in this section. If a lot of other things change in order for the fix to work, then it will probably be a seperate section with a reference to that section here. \ No newline at end of file diff --git a/tex-docs/streams/Stream9.tex b/tex-docs/streams/Stream9.tex deleted file mode 100644 index 921fb6c..0000000 --- a/tex-docs/streams/Stream9.tex +++ /dev/null @@ -1,79 +0,0 @@ -\section{Starting to Deal With the Poles} -It is time to deal with the pole situation. The north and south poles that is, not the lovely people over in Poland. We run into problems because the latitude longitude grid cells become to small -near the poles. Therefore, the magnitudes no longer fit into one cell and overflow into other cells which makes everything kind of funky. So we need to fix that, and we do that by a planar -approximation. - -\subsection{The Theory Behind the Planar Approximation} -As said earlier, the grid cells on the latitude longitude grid get closer together the closer you get to the poles which poses problems. To fix this, we will be using a planar approximation of -the poles. What this means is that we will map the 3D grid near the poles onto a 2D plane parallel to the poles, as if we put a giant flat plane in the exact center of the poles and draw lines -from the grid directly upwards to the plane. For a visual representation, please consult the stream with timestamp 1:38:25 \cite{polarPlane}, which includes some explanation. In the streamm we -use $r$ to indicate the radius of the planet (which we assume is a sphere), $\theta$ for the longitude and $\lambda$ for the latitude. So we have spherical coordinates, which we need to transform -into $x$ and $y$ coordinates on the plane. We also need the distance between the center point (the point where the plane touches the planet which is the center of the pole) and the projected -point on the plane from the grid (the location on the plane where a line from the gird upwards to the plane hits it). This distance is denoted by $a$ (Simon chose this one, not me). We then get -the following equations as shown in \autoref{eq:polar distance}, \autoref{eq:polar x} and \autoref{polar y}. - -\begin{subequations} - \begin{equation} - a = r \cos(\theta) - \label{eq:polar distance} - \end{equation} - \begin{equation} - x = a \sin(\lambda) - \label{eq:polar x} - \end{equation} - \begin{equation} - y = a \cos(\lambda) - \label{eq:polar y} - \end{equation} -\end{subequations} - -But what if we know $x$ and $y$ and want to know $\theta$ and $\lambda$? Pythagoras' Theorem then comes into play \cite{pythagoras}. We know that (due to Pythagoras) \autoref{eq:pythagoras} must -always be true. Then if we substitue $a$ by $\sqrt{x^2 + y^2}$ in \autoref{eq:polar distance} we get \autoref{eq:polar theta1}. Then we transform that equation such that we only have $\theta$ on -one side and the rest on the other side (since we want to know $\theta$) and we get \autoref{eq:polar theta3}. -\begin{equation} - x^2 + y^2 = a^2 - \label{eq:pythagoras} -\end{equation} - -\begin{subequations} - \begin{equation} - \sqrt{x^2 + y^2} = r\cos(\theta) - \label{eq:polar theta1} - \end{equation} - \begin{equation} - \frac{\sqrt{x^2 + y^2}}{r} = \cos(\theta) - \label{eq:polar theta2} - \end{equation} - \begin{equation} - \cos^{-1}(\frac{\sqrt{x^2 + y^2}}{r}) = \theta - \label{eq:polar theta3} - \end{equation} -\end{subequations} - -For $\lambda$ we need another trigonometric function which is the tangent ($\tan$). The tangent is defined in \autoref{eq:tan}. If we then take a look at \autoref{eq:polar x} and -\autoref{eq:polar y}, we see that $\lambda$ is present in both equations. So we need to use both to get $\lambda$ \footnote{Yes you could only use one but since we both know $x$ and $y$ it is a -bit easier to use both than to only use one as you need to know $\theta$ at that point as well which may or may not be the case.}. So let's combine \autoref{eq:polar x} and \autoref{eq:polar y} -in \autoref{eq:polar lambda1}, transform it such that we end up with only $\lambda$ on one side and the rest on the other side and we end up with \autoref{eq:polar lambda3}. - -\begin{equation} - \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} - \label{eq:tan} -\end{equation} - -\begin{subequations} - \begin{equation} - \frac{x}{y} = \frac{a\sin(\lambda)}{a\cos(\lambda)} = \frac{\sin(\lambda)}{\cos(\lambda)} - \label{eq:polar lambda1} - \end{equation} - \begin{equation} - \frac{x}{y} = \tan(\lambda) - \label{eq:polar lambda2} - \end{equation} - \begin{equation} - \lambda = \tan^{-1}(\frac{x}{y}) - \label{eq:polar lambda3} - \end{equation} -\end{subequations} - -With this math we can fix a lot of stuff in the model. With this we can resample (mapping from sphere to plane) the pressure, density, temperarature and advection to the plane and ensure that -there are no more overflows and funky business. The implementation (code) for this will be done in a follow up stream, so stay tuned! \ No newline at end of file diff --git a/tex-docs/topics/advection.tex b/tex-docs/topics/advection.tex index 2e6b07a..8ec0b61 100644 --- a/tex-docs/topics/advection.tex +++ b/tex-docs/topics/advection.tex @@ -111,4 +111,28 @@ boundary. } \caption{The main loop for calculating the effects of advection} \label{alg:advectionfix} -\end{algorithm} \ No newline at end of file +\end{algorithm} + +\subsection{Layers, layers and layers} +With the atmospheric layers, and all matrices that have an extra dimension to account for it, we need to add the correct indices to the advection algorithm \autoref{alg:advectionfix}. Let us +add it, with \autoref{alg:advection layer} as a result. Here the ':' means all indices of the 3 dimensional matrix. + +\begin{algorithm} + $\alpha_a \leftarrow 2 \cdot 10^{-5}$ \; + $\alpha_p \leftarrow 1.5 \cdot 10^{-6}$ \; + $boundary \leftarrow 7$ \; + \While{\texttt{TRUE}}{ + $T_{add} \leftarrow T_a + \delta t \alpha_a \nabla^2(T_a) + \nabla(T_a)$ \; + $T_a \leftarrow T_a - 0.5T_{add}[boundary:-boundary, :, :] \text{ //Only subtract } T_{add} \text{ to } T_a \text{ for indices in the interval } [-nlat + boundary, nlat - boundary]$. \; + $\rho[boundary: -boundary, :, :] \leftarrow \rho - 0.5(\delta t \nabla \rho) \text{ //Only change the density for indices in the interval } [-nlat + boundary, nlat - boundary]$ \; + $T_p \leftarrow T_p + \delta t \alpha_p \nabla^2(T_p)$ \; + } + \caption{The main loop for calculating the effects of advection} + \label{alg:advection layer} +\end{algorithm} + +First thing to mention is that vertical advection is still broken. Why? Because the gradient in the $z$ direction is broken. This is due to finite differencing on an exponential function. The way +we calculate the difference from one layer to the other is by differencing them (subtracting) which is always finite. Therefore we always get some inaccuracies. Usually that is fine, but with an +exponential function the differences, you guessed it, become exponentially wrong. As such, the function would eventually be so far off that the model would blow up. So we need to fix it. To +prevent a blow up, we have disabled the call to the gradient $z$ function in \autoref{alg:divergence}. This ensures that the horizontal bits still work, but the vertical stuff does not. +As always, we will try to fix this in a future stream. \ No newline at end of file diff --git a/tex-docs/topics/control_panel.tex b/tex-docs/topics/control_panel.tex index 1e4ebd9..d03cfe1 100644 --- a/tex-docs/topics/control_panel.tex +++ b/tex-docs/topics/control_panel.tex @@ -43,7 +43,7 @@ mass units ($u$)\cite{mole}. This is not a physical constant perse, but more lik way more intuitive and are assumed to be known. \subsubsection{The Stefan-Boltzmann Constant} -The Stefan-Boltzmann constant, $\sigma = 5.670373 \cdot 10^-8 \ (Wm^{-2}K^{-4})$ \cite{stefan-boltzmann} is used in the Stefan-Boltzmann law (more on that in %insert reference here). +The Stefan-Boltzmann constant, $\sigma = 5.670373 \cdot 10^-8 \ (Wm^{-2}K^{-4})$ \cite{stefan-boltzmann} is used in the Stefan-Boltzmann law (more on that in \autoref{sec:first thermolaw}). \subsection{Planet Specific Variables} The following set of variables vary per planet, that's why we call them variables since they vary. Makes sense right? We add them here as we will use them throughout the manual. The advantage @@ -80,7 +80,7 @@ all the relevant variables that are unique to a planet, or well not necessarily $top \leftarrow 50*10^3$ \Comment*[l]{How high the top of the atmosphere is with respect to the planet surface in meters ($m$)} $ins \leftarrow 1370$ \Comment*[l]{Amount of energy from the star that reaches the planet per unit area ($Jm^{-2}$)} $\epsilon \leftarrow 0.75$ \Comment*[l]{Absorbtivity of the atmosphere, fraction of how much of the total energy is absorbed (unitless)} - %$R \leftarrow 6.4*10^6$ \Comment*[l]{The radius of the planet in meters ($m$)} + $r \leftarrow 6.4*10^6$ \Comment*[l]{The radius of the planet in meters ($m$)} \end{algorithm} \subsubsection{Model Specific Parameters} @@ -101,4 +101,21 @@ definitions can be found in \autoref{alg:model constants}. What the $adv$ boolea $t_s \leftarrow 5*day$ \Comment*[l]{How long we let the planet spin up in seconds ($s$)} $adv \leftarrow \texttt{FALSE}$ \Comment*[l]{Whether we want to enable advection or not} $adv\_boun \leftarrow 8$ \Comment*[l]{How many cells away from the poles where we want to stop calculating the effects of advection} + $C_a \leftarrow 287$ \Comment*[l]{Heat capacity of the atmosphere in $JKg^{-1}K^{-1}$} + $C_p \leftarrow 1 \cdot 10^6$ \Comment*[l]{Heat capacity of the planet in $JKg^{-1}K^{-1}$} + $\delta y \leftarrow \frac{2\pi r}{nlat}$ \Comment*[l]{How far apart the gridpoints in the y direction are (degrees latitude)} + + $count \leftarrow 0$ \; + \For{$j \in [0, top]$}{ + $heights[j] \leftarrow count$ \Comment*[l]{The height of a layer} + $count \leftarrow count + \frac{top}{nlevels}$ \; + } + + \For{$i \in [0, nlat]$}{ + $\delta x[i] \leftarrow \delta y\cos(lat[i]\frac{\pi}{180})$ \Comment*[l]{How far apart the gridpoints in the x direction are (degrees longitude)} + } + + \For{$k \in [0, nlevels - 1]$}{ + $\delta z[k] \leftarrow heights[k + 1] - heights$ \Comment*[l]{How far apart the gridpoints in the z direction are ($m$)} + } \end{algorithm} \ No newline at end of file diff --git a/tex-docs/topics/master.tex b/tex-docs/topics/master.tex index 0387a3a..dd129f8 100644 --- a/tex-docs/topics/master.tex +++ b/tex-docs/topics/master.tex @@ -27,8 +27,7 @@ calculations in \autoref{alg:temperature with density} we would calculate the ve Now to dynamically enable/disable the simulation of flow and advection we need to add the spin-up calculations to the main loop. So in \autoref{alg:stream4v1}, before \autoref{alg:temperature with density} we add \autoref{alg:spinup}. What it does is it changes the timestep when spinnning up and disables flow simulation, and when a week has passed it reduces -the timestep and enables flow simulation. At this point in time, the advection is not dynamically enabled/disabled but it is done by the programmer. Currently it will break the model, so I -recommend leaving it on \texttt{FALSE} until it is fixed in \autoref{sec:advectionfix}. +the timestep and enables flow simulation. At this point in time, the advection is not dynamically enabled/disabled but it is done by the programmer. \begin{algorithm} \eIf{$t < 7day$}{ @@ -40,4 +39,57 @@ recommend leaving it on \texttt{FALSE} until it is fixed in \autoref{sec:advecti } \caption{The spin-up block dynamically enabling or disabling flow simulation} \label{alg:spinup} -\end{algorithm} \ No newline at end of file +\end{algorithm} + +\subsection{Non-uniform air density} +While air density on the surface is in general consistent, this does not hold if you move up through the atmosphere. The planet will pull air down due to gravity, which means that more air is at +the planet surface than at the top of the atmosphere. Hence the air density changes throughout the atmosphere and we need to account for that. This is done in \autoref{alg:density}. Because this +is used in radiation, velocity and advection, we initialise this in the master file. Though one could argue it could be part of the control panel, we opt not to include any code other than +variable declarations in the control panel for greater clarity. This also means that we give the user the option to have only one layer (by skipping implementing this algorithm). Note that the +$\rho[:,: i]$ notation means that for every index in the first and second dimension, only change the value for the index $i$ in the third dimension. + +\begin{algorithm} + $\rho[:, :, 0] \leftarrow 1.3$ \; + \For{$i \in [1, nlevels-1]$}{ + $\rho[:, :, i] \leftarrow 0.1\rho[:, :, i - 1]$ + } + \caption{Initialisation of the air density $\rho$} + \label{alg:density} +\end{algorithm} + +\subsection{Interpolating the Air Density} +In order to interpolate (see \autoref{sec:interpolation}) the air density, to have a better estimation at each grid cell, we need data. However currently we are just guessing the air density at +higher levels, instead of taking real values. So let us change that. For that we are going to use the U.S. Standard Atmosphere, an industry standard measure of the atmosphere on Earth +\cite{usatmosp}. This data was provided in a text (\texttt{TXT}) file which of course needs to be read in order for the data to be used in the model. Here we only care for the density and the +temperature at a specific height. So the text file only contains those two columns of the data (and the height in km of course as that is the index of the row, the property that uniquely +identifies a row). + +With that in mind, let's get coding and importing the data. We do this in \autoref{alg:usatmosp}. As one can see we do not specify how to open the file or how to split the read line, as this +is language specific and not interesting to describe in detail. I refer you to the internet to search for how to open a text file in the language you are working in. Keep in mind in which +magnitude you are working and in which magnitude the data is. If you work with $km$ for height and the data is in $m$, you need to account for that somewhere by either transforming the imported +data or work in the other magnitude. + +\begin{algorithm} + $data \leftarrow \text{open text file containing the us standard atmosphere data}$ \; + \ForEach{$line \in data$}{ + Split $line$ into three components, $sh, st$ and $sd$, representing the height, temperature and density respectively \; + $standardHeight.add(sh)$ \; + $standardTemperature.add(st)$ \; + $standardDensity.add(sd)$ \; + } + + $densityProfile \leftarrow \texttt{interpolate}(heights, standardHeight, standardDensity)$ \; + $temperatureProfile \leftarrow \texttt{interpolate}(heights, standardHeight, standardTemperature)$ \; + + \For{$alt \in [0, nlevels]$}{ + $\rho[:, :, alt] \leftarrow densityProfile[alt]$ \; + $T_a[:, :, alt] \leftarrow temperatureProfile[alt]$ \; + } + \caption{Loading in the U.S. Standard Atmosphere} + \label{alg:usatmosp} +\end{algorithm} + +Note that the function \texttt{interpolate} takes three arguments, the first one being the data points that we want to have values for, the second one is the data points that we know and the +third one is the values for the data points that we know. This function may or may not exist in your programming language of choice, which might mean that you have to write it yourself. +The formula that we use for interpolation can be found in \autoref{eq:interpolation}, though you still need to figure out what value you need for $\lambda$ (see \autoref{sec:interpolation}). +This is left as an exercise for the reader. \ No newline at end of file diff --git a/tex-docs/topics/radiation.tex b/tex-docs/topics/radiation.tex index d4aaa59..b689fbb 100644 --- a/tex-docs/topics/radiation.tex +++ b/tex-docs/topics/radiation.tex @@ -1,8 +1,8 @@ -\section{Radiation} +\section{Radiation} \label{sec:rad} Radiation is energy waves, some waves are visible like light, others are invisible like radio signals. As is the basis for physics, energy cannot be created nor destroyed, only changed from one form to another. -\subsection{The First Law of Thermodynamics and the Stefan-Boltzmann Equation} +\subsection{The First Law of Thermodynamics and the Stefan-Boltzmann Equation} \label{sec:first thermolaw} If energy goes into an object it must equal the outflowing energy plus the change of internal energy. Which is exactly what happens with the atmosphere. Radiation from the sun comes in, and radiation from the atmosphere goes out. And along the way we heat the atmosphere and the planet which causes less radiation to be emitted than received. At least, that is the idea for Earth which may not apply to all planets. Let one thing be clear, more radiation cannot be emitted than is inserted, unless the planet and atmosphere are cooling. Anyway, we assume that the planet is a black @@ -214,12 +214,12 @@ to an array. We do this to allow adding in oceans or other terrain in the future \begin{algorithm}[hbt] $a \leftarrow 0.2$ \; - $C_p \leftarrow 10^7$ \; - \caption{Defining the oceans} + $C_p \leftarrow 10^6$ \; + \caption{Defining albedo} \label{alg:albedo} \end{algorithm} -Now that we have that defined, we need to adjust the main loop of the program (\autoref{alg:stream1v2}). For clarity, all the defined constants have been left out. We need to add albedo into the +Now that we have that defined, we need to adjust the main loop of the program (\autoref{alg:stream1v2}). We need to add albedo into the equation and change $C_p$ from a constant to an array. The algorithm after these changes can be found in \autoref{alg:stream2v3}. We multiply by $1 - a$ since albedo represents how much energy is reflected instead of absorbed, where we need the amount that is absorbed which is exactly equal to $1$ minus the amount that is reflected. @@ -240,6 +240,9 @@ reflected instead of absorbed, where we need the amount that is absorbed which i \end{algorithm} \subsection{Temperature with Varying Density} +The air density is not at all points exactly the same. This may be due to the winds blowing, or due to height changes in the terrain. We need to account for that, which is done in +\autoref{alg:temperature with density}. + \begin{algorithm}[hbt] \SetAlgoLined \SetKwInput{Input}{Input} @@ -272,4 +275,320 @@ being picked \cite{uniformdist}. } \caption{Varying the albedo of the planet} \label{alg:albedo variance} -\end{algorithm} \ No newline at end of file +\end{algorithm} + +\subsection{Adding Layers} +Remember \autoref{eq:atmos change}? We need this equation for every layer in the atmosphere. This also means that we have to adjust the main calculation of the code, which is described in +\autoref{alg:temperature with density}. The $T_a$ needs to change, we need to either add a dimension (to indicate which layer of the atmosphere we are talking about) or we need to add different +matrices for each atmosphere layer. We opt for adding a dimension as that costs less memory than defining new arrays +\footnote{This has to do with pointers, creating a new object always costs a bit more space than adding a dimension as we need a pointer to the object and what type of object it is whereas with +adding a dimension we do not need this additional information as it has already been defined}. So $T_a$, and all other matrices that have to do with the atmosphere (so not $T_p$ for instance) +are no longer indexed by $lat, lon$ but are indexed by $lat, lon, layer$. We need to account for one more thing, the absorbtion of energy from another layer. The new equation is shown in +\autoref{eq:atmos change layer}. Here $k$ is the layer of the atmosphere, $k = -1$ means that you use $T_p$ and $k = nlevels$ means that $T_{a_{nlevels}} = 0$ as that is space. Also, let us +rewrite the equation a bit such that the variables that are repeated are only written once and stuff that is divided out is removed, which is done in \autoref{eq:atmos change layer improved}. +Let us also clean up the equation for the change in the surface temperature (\autoref{eq:surface change}) in \autoref{eq:surface change improved}. + +\begin{subequations} + \begin{equation} + \Delta T_{a_k} = \frac{\delta t (\sigma \epsilon_{k - 1}T_{a_{k - 1}}^4 + \sigma \epsilon_{k + 1}T_{a_{k + 1}}^4 - 2\epsilon_k\sigma T_{a_k}^4)}{C_a} + \label{eq:atmos change layer} + \end{equation} + \begin{equation} + \Delta T_{a_k} = \frac{\delta t \sigma (\epsilon_{k - 1}T_{a_{k - 1}}^4 + \epsilon_{k + 1}T_{a_{k + 1}}^4 - 2\epsilon_kT_{a_k}^4)}{C_a} + \label{eq:atmos change layer improved} + \end{equation} + \begin{equation} + \Delta T_p = \frac{\delta t (S + \sigma(4\epsilon_pT_a^4 - 4T_p^4))}{4C_p} + \label{eq:surface change improved} + \end{equation} +\end{subequations} + +With the changes made to the equation, we need to make those changes in the code as well. We need to add the new dimension to all matrices except $T_p$ and $a$ as they are unaffected (with +regards to the storage of the values) by the addition of multiple atmospheric layers. Every other matrix is affected. The new code can be found in \autoref{alg:temperature layer}. $\delta z$ + +\begin{algorithm}[hbt] + \SetAlgoLined + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlot]$}{ + \For{$layer \in [0, nlevels]$}{ + $T_p[lat, lon] \leftarrow T_p[lat, lon] + \frac{\delta t ((1 - a[lat, lon])S + \sigma(4\epsilon[0](T_a[lat, lon, 0])^4 - 4(T_p[lat, lon])^4))} + {4C_p[lat, lon]}$ \; + \uIf{$layer == 0$}{ + $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma((T_p[lat, lon])^4 - 2\epsilon[layer](T_a[lat, lon, layer])^4)} + {\rho[lat, lon, layer]C_a\delta z[layer]}$ \; + }\uElseIf{$layer == nlevels - 1$}{ + $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma(\epsilon[layer - 1](T_a[lat, lon, layer - 1])^4 - 2\epsilon[layer](T_a[lat, lon, layer])^4)} + {\rho[lat, lon, layer]C_a\delta z[layer]}$ \; + }\uElse{ + $T_a[lat, lon, layer] \leftarrow T_a[lat, lon, layer] + \frac{\delta t \sigma(\epsilon[layer - 1](T_a[lat, lon, layer - 1])^4 + \epsilon[layer + 1]T_a[lat, lon, layer + 1] + - 2\epsilon[layer](T_a[lat, lon, layer])^4)}{\rho[lat, lon, layer]C_a\delta z[layer]}$ \; + } + $t \leftarrow t + \delta t$ \; + } + } + } + \caption{The main loop of the temperature calculations} + \label{alg:temperature layer} +\end{algorithm} + +We also need to initialise the $\epsilon$ value for each layer. We do that in \autoref{alg:epsilon}. + +\begin{algorithm} + $\epsilon[0] \leftarrow 0.75$ \; + \For{$i \in [1, nlevels]$}{ + $\epsilon[i] \leftarrow 0.5\epsilon[i - 1]$ + } + \caption{Intialisation of the insulation of each layer (also known as $\epsilon$)} + \label{alg:epsilon} +\end{algorithm} + +\subsection{Grey Radiation Scheme} +Inspired by the Isca project \cite{isca} and a paper describing the grey radiation scheme\cite{greyRad}. + +A radiation scheme is a model for how energy is redistributed using light in a system. Such a model is a Grey radiation scheme if you split it into two parts, short and long wavelength radiation. +So you have two redistribution systems, one for short wavelength light and one for long wavelength light. Another assumption we make when using the Grey radiation scheme, is that the atmosphere +is transparent to short wavelength radiation, meaning it lets through light with short wavelengths. Additionally we use a two stream approximation, which means that we have a stream of radiation +going up, and another stream of radiation going down. Note that these two streams are both long wavelength radiation, because we said earlier we assume the atmosphere completely ignores short +wavelength radiation. + +The two long wavelength radiation streams are described in \autoref{eq:upward radiation} and \autoref{eq:downward radiation} \cite{greyRad}. In those equations, the symbols are: + +\begin{itemize} + \item $U$: Upward flux. + \item $D$: Downward flux. + \item $B$: The Stefan-Boltzmann equation (see \autoref{eq:stefan-boltzmann}). + \item $\tau$: Optical depth. +\end{itemize} + +\begin{subequations} + \begin{equation} + \frac{dU}{d\tau} = U - B + \label{eq:upward radiation} + \end{equation} + \begin{equation} + \frac{dD}{d\tau} = B - D + \label{eq:downward radiation} + \end{equation} +\end{subequations} + +With \autoref{eq:upward radiation} and \autoref{eq:downward radiation} written down, we can discuss how they work. These equations need a boundary condition to work, a starting point if you like. +For those equations the boundary conditions are that $U$ is at the surface equal to $B$ and that $D$ at the top of the atmosphere is equal to $0$. Meaning that in the beginning the top of the +atmosphere has no downward flux as there is no heat there, and that the bottom of the atmosphere has a lot of upward flux as most if not all of the heat is located there. Then after the spin up +time this should stabilise. We are interested in the change of the fluxes, so $dU$ and $dD$, to get those we need to multiply the right hand side by $d\tau$. Then we have the flow of radiation +that we need. However we cannot solely use these two equations to calculate the heat of a given layer. For that we need a few more components. These are described in \autoref{eq:heat layer}. +Here $Q_R$ is the amount of heat in a layer, $c_p$ is the specific heat capacity of dry air (our atmosphere), $\rho$ is the density of the air in that layer and $\delta z$ is the change in height. +$\delta U - D$ are the change in net radiation, meaning the amount of radiation that is left over after you transferred the upward and downward flux. See it as incoming and outgoing energy for a +given layer, the net change (either cooling down or heating up) is what remains after you have subtracted the incoming energy from the outgoing energy. While this explanation is not entirely true +(as flux is not entirely equivalent to energy), it explains the concept the best. + +\begin{equation} + Q_R = \frac{1}{c_p\rho}\frac{\delta(U - D)}{\delta z} + \label{eq:heat layer} +\end{equation} + +Now only one question remains: what is optical depth? Optical depth is the amount of work a photon has had to do to get to a certain point. This might sound really vague, but bear with me. +Optical depth describes how much stuff a certain photon has had to go through to get to a point. As you'd expect this is $0$ at the top of the atmosphere as space is a big vacuum so no stuff to +move through, so no work. Then the further the photon moves into the atmosphere, the more work the photon has had to do to get there. This is because it now needs to move through gases, like air, +water vapour and other gases. Hence the closer the photon gets to the surface of the planet, the larger the optical depth is because the photon has had to work more to get there. This phenomenon +is described in \autoref{eq:optical depth}. The symbols in the equation mean: + +\begin{itemize} + \item $\tau_0$: Optical depth at the surface. + \item $p$: Atmospheric pressure ($Pa$). + \item $p_s$: Atmospheric pressure at the surface ($Pa$). + \item $f_l$: The linear optical depth parameter, with a value of 0.1. +\end{itemize} + +\begin{equation} + \tau = \tau_0[f_l(\frac{p}{p_s}) + (1 - f_l)(\frac{p}{p_s})^4] + \label{eq:optical depth} +\end{equation} + +As one can see, \autoref{eq:optical depth} has two parts, a linear part and a quatric part (to the power $4$). The quatric term approximates the structure of water vapour in the atmosphere, which +roughly scales with $\frac{1}{4}$ with respect to the height. The linear term is present to fix numerical behaviour because this is an approximation which will not be completely correct (that's +why it is an approximation) so we add this term to make it roughly right. The same thing holds for $f_l$ which can be manually tuned to fix weird numerical behaviour. + +With these equations in our mind, let's get coding. First we add the pressure profile, the pressure of all atmospheric layers at a lat lon point. We need this to accurately represent the optical +depth per atmospheric layer. Then we need to use the pressure profile with regards to \autoref{eq:optical depth}. The resulting code can be found in \autoref{alg:optical depth}. This algorithm +replaces the temperature calculations we have done in \autoref{alg:temperature layer}, as this is basically a better version of the calculations done in that algorithm. $f_l$ has a value of $0.1$ +and is located near all the other constants in the code, henceforth we will refer to this section in the code as the control panel, since most if not all of the constants can be tweaked here. +$\tau_0$ is a function that gives the surface optical depth for a given latitude. The corresponding equation can be found in \autoref{eq:optical depth surface} \cite{simon}. Translating this +into code is left as an exercise to the reader. $U[0]$ is the boundary condition discussed before (being the same as \autoref{eq:stefan-boltzmann}), just as $D[nlevels]$ is the boundary condition. +$S_z$ represents the call to \autoref{alg:gradient z}. \texttt{solar} represents the call to \autoref{alg:solar}. + +\begin{algorithm} + \For{$lat \in [-nlat, nlat]$}{ + \For{$lon \in [0, nlon]$}{ + $pressureProfile \leftarrow p[lat, lon, :]$ \; + $\tau = \tau_0(lat)f_l\frac{pressureProfile}{pressureProfile[0]} + (1 - f_l)(\frac{pressureProfile}{pressureProfile[0]})^4)$ \; + $U[0] \leftarrow \sigma T_p[lat, lon]^4$ \; + + \For{$level \in [1, nlevels]$}{ + $U[level] \leftarrow U[level - 1] - \frac{(\tau[level] - \tau[level - 1])(\sigma \cdot (mean(T_a[:, :, level]))^4)}{1 + (\tau[level - 1] - \tau[level])}$ \; + } + + $D[nlevels - 1] \leftarrow 0$ \; + + \For{$level \in [nlevels - 1, 0]$}{ + $D[level] \leftarrow D[level + 1] - \frac{(\tau[level + 1] - \tau[level])(\sigma \cdot (mean(T_a[:, :, level]))^4)}{1 + (\tau[level] - \tau[level + 1])}$ \; + } + + \For{$level \in [0, nlevels]$}{ + $Q[level] \leftarrow - \frac{S_z(U - D, 0, 0, level)}{10^3 \cdot densityProfile[level]}$ \; + } + + $T_a[lat, lon, :] \leftarrow T_a[lat, lon, :] + Q$ \; + + $S \leftarrow \texttt{solar}(I, lat, lon, t)$ \; + + $T_p[lat, lon] \leftarrow T_p[lat, lon] \frac{\delta t((1 - a[lat, lon]) S + S_z(D, 0, 0, 0) - \sigma T_p[lat, lon]^4)}{C_p[lat ,lon]}$ \; + } + } + \caption{Adding in radiation} + \label{alg:optical depth} +\end{algorithm} + +\begin{equation} + \tau_0 = 3.75 + \cos(lat \frac{\pi}{90})\frac{4.5}{2} + \label{eq:optical depth surface} +\end{equation} + +\subsection{Adding In Some Ozone (Or Something Else That Approximates It)} +Adding in ozone in the stratosphere is hella complicated, so we leave that as an exercise to the reader as in true academic fashion. Just joking, if you want you can work on implementing ozone +however we opt not to because it is quite complicated. Instead we approximate it, which is decent enough for our purpose. We need to do it in \autoref{alg:optical depth} as we need to adjust the +$Q$. We add in a check to see if we are currently calculating the radiation in the stratosphere. If so we add some radiation extra to replicate the effect of ozone. As can be seen in +\autoref{alg:ozone}, where we only focus on the $Q$ part of \autoref{alg:optical depth}, we add in some extra radiation based on how high the current layer calculation is, which scales with the +height. + +\begin{algorithm} + \For{$level \in [0, nlevels]$}{ + $Q[level] \leftarrow - \frac{S_z(U - D, 0, 0, level)}{10^3 \cdot densityProfile[level]}$ \; + \uIf{$heights[level] > 20 \cdot 10^3$}{ + $Q[level] \leftarrow Q[level] + \texttt{solar}(5, lat, lon, t) \frac{24 \cdot 60 \cdot 60(\frac{heights[level] - 20 \cdot 10^3}{10^3})^2}{30^2}$ \; + } + } + \caption{Replicating the effect of ozone} + \label{alg:ozone} +\end{algorithm} + +\subsection{Tilting the Planet} +In order to model a planet that has seasons, like Earth, we need to tilt the planet. This has as effect that the sun is not always directly above the equator but is above a certain band around +the equator as the year moves on. This means that some hemispheres receive more/less sun based on what part of the year it is. Which corresponds to the various seasons we have on Earth. But in +order to do that, we have to change the \texttt{solar} function. The new version as shown in \autoref{alg:solar tilt} will replace \autoref{alg:solar}. Here $\alpha$ is the tilt in degrees. + +\begin{algorithm} + \SetKwInput{Input}{Input} + \SetKwInOut{Output}{Output} + \Input{insolation $ins$, latitude $lat$, longitude $lon$, time $t$, time in a day $d$} + \Output{Amount of energy $S$ that hits the planet surface at the given latitude, longitude and time combination.} + $sun\_lon \leftarrow -t \text{ mod } d$ \; + $sun\_lon \leftarrow sun\_lon \cdot \frac{360}{d}$ \; + $sun\_lat \leftarrow \alpha\cos(\frac{2t\pi}{year})$ \; + $S \leftarrow insolation\cos(\frac{\pi(lat - sun\_lat)}{180})$ \; + + \uIf{$S < 0$}{ + \Return{$0$} \; + } \uElse { + $lon\_diff \leftarrow lon - sun\_lon$ \; + $S \leftarrow S\cos(\frac{lon\_diff\pi}{180})$ \; + + \uIf{$S < 0$}{ + \uIf{$lat + sun\_lat > 90$ or $lat + sun\_lat < -90$}{ + \Return{$insolation\cos(\frac{\pi(lat + sun\_lat)}{180})\cos(\frac{lon\_diff\pi}{180})$} \; + } \uElse { + \Return{$0$} \; + } + } \uElse { + \Return{$S$} \; + } + } + \caption{Calculating the energy from the sun (or similar star) that reaches a part of the planet surface at a given latitude and time} + \label{alg:solar tilt} +\end{algorithm} + +What the code in \autoref{alg:solar tilt} does boils down to calculating the latitude and longitude of the sun and checking whether the planet receives any energy. If not return $0$ immediately. +If so we check if the difference between the sun's longitude and the planet's longitude and calculate how much energy would hit the planet given that the sun is not straight above the equator. +We do this by multiplying the energy it would receive from the sun if it were above the equator $S$ by the cosine of the difference in longitudes, which represents the tilt. Then we check again +if the planet is receiving energy, if not we check if it happens around the poles. We do this because due to the tilt it can be the case that at certain points in the year the pole is in constant +sunlight, i.e. the sun does not go down. This creates a sort of overshoot which needs to be accounted for. If it does this then we add the latitudes of the sun and the planet together and use +that to calculate the energy that would hit that spot. If it is not the case that we are around the poles and we do not receive energy, then we return $0$. If it happens to be that we do receive +energy (so no negative values) then we return $S$. + +\subsection{The Theory Behind the Planar Approximation} +It is time to deal with the pole situation. The north and south poles that is, not the lovely people over in Poland. We run into problems because the latitude longitude grid cells become to small +near the poles. Therefore, the magnitudes no longer fit into one cell and overflow into other cells which makes everything kind of funky. So we need to fix that, and we do that by a planar +approximation. + +As said earlier, the grid cells on the latitude longitude grid get closer together the closer you get to the poles which poses problems. To fix this, we will be using a planar approximation of +the poles. What this means is that we will map the 3D grid near the poles onto a 2D plane parallel to the poles, as if we put a giant flat plane in the exact center of the poles and draw lines +from the grid directly upwards to the plane. For a visual representation, please consult the stream with timestamp 1:38:25 \cite{polarPlane}, which includes some explanation. In the streamm we +use $r$ to indicate the radius of the planet (which we assume is a sphere), $\theta$ for the longitude and $\lambda$ for the latitude. So we have spherical coordinates, which we need to transform +into $x$ and $y$ coordinates on the plane. We also need the distance between the center point (the point where the plane touches the planet which is the center of the pole) and the projected +point on the plane from the grid (the location on the plane where a line from the gird upwards to the plane hits it). This distance is denoted by $a$ (Simon chose this one, not me). We then get +the following equations as shown in \autoref{eq:polar distance}, \autoref{eq:polar x} and \autoref{eq:polar y}. + +\begin{subequations} + \begin{equation} + a = r \cos(\theta) + \label{eq:polar distance} + \end{equation} + \begin{equation} + x = a \sin(\lambda) + \label{eq:polar x} + \end{equation} + \begin{equation} + y = a \cos(\lambda) + \label{eq:polar y} + \end{equation} +\end{subequations} + +But what if we know $x$ and $y$ and want to know $\theta$ and $\lambda$? Pythagoras' Theorem then comes into play \cite{pythagoras}. We know that (due to Pythagoras) \autoref{eq:pythagoras} must +always be true. Then if we substitue $a$ by $\sqrt{x^2 + y^2}$ in \autoref{eq:polar distance} we get \autoref{eq:polar theta1}. Then we transform that equation such that we only have $\theta$ on +one side and the rest on the other side (since we want to know $\theta$) and we get \autoref{eq:polar theta3}. +\begin{equation} + x^2 + y^2 = a^2 + \label{eq:pythagoras} +\end{equation} + +\begin{subequations} + \begin{equation} + \sqrt{x^2 + y^2} = r\cos(\theta) + \label{eq:polar theta1} + \end{equation} + \begin{equation} + \frac{\sqrt{x^2 + y^2}}{r} = \cos(\theta) + \label{eq:polar theta2} + \end{equation} + \begin{equation} + \cos^{-1}(\frac{\sqrt{x^2 + y^2}}{r}) = \theta + \label{eq:polar theta3} + \end{equation} +\end{subequations} + +For $\lambda$ we need another trigonometric function which is the tangent ($\tan$). The tangent is defined in \autoref{eq:tan}. If we then take a look at \autoref{eq:polar x} and +\autoref{eq:polar y}, we see that $\lambda$ is present in both equations. So we need to use both to get $\lambda$ \footnote{Yes you could only use one but since we both know $x$ and $y$ it is a +bit easier to use both than to only use one as you need to know $\theta$ at that point as well which may or may not be the case.}. So let's combine \autoref{eq:polar x} and \autoref{eq:polar y} +in \autoref{eq:polar lambda1}, transform it such that we end up with only $\lambda$ on one side and the rest on the other side and we end up with \autoref{eq:polar lambda3}. + +\begin{equation} + \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} + \label{eq:tan} +\end{equation} + +\begin{subequations} + \begin{equation} + \frac{x}{y} = \frac{a\sin(\lambda)}{a\cos(\lambda)} = \frac{\sin(\lambda)}{\cos(\lambda)} + \label{eq:polar lambda1} + \end{equation} + \begin{equation} + \frac{x}{y} = \tan(\lambda) + \label{eq:polar lambda2} + \end{equation} + \begin{equation} + \lambda = \tan^{-1}(\frac{x}{y}) + \label{eq:polar lambda3} + \end{equation} +\end{subequations} + +With this math we can fix a lot of stuff in the model. With this we can resample (mapping from sphere to plane) the pressure, density, temperarature and advection to the plane and ensure that +there are no more overflows and funky business. The implementation (code) for this will be done in a follow up stream, so stay tuned! \ No newline at end of file diff --git a/tex-docs/topics/velocity.tex b/tex-docs/topics/velocity.tex index 080a9aa..a000627 100644 --- a/tex-docs/topics/velocity.tex +++ b/tex-docs/topics/velocity.tex @@ -41,145 +41,6 @@ important enough to account for yet, especially considering the current complexi The code that corresponds to this is quite simple, the only change that we need to make in \autoref{eq:state gas} is that we need to replace $T$ by $T_a$, the temperature of the atmosphere. As $T_a$ is a matrix (known to programmers as a double array), $p$ will be a matrix as well. Now we only need to fill in some values. $\rho = 1.2$\cite{densityAir}, $R_s = 287$\cite{specificGasConstantAir}. -\subsection{The Primitive Equations and Geostrophy} -\textbf{NOTE:} This whole subsection is obsolete. We have replaced these calculations with \autoref{sec:momentum}. The folloing subsection is left in for historical value, and maybe for a simpler -calculation if you want your own model to do less heavy calculations. This is where the previously mentioned master file strucutre comes in. You can create a new file with the following -calculations and replace the call that you would make to \autoref{sec:momentum} with a call to the algorithm listed in this subsection. Your choice, though the model Simon has made opted to use -the more complicated calculations. So here are the original calculations and if you want an up to date overview of the calculations please have a look at \autoref{sec:momentum}. - -The primitive equations (also known as the momentum equations) is what makes the air move. It is actually kind of an injoke between physicists as they are called the primitive equations but -actually look quite complicated (and it says $fu$ at the end! \cite{simon}). The primitive equations are a set of equations dictating the direction in the $u$ and $v$ directions as shown in -\autoref{eq:primitive u} and \autoref{eq:primitive v}. We can make the equations simpler by using and approximation called geostrophy which means that we have no vertical motion, such that the -terms with $\omega$ in \autoref{eq:primitive u} and \autoref{eq:primitive v} become 0. We also assume that we are in a steady state, i.e. there is no acceleration which in turn means that the -whole middle part of the equations are $0$. Hence we are left with \autoref{eq:primitive u final} and \autoref{eq:primitive v final}. - -\begin{subequations} - \begin{equation} - \frac{du}{dt} = \frac{\delta u}{\delta t} + u\frac{\delta u}{ \delta x} + v\frac{\delta u}{\delta v} + \omega\frac{\delta u}{\delta p} = -\frac{\delta \Phi}{\delta x} + fv - \label{eq:primitive u} - \end{equation} - \begin{equation} - \frac{dv}{dt} = \frac{\delta v}{\delta t} + u\frac{\delta v}{ \delta x} + v\frac{\delta v}{\delta v} + \omega\frac{\delta v}{\delta p} = -\frac{\delta \Phi}{\delta y} - fu - \label{eq:primitive v} - \end{equation} - - \begin{equation} - 0 = -\frac{\delta \Phi}{\delta x} + fv - \label{eq:primitive u final} - \end{equation} - \begin{equation} - 0 = -\frac{\delta \Phi}{\delta y} - fu - \label{eq:primitive v final} - \end{equation} -\end{subequations} - -\autoref{eq:primitive u final} can be split up into to parts, the $\frac{\delta \Phi}{\delta x}$ part (the gradient force) and the $fv$ part (the coriolis force). The same applies to -\autoref{eq:primitive v final}. Effectively we have a balance between the gradient and the coriolis force as shown in \autoref{eq:pu simple} and \autoref{eq:pv simple}. The symbols in both of -these equations are: - -\begin{itemize} - \item $\Phi$: The geopotential, potential (more explanation in \autoref{sec:potential}) of the planet's gravity field ($Jkg^{-1}$). - \item $x$: The change in the East direction along the planet surface ($m$). - \item $y$: The change in the North direction along the planet surface ($m$). - \item $f$: The coriolis parameter as described by \autoref{eq:coriolis}, where $\Omega$ is the rotation rate of the planet (for Earth $7.2921 \cdot 10^{-5}$) ($rad \ s^{-1}$) and $\theta$ is the - latitude \cite{coriolis}. - \item $u$: The velocity in the latitude ($ms^{-1}$). - \item $v$: The velocity in the longitude ($ms^{-1}$). -\end{itemize} - -\begin{subequations} - \begin{equation} - f = 2\Omega\sin(\theta) - \label{eq:coriolis} - \end{equation} - \begin{equation} - \frac{\delta \Phi}{\delta x} = fv - \label{eq:pu simple} - \end{equation} - \begin{equation} - \frac{\delta \Phi}{\delta y} = -fu - \label{eq:pv simple} - \end{equation} - \begin{equation} - \frac{\delta p}{\rho \delta x} = fv - \label{eq:pu simple final} - \end{equation} - \begin{equation} - \frac{\delta p}{\rho \delta y} = -fu - \label{eq:pv simple final} - \end{equation} -\end{subequations} - -Since we want to know how the atmosphere moves, we want to get the v and u components of the velocity vector (since $v$ and $u$ are the veolicites in longitude and latitude, if we combine them -in a vector we get the direction of the overall velocity). So it is time to start coding and calculating! If we look back at \autoref{alg:stream1v2}, we can see that we already have a double -for loop. In computer science, having multiple loops is generally considered a bad coding practice as you usually can just reuse the indices of the already existing loop, so you do not need to -create a new one. However this is a special case, since we are calculating new temperatures in the double for loop. If we then also would start to calculate the velocities then we would use new -information and old information at the same time. Since at index $i - 1$ the new temperature has already been calculated, but at the index $i + 1$ the old one is still there. So in order to fix -that we need a second double for loop to ensure that we always use the new temperatures. We display this specific loop in \autoref{alg:stream2}. Do note that everything in \autoref{alg:stream1v2} -is still defined and can still be used, but since we want to focus on the new code, we leave out the old code to keep it concise and to prevent clutter. - -\begin{algorithm}[hbt] - \SetAlgoLined - \For{$lat \in [-nlat, nlat]$}{ - \For{$lon \in [0, nlon]$}{ - $u[lat, lon] \leftarrow -\frac{p[lat + 1, lon] - p[lat - 1, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; - $v[lat, lon] \leftarrow \frac{p[lat, lon + 1] - p[lat, lon - 1]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; - } - } - \caption{The main loop of the velocity of the atmosphere calculations} - \label{alg:stream2} -\end{algorithm} - -The gradient calculation is done in \autoref{alg:gradient}. For this to work, we need the circumference of the planet. Herefore we need to assume that the planet is a sphere. While that is not -technically true, it makes little difference in practice and is good enough for our model. The equation for the circumference can be found in \autoref{eq:circumference} \cite{circumference}, -where $r$ is the radius of the planet. Here we also use the f-plane approximation, where the coriolis paramter has one value for the northern hemisphere and one value for the southern hemisphere -\cite{fplane}. - -\begin{equation} - 2 \pi r - \label{eq:circumference} -\end{equation} - -\begin{algorithm} - \SetAlgoLined - $C \leftarrow 2\pi R$ \; - $\delta y \leftarrow \frac{C}{nlat}$ \; - - \For{$lat \in [-nlat, nlat]$}{ - $\delta x[lat] \leftarrow \delta y \cos(lat \cdot \frac{\pi}{180})$ \; - - \eIf{$lat < 0$}{ - $f[lat] \leftarrow -10^{-4}$ \; - }{ - $f[lat] \leftarrow 10^{-4}$ \; - } - } - \caption{Calculating the gradient $\delta x$ (note that this algorithm is obsolete)} - \label{alg:gradient} -\end{algorithm} - -Because of the geometry of the planet and the construction of the longitude latitude grid, we run into some problems when calculating the gradient. Since the planet is not flat ("controversial -I know"\cite{simon}) whenever we reach the end of the longitude we need to loop around to get to the right spot to calculate the gradients (as the planet does not stop at the end of the -longitude line but loops around). So to fix that we use the modulus (mod) function which does the looping for us if we exceed the grid's boundaries. We do haveanother problem though, the poles. -As the latitude grows closer to the poles, they are converging on the center point of the pole. Looping around there is much more difficult so to fix it, we just do not consider that center -point in the main loop. The changed algorithm can be found in \autoref{alg:stream2v2} - -\begin{algorithm}[hbt] - \SetAlgoLined - \For{$lat \in [-nlat + 1, nlat - 1]$}{ - \For{$lon \in [0, nlon]$}{ - $u[lat, lon] \leftarrow -\frac{p[(lat + 1) \text{ mod } nlat, lon] - p[(lat -1) \text{ mod } nlat, lon]}{\delta y} \cdot \frac{1}{f[lat]\rho}$ \; - $v[lat, lon] \leftarrow \frac{p[lat, (lon + 1) \text{ mod } nlon] - p[lat, (lon -1) \text{ mod } nlon]}{\delta x[lat]} \cdot \frac{1}{f[lat]\rho}$ \; - } - } - \caption{The main loop of the velocity of the atmosphere calculations} - \label{alg:stream2v2} -\end{algorithm} - -Do note that the pressure calculation is done between the temperature calculation in \autoref{alg:stream1v2} and the $u, v$ calculations in \autoref{alg:stream2v2}. At this point our model shows -a symmetric vortex around the sun that moves with the sun. This is not very realistic as you usually have convection and air flowing from warm to cold, but we do not have that complexity yet -(due to our single layer atmosphere). - \subsection{The Momentum Equations} \label{sec:momentum} The momentum equations are a set of equations that describe the flow of a fluid on the surface of a rotating body. For our model we will use the f-plane approximation. The equations corresponding to the f-plane approximation are given in \autoref{eq:x momentum} and \autoref{eq:y momentum} \cite{momentumeqs}. Note that we are ignoring vertical movement, as this does not have a significant @@ -266,4 +127,35 @@ Another change introduced is in the coriolis parameter. Up until now it has been \subsection{Adding Friction} In order to simulate friction, we multiply the speeds $u$ and $v$ by $0.99$. Of course there are equations for friction but that gets complicated very fast, so instead we just assume that we -have a constant friction factor. This multiplication is done directly after \autoref{alg:stream3} in \autoref{alg:stream4v1}. \ No newline at end of file +have a constant friction factor. This multiplication is done directly after \autoref{alg:stream3} in \autoref{alg:stream4v1}. + +\subsection{Adding in Layers} +With adding in atmospheric layers we need to add vertical winds, or in other words add the $w$ component of the velocity vectors. We do that by editing \autoref{alg:stream3}. We change it to +\autoref{alg:velocity}. Here we use gravity ($g$) instead of the coriolis force ($f$) and calculate the change in pressure. Therefore we need to store a copy of the pressure before we do any +calculations. This needs to be a copy due to aliasing \footnote{Aliasing is assigning a different name to a variable, while it remains the same variable. Take for instance that we declare a +variable $x$ and set it to be $4$. Then we say $y \leftarrow x$, which you might think is the same as saying they $y \leftarrow 4$ but behind the screen it is pointing to $x$. So if $x$ changes, +then so does $y$.} + +\begin{algorithm} + $S_{xu} \leftarrow \texttt{gradient\_x}(u, lan, lon)$ \; + $S_{yu} \leftarrow \texttt{gradient\_y}(u, lan, lon)$ \; + $S_{xv} \leftarrow \texttt{gradient\_x}(v, lan, lon)$ \; + $S_{yv} \leftarrow \texttt{gradient\_y}(v, lan, lon)$ \; + $S_{px} \leftarrow \texttt{gradient\_x}(p, lan, lon)$ \; + $S_{py} \leftarrow \texttt{gradient\_y}(p, lan, lon)$ \; + \While{\texttt{TRUE}}{ + \For{$lat \in [1, nlat - 1]$}{ + \For{$lon \in [0, nlon]$}{ + \For{$layer \in [0, nlevels]$}{ + $u[lan, lon, layer] \leftarrow u[lat, lon, layer] + \delta t \frac{-u[lat, lon, layer]S_{xu} - v[lat, lon, layer]S_{yu} + f[lat]v[lat, lon, layer] - S_{px}}{\rho}$ \; + $v[lan, lon, layer] \leftarrow v[lat, lon, layer] + \delta t \frac{-u[lat, lon, layer]S_{xv} - v[lat, lon, layer]S_{yv} - f[lat]u[lat, lon, layer] - S_{py}}{\rho}$ \; + $w[lan, lon, layer] \leftarrow w[lat, lon, layer] - \frac{p[lat, lon, layer] - p_o[lat, lon, layer]}{\delta t\rho[lat, lon, layer]g}$ \; + } + } + } + + $p_o \leftarrow copy(p)$ \; + } + \caption{Calculating the flow of the atmosphere (wind)} + \label{alg:velocity} +\end{algorithm} \ No newline at end of file From cf4c8b8311e4548cee9b775819e4fa5bd9c31a8e Mon Sep 17 00:00:00 2001 From: TechWizzart Date: Tue, 8 Sep 2020 20:19:06 +0200 Subject: [PATCH 4/4] Finished the rewrite --- CLAuDE NOM.pdf | Bin 392810 -> 397891 bytes tex-docs/topics/advection.tex | 62 ++++++++++-------------------- tex-docs/topics/control_panel.tex | 2 + tex-docs/topics/master.tex | 17 ++++++++ tex-docs/topics/radiation.tex | 33 ++++++---------- tex-docs/topics/velocity.tex | 26 ++++++------- 6 files changed, 61 insertions(+), 79 deletions(-) diff --git a/CLAuDE NOM.pdf b/CLAuDE NOM.pdf index b48f8187b093464b12c1a9ef0a7c5f597ddcfcb9..db412c5800c0bcd63e5c2e97b40b125e5b75a9db 100644 GIT binary patch delta 277749 zcmV($K;ysa{1?Nd7!D;+L`E$!E;R}z(A34)lTZdK4m1icOl59obZ8(kGcYid(c>t8 zjaFT6(@GG1&##zAkS^4_{#r{2sUNgdDp1`Po_JZ}ZL*TR>uYa-@as8~*iL%Y#F66I zv1iWAoHH|ypomh6Bg!aAsh~V15m6yX#3W=!BEd(J$nn9UNEC{sAQ`KflqAy}2gw4b zjA9(Jpg7AIG0tO(V@iM&CzJp_&M8rUc%Uea6dq8Ts2R}HJmTmXA}1MTv81G+EXRY0 z@(2mWlmjqLkRDDsgAQj75CP~38OGzn3NT7%WWd#*+1_&xr2?#0_P6-tS zkWfv8WOI}h0Y{-^0U%fifn*Rt2qde(fka}ez?mtEm={1XKi~pTB93wbgosgp3vP*c z0}jAM$QhzAg&YQu30y_QyehTnD$I2oC7WrP6Bq>CObUN2OHJqM!h&xGrvCl^5FvXT~HHltn6L@7~eb1D)OYM^9&eSM;hg^I*Mu z8@;CY?`N-WU1)u|+T446&{%AZFFjjVbg!MMUa(&M7##+e$EBeQv#`!tx0rB|TbKLg zy0dd#5yEvryU@Mt_sn%a-i_`?-&0)W&h?=&bNgiH^wH=*m%7n&8`h_Q#9NS0zA~qn zCwno2dD8C9g|EV&T01v?k^2bJN4&3~M%ZQkO}AG6sLTnh#rv$?>#oxaL;i^#ZEa5R z-XpHhfW%8F*3d5-mONf-tTMVXt~+&}n%4iewGO7E+wlGMR7dr1jz?PsMhfHfPdV=OA`aiK@n%3W#{0{< zH(#40ug=kbwJ&j4BrN#}8z~zq{OsMEm9tO2tx2Q*%M%t+_QFeM2n~pXyG%EYai#tJ z_I%ieZQX6x#%E(nG(6Vghu;m)?q;e$A|#`0?}PK{+Qks*_^x>7@a(TqYik?uKHm)-_NKFLjPLM=xLF>f?y_%8WX@^t z{XP2&YTy&mld)G5mta-_6a+CeI5(5g<0yaaTFY|VHWc0GD>PY=GbKa3NMh-C)v;qw zt-6b*3s{0B%Lp4>6$n2M+y3v1a zR9U!+AIl;*{}iEk+*Uagg^y!z;Uf=<{vQ1{Krsq&iUt8jAxEkG^G^|r4o>$LhexiX z^D`(yx&e$m86c?37}jGCc*qhy2nY>R%5C#YkwZK9pZ6m_MV=h{IQ3?Ks#{S_-s@iy zZ(mHOvM?jSBt$WT0g#Z=*!3Xijm&?2sCexM@F^?XVfu@0j$r~3j_iO4fJs9_V>=*} z#$n1}MihrUax*$83!fmbk@iu$mdSvJJjStZ7;Rz@`2okw8$tu@HC3tq*qbcI8ecPR z_`eV*7}}Zo*c1kB=|*43_GJcPI@8OM67NEP6@|?DIwW?C>DmwjN|TV_6efRZR>1Wh zLjNej*c;6>VF>m1`J@20CZU1y3rdf)dUL|OJCvC|L=!^np#5u`xVi9cpG*jN>}VY5!%2JvVpiCB=I%@ z_efA%{>Cdj@m)MG=hnzVxi^1S;4tXe;`^%dYxy?mU^jU-y(Klua)<6pS?ImgbQwD*B+r4Ik zrx1v(HaGRI{FHj4QsO$3U{C4JGyR}vBKJMhg(jY;YcZ7;`SQm8Fj9ZHF5&2nZQ3Wb zspP(ET4!+!t|fC>K{2CfXEp&)*6-`dnv*i1O=R|fMX&%@BA1P|QSaF2ps$OumEk?Ij(u0wx#h#1tUIa1M9EHABpalE z>jA_wPP1q0uonAP=AD0vc?OZMaPh^t+c%YHN}ZFS$<|u(AH+HB$GHtx4%KJh06Ue% zSSyhTCA)a!zr)V^VW$rEp|vWqa!xff`9p}DW4Z(L=cc)W{jMKDG~|?SrUr@iBfo=% z7pv4Fi$g|9>oQQ(>oZWuINw}Yaz7P#tg6}tP^UsK_Ln=6=}doCxr+{#g-#6TIuD@6 zF2^E@iG680<>l){s;+dStAhs9?`5WoZ}sa+jvf88aD+X_4=lYBblQD4+aI+NZ}@D$*078Bq{TTm8LUE)O2Nu?%wakkh)8a#17lUrMTXtwY2 z!$&op>7$W0HMf5p>jYH%g3`?|U)w)~H*8EKIg7hy$+!_); zC7#Szq4%P4mg9?RX7=q$*Admy9*si5p)BeyVa-y$4I99sN&C@ET3Syg9Y{JNNB|&% zD>!@(Anwe@6M~+05?(H??{kqJIKxuMN-j{kv}fc}X9<7P1no@CeT3uwXoL6AdRVwf zwalHNIKM3m_o^>9oL8#~&8%y8l+~`%Xl75osJAztSEXK@ujWFAi;9PhxeyVM4W0Cy z*(rlT($6x8fdi%urOKLaGR@r_Du3zO=NA-;eG6#hfNrscm$F(~!1pCE>8@D1fQ=6L zi>i-JR%(BfSD8CAFg;r4QY&-!RAq0zT=|@NGPAd8#%%_*NBiPOYhT)F-<9fI7rK{? zy-(GvX@|wQ%;%M?YjvHuT6-onl9%-yB(l^J_C<%Y81-?Mc0#!0>=_t6oAz1cn=-vN zc{jTAHxIzss@q}icJgOuacRpYeF|NvGE;STZk1R-XxgP#^y!NB9AukP?FLfZ4=L?& z;m10juav!R7to091k+DJPWqxIy3)97kgK9i*I3omiURglvu4jnbc;Gh;L7yXRzkxB zwWqTBr*}uAcmD!o$jDlgu~!oUH#C!xVilL+Qv)fHPy~PDHWI$)SNJw`)kxu+Vs4(- zW;T;-s^Z-ok{n=kd3C$Hs?w_}iPtd@Z=0(hqT+g0r$uzre7MfiNN=6#yX&8B|9+Jh<+{kTtC;7d z8B#xgvzdSKTIG4NF6#Pfl_cxBD1_rWxn3o4nnt$=Jseegy~?sYdS!l$lWereAGWNb z_4TTVe#QaX7L?5m}arI!Iv%FhR+#r!xATWQ4hU+APIYse17S*qz3M~GD-OGiq zS|$0q&hx8P3Qv-3_(@83Sm0Yg%$qFwT3M$DZ0FG%)9OX%Req}TDueTy+m+&{{qAJC z)jv;6yER8RL0P4L`K+g}SuPn<8GP2iuHoU-@DK#-=ry5n)81XL&|;b%2=V4G8~Lv! zUV49td-wHC->t^Z?E2v-Ds2W<>PC0gICfR5Dk=YRPEUnfEvs`b!hPGJ_`nODNO${I zxyPCfF_{IPMXxRdo+W>V5WDz7GueKM5E;o4=rS;RW;ZHW#gc}SR6-0t> z@l}CAhcLkzguZE6|M`NzudX!prz*`0P?}8|eQB)ghX;P|e#g)6JcPJu_x)hpfpjWK zv-p!={sq4LCdoOX=@zsIUVe+_U7>lGfAA;zZDJig&Q+SiGe3O~e33dU1t5aI{dRva zN8`)~g6>Ru{qsmZ!AdOjko|82)O+iO{seB~Ag@?$lHZg3f5AkuYP~5omnQNO)D)c5 zJ1`Np3$~98bQ=7k8jQMYwOxYMSt5IsXdGEyrVOlQ7C2O}7=a=&o(ph0#7c1DAYe4L zs2M}S;nLV*I^!lycr`y}l|?V#nWKMl(z)qW`(O>eA~@gCa?pi=S7vV<6&|4T+B#e# z&kYlgJ%#B;%LHb?C?AF`>VSdgKVk#*pvBTfPSFLXVMNhRkvD;guk8P@R3Gx$fI(oi8s4;RBHHK?O@oCU+Az}S*W zEnaszb_|b#?Qx5Lai18Tpo4viQFmL-QxwwyTM2l=-WF~2pt`-5zUsJfP&o2I(r={v z7#DGC-Umt=0UY*wS*K*9L;`;Uj1Rr@*a64`ixpaAAutXiNjxuB3m#WPKav2DwX<^k zdt>1U$$Ci^s3&<`kuK(O8QqPhb=<_K!6C0WL{!_Yw$|LWng@AO$#O@+Fm|1iVPGc` z!x7Cg8K^SRcltSy!7$GU4fh^|-9bO_$^%s~yz`_jc#0iQr0agkwm*NKM(2C|a51?7 zIg#|hdHB8>)(l6#Ge^JA%T^8Vna>YN`qSb& zV@VYDN{f=NfnSB60*!xvH?~YVN$sd5pNtgT1Ha$Fg$*4DC`t58c-(?{vL!IH^TBvi z!r_DRd$qCy-56)`4P_XOydPyt)$sQY_JKL?We&b99p5KC!*~+sisT=XOm2RGm&%zR zPpc|ADq21gM20?CiEek;7Qq0`o?7F$$-2gyva(~Z0r8k_D|3G=mpidGmu}z{RgeG- zYD@%7M=y?j(0k?qj?0XWle`V8(CGA5W;7PDJH$7(XPQcM!RmJ;K>doJPDGMx_y zjk6&`EpygaUOSHgKHj=eph5u@9r5FjI4)uI}CoIwj$SMxRV9X!`23bPV0uC zPbyGqZsbMESW-0-)L?Ybdo@Ufx$ssB6DK_5*^yn+xd2Y?JW<$ONDT>n2k*B~3Y;c- z?C4P?IlQc3heufOAVV{i=HD*Z-;{LRj^~gP7ovZn1;T*Nng-sY@jy_3B{`_R9lZwt zE@vO;jgMW(LEI#)nMtq$;WhdZSe1hU*wHQUFEG^eBQ2>nJ4bZgSsi^T*fZS(JcJ1e zL>Lr8;=NMxNH39~L|L$H&Ay}LU^}TtA}9>Gux|tk*q;^}sZ3J(9g65Q=ntkJE%&w* z+$DdF2s67!r|Mhb21ar4R13S#|WB!n0TS^%OHHB!Y~zFuq}sxMT0&<6eh%3Qvl$p%JHzVp5@P@86F>OuP~Hg zOLdFsQwMs7I9|*ul~fkKXRZ>a-q3&)ya|7I8E*kd@zv{#pEYMIcOY-&lSI|h2Boacr)gdhu+6a4Bc?|l>Mhq`8m)hi z%)&?vr;tJZw;}_BNxBoTf))0jr%zE9I<4Nh`ETNswr^!nEM5joII-9@v>!_vca$2@ zc;YEfOrLTFyuf9Cya0wnF2G1P<#-P$7qcV+#2zf-;AtRV^}#fn38+dqrI*YMo!1AW z&qCetEP<^l$74nfnx}A`fmumo+D?CvGS5_2lDw_6PuSaw4Jz7zkZ~TpxyCxu@Nr-~ zq4O+{IrRQa*B8?O3%s0SALtTy@(T+SB~-xV>G5&pJymVs7UXk*BK8kUjQ^6MmsF7A z4aN|J@|evPPd5F4fI%zwp%;e6j#K;DIpSH!f(|%#D_ZdJ)R!|>$n4(o*Ry}6EHeHH zTa~|_W6(=Esw}%3SWNH3{~7qzzSQvrSJ#qcUdyi1by1bRkazpE09UQkIE;S*=%b1S zp91RzcwLL>*VU9whmr`ivG}rdkRn-^W!UJerw6ImNtOF?uAe~SokibIDK7Gd+`(Wl zv;GXqEo~Rq>muF!!oA^Xk|KXpI1L9?P?Thy#o1C)fH>r-IF{g45C_5~fklnp4_Zsn z>?_@Vz``Sflp@&(+LQkwfdqv*oqi01AOMFNA!!k8?zLz(O}Gql7(mOAyL(>t!8-E0 z2n~13(G@tN4J42xw^~_3BKZWJcN3U~0rAU;kGM%TRSZ}PiI09TbkKk8iCdDp&^qM^ zt!;eO1gUC}efMEwGHn?0PP?ZfWI|Zjbh7U3S>!WuCW4o#MS@+3OB`P?fQ)+yOx^6? zLSP|zS8{=Op(J+kuRsR&Sw-FOC~=E7f^o%I2Xqc%Onv#RWo}h31#fh42?!Pg*t#(tpklw&C`8%f-Fa2 z+INqbOh2tqPWtiU2}it*lwv5IHJFL)Eq6J3!MGb#XZ^44NO%ysQj#pi$1_2@*oghzC<-Y(oceaUCr zaF^j7#0wHp5_yAAyiC^TVZH5n0OCqZaS~|HLfZIDvJRg}6A1Gs9%N6C03~tBFLV+n z(s5?LQ!V&_g`e9BPG;sm&_OsETgDNnc3gGIqkoTfT499f^u42ck_1++n&BiPye7Q@ zqTFxG$RU5^!R#1_GEb!oF*H08Iu|V6HcSs`*J6QH5;};_bc#gyB)OETuyQgm!G+pQ zFBKFe)fvzNfI>rn4aQ!wQhq+k0$B+Mw3B<8!^N9Cl!9!3)ZUW)4*q1mW)o^egpf8< zap!#KTkRKKSTOw$Lzb+IxV{4Utg}>Pk>b#2uWtuG`wtWpqtTPGR}+)PHWUOjF)=Wc z(c>t8of_GW8#nSjUoo4P?EySW-$#H&5XVk3*(?&k19$<)541!{%=Dpcwlbc4{nkY` zThkMJ_eD(>i$$_ntWz)VzWD0<`l{J9Wm;a{?XRlzs!HNboK;tMyQ_Cmr>@gFdc3~L zvNHN`eUny^=1!-r)jMvVPxvh&bx@|4=Jic~67|oWTI8EH=nMKrU0sMUZ{_dx*zOSyzO;cqxo+pFDWKD6EZsI)SBYn$Q z;i>aYR##Uy0n!~JT@{-m%MqUBIm2IjIMVdsfBzO2@pRO@A&X}p_Hg*=8W{F~EL5X^ z{%Rs#0=a7_#Y;)KW6aKr-??kN&u3Axfgr z8oWUSy06D_H<<&|;U;r`lL+8{+pFf=L!h!e^Nr~owO;F;<Jm<3UzAo$=h* z8ufq9+D?LPn6blRQ?M=&p`9<62RYlUJ%%4eX5D%D?e@p=#gG2gvx`nv^xvQEyQh--n_M;)+uG)hlDS!?beO!N<2fKNq_A&+kNjtsr8fC{TUUV$51Wi@R$0o922 ze`fgaXDg`4K!rmhXkQqRHAbsjKm~-q0oMTjYUuwyc_nhtqMF>1d2PN5sHVV5T> z(K>=DNzv(v(b)hCA{rEYg(OLf=sS3d88B}g=$4A;SL`a_T(8@wt`ks6lTDo_Oy#BC zvv9?US4~+QM?2$x4+bN2LjWa_g1!?e0Cmosv@KtA>@G4UM+MY2N@`q*+XusE%cJP# zj8=f`UICQMNt}>)Lf2U}J|4hN3eQDj@=9^*Y_R}ldLUbz#S4X@qjwcze!MH}pAW(A zijaeryvrk9A?phsP$VhP(6C;nx0B&fGL`_|>8;t3d?7u5-Y9rJ3zw1yNqXUXa^4D{ z`Kti zjxx;BjYgzGpKLlBv;l_~IICh7$&CJDZW+!kqA!00`5CzV7A@#7w!6Q5$$(!*{vr?Y z+iGPeN6!I&jqKt`mYuwKf_GjiVDB`-B1IYf4i{$EB!MIwj6s=a(c2@^dHjZZUcu%l z^|L>VU1jg#%z3hKr*VL+M?<<6yK?X29+oFTY0wB2=t!C!cggQygH(dEfj5HS?}qMl zo=~eGoi|&90xoMh=HbYKc{tIm9#iZ&ZXt&F$8@KER&(3Chun2ftO&G2iSdmL5AxO4 zp?PZ@JO4O#F1buVK9WvdP%X$mTasl{66{J;jLZX9z+%{$p|BgFNL~Xu4;bYvH}$+D z3Qot&;XI+9X|?6C0LgO)u}H!ZZUj+%Xl01KMKB;A_4Yi;bTbJW&r4=*Jzb@eRe;0} z9VBjlqZzw>_4)-*2k8L3Ngqb=6L)JD{Yvvyx5Ft67_;a#b^b8p(7OQ_fTsKkEVm`1 zOcya65IDg@8zrK|)PiL&2fV3VT{u6KtTJ^R-f@rBY3cd3Lx&9P*e}PG#mTHz>kbtQ z6qz(sx2nBonL(A!+Kl6A=zsU~w`XD{4IXuW_k2M5I(RTey-*_z>Bv#C((~qGj*p3* zMeTwp(WrRJq=~+z(-*Z1EuqDmoK^(*OUvbWe3gAJRm;0*la5YFFc*1~U79ap+_jb}!ac;2_P$tZv-&_*NhBARgU=CcRhv&C8*k{)FT9PbV>CPhluD48|QexD^Tk2e2#I!#v;sEn5TAoZ|p! zb2LlBEVNk9<$HGn0ZnAlA**52k3Lvo)=De zK4&mjI04WLPN3)RLx&M#$Npj&t2+IuyeGKME34J@82_xH(pk8R>`)KJivm`7b0K3^*DJ-sDMz}VI;B8$b#YmqGngwrc4S?Cw@w&+*D}+ z!S;+-^YPI6S~+0?CrJFtZ$bHG4XDhg>nF{o$k*2oYarz&O+7=>l?8KPMYGu8KUYti zRR8O0`C6^zaxw7}fg$gI(&oJ+x4}8x#BsW`EO+c}JQ2fC#-0b~Ss#PGplkOQo3O4{W0_haIUHAdN z;)Of`%OkVyC2B&I6d*Te6)t1LC^e%P1m>b-H0Q3cnj@O9#6*mL-I`NtdS5(JQt}yf zYqV66*bc|ETkDEQMQkO*3V!zJ%0hZ16JJ&kY8qFPQv7L$iPKLvMVhk%g>@^@wDN7u zy|?RrWKKQ%g`WmSkht+Q>#cQwBn4+cw5|4<(&D^4xBHH#g}R*)2jVG z(BJK4hdz>6%Lbc{%wdx`Q?P1yY7VBjUd!$wWts`%j6*8MAq$NIXZP`Iw=R)v(52ln z)cN9+T;}30LRW7A2KECc9(+|pmiXW#xpsz+auPe9l|GYy0`1hHH`AHxQh65LPF$em zLTMSC0y^~CO4bO_W&gCD@S$w|0pRT~Jt9PP?`J0bfPAA={lr8Ai7GEcxw4WgE?K_H z()T6eb;ZCE%ZmIYsx=O-)`-3(e*vWAqr#NT*H}|8omO5b(K6qFq5NF4x@J+UO`2t& zvZ!&=T$>aQ$n`jkkufn`Gb@efW9=2^^#l~ii8dd?yPtDbz~ob{*9nf@Q={9M=J zQ>OcKc(LkM6q}++Klg^?Jj3XtOhj`4J4p|7xr@|9md8$GLA)qDpB%Oq(Lk-q{fvTg zh6hSkFb|_G7?{)5O>{6pwd)35&L+*5Zb7G&WF*Re+G|XCHFZQ0&ho8T(g_VFLXv3D zXt(^a6cRoPEqUCH8&w^5lT|k)*_1{3`JO403a~x+AWq)O3P936VbH$QVN{tYs|+s(YqDSzo(tJgdk2{l-`qQYXYw# zbI?)m^(b|^T0AF8wyd38e}rT7N7vLY&x{HyZc*_k z!96nczZsgiEE9n{ru+>6lq}Tz`O>xV#cV%+QB>(1 zO7PX=3MjFEk?DFf@EehWN0z!Pz}y?Zn^cl;u7s3H*++^2pe0{0RQ^wzvIW5%O7I1s zxmtidiPJ6;cUGSF+xcKAOP71BuA4eV4lQK$H~dGimp;I7x*)|++Gi45$y{%QNMHlRP=!>^jh`j;|#|yCJnay?>ulzFl;>PjypQ2 zap4S(Me`$%83mrxnL_A$^YL%aSrQFrysT&J_}-xVJ*q%)KI zTZPoK*lKfPwHNW6mV)06Rs`22EF2Aa5|_E#EZE0G@J|oSz?`j6J$i>LS`xY!8Q#oC z=JTIc&{SaIhhIaQC7U8{u5PMwQzcChw|w#X?u-8dAQ;(~;R68^lea|`1T!@-H z0V;o4kL0!yexF~_Z&3p~TJg{ozzDpC9UpM)#Df^YdLOjinrV4kQm>93kAHpYA|-We zW@iH@@Dogk}dbFH$_WI1#CyoXsf z59+en>NFUtw%Mwn1n$9}d){uZp`*NQyYdB4VjG+eTb)g7!kC?`3FHA8#!;|uxvOah z8H2rtqPZ)DZ_$@~9t&#{>Hbi5())m;+mZW=j`xJ^O2!Tc896r92OL~>eHm`AZLWWV zSGfK1*dqCU$q(c~A|Tna2=1#R9>XNTFOjm%p4$bkW8$DivB&}+s`8$D+gt7}+*IBU zG`jLwe%QuwAmU)^xqxs+dso7&j=%1!;lM0`RtXV~HuQL=SO=f`jq$(!&~^jQD1SR0 zi>9EvV`e1Bm7@ah2iZ6Y8X6{WiL8{I|7m3Y%?3Q+~1d_ z-+j%kN(5N!aAPm{1LZIt2R~L;c5*;QG`yFNTQ{;2O3gwXi=%LSz%89!Y_hyqGrL$k zlvD7UJ9(ofDBq8TU)#8=#R*+I-W}R;;10JLLplzd*^Oj98A^ui4a{_5a5{euvpn{u z8!9wj(B&HvKxTr!7RV9A>5W%|<~(M*V!Av#O=NZ&FSP6hPgiO-KeJ(GV_-w`|8cnh zNKZw%8}J#LP8MVh`#D!X!*55deQ1C2R~Vkf$bdY%KguRN}@(vRpbFmV{dSGpe;Sg*M4I z*E2@nUG69k6)ZO25Q*uviQe$7lD4G|V$QCayTpj0Z)lkUFjNdOesGF1l=X=;w(N>w z?4+BFO!%V}UF#?db-YB5JJK?C_6JU%tw;Ni~;bmHkstluUn6q|c$~rxS_-E&*j}cMMBkm*f(l`-|dK?5Y6)>fxiog)of* zI`oMHi5X)R9E5Qc?1V84c~}D+;A^dNcCx!%I|JzQ_^>Ze)s8$Zus)Cvzvqvd+{X?n z2d0!w+1)*Gn?#-AJ-r{Rj*JSZq-=}b^0fh}1qB3W|0^pk5Z-@MY{aA5Mn>(+yRH;j zd{-VnfXg9EQ#uJ_YnEirdp zF50M#vapm&H?aYf1MS$=SFhhhn>}=b+Jke+Hup5N-smXI67&Yg%}-Z0&|8 zOQ-N(If%PXqu_sT1yu!UN%4r*#0$g(`Md_}FzOAUOaj($ z!{Cu)@D>9ubyX?fOZnCSlU+rDEcCGz1KCX;dk8g-4?=AA5c3YC7SQLfI_IbiNd5S> z-*we#@Vh9vzjxRs+E3S?gZMH9w+~m5OK2}TX0pj5coBb~h^ZsG01-ESMz07ucBOpv ztDYMSDYs{aw73Hs8il)}aU4mlxh=Sd{_i2Tz(QvAu&;$N<{76K<>lqX98 z_&9N?f(Dk${?9~^hH1WB3;}IL4|0Ohg&21Anj+-jpVTLshWTF`;-whw4;9xRI8>Ud z3m9;5s&6rh=0+t1&f~kP9bIfzb&%{a#!?&!Gzfn+*t)?vfCp;snA{2v%BI=bXDrNx znN|(jvCrMja%+bIzqtDF%z(~FK=*xnEI*b((iq6`G`l;iTvbH}Mcs}*28C}*5@5io z=!R-{B&Y&1Mk2|Yg4rxgvh*VfqSwGkYh|OCd_@c50MVW86;7qzua) z6hm8AJ8nzN3N46Zw@Qj%>e2i?i$lBOL6|31^vLKFznh=;mf6CZMQt1PgpU5Zsmwmjt$4z?%VvFX&@Obyx)P?5 zXqYocBFI&6Z4VDJ(mbpa^R-O*x^ZlPU*C^)DO5T;{GZMaBi`XIIhkyp3CH##zaGll zqPc$69*5uSqG>*%?zc>eX>{= zHx2R%G1ceM>+8JeZ*+reT(4&JvA#FFO`ZIdI{VN?mH6mI3jf+uZPj zQ&qf0@A@ojv?>9-J4)@Z!XVJ9H0W_D>_gXy|6MJDS<@IHJ@A03I6+^uTktfNGQVQ@ zQ_mgu2Pq5Chrk-PcT@$$7QcVQ$fEIL(In_AsuIY!hsC%DeAmJH1qkB%;@y_<52A&& z%4lCUy@PfaE&K%$JO)DnJ`Qd7dtdLAXBUZ?2zX~W?l9fI-Hd&CKK1fNMutqULm}_s z=HNHLa%NcMfDEY8A{6Rv2_4_>AB556B-4N_7!dRk>aPJAHx-=97fsYs%=9RD`+((n``dZT|C1^ z`DDI)`^T}AtvLJUXb+b>78voaC;^t8%3{y2!z9w!y`SN8G0y9`?IPva_=h|C;7f)9 z6^b*CVispiZ;+kq6DEJ|iJH5~*tkh|7#nX8*xt4EY2->7jOllkJk?eGAnXqOP%>L! zk8a-cr8{i9cdJMDI-44f`{YZz$bs3w_p$i>fyZ&^0i=CN50id~*MwA3j?{?wfk0wp zT3r@R@21e9Q#~CT+MLo(n>gP=b?fK&-HWOq&sMllkz7;-w?uz;ljz_l3WJ`KhKhp| zS*MbRU}Z(q6uwsvUBOK!TmEVoK1rqXfQn#lj7+6p6#y^(RRIv@88TCbc0M#-S=P$S z6E7?2{(K|{tYp_2KnTMwb`-n8m4jiPoZ%8FTxPM`jU6i&J{Ff;8TS6mVb4rM(aW)h zrmUea+(R?#2*Q76(d|84x%DOmjzu(UoI3b=#|%fE0G<)zn#cA$oi{OVT??-XmuH>GIE#fr3|I}rd&|sH5XL<55U!4Bt^0 z7+x{GkfKeT05F`DO<7$bSdp?N{n*Uusf`wKHd7j|by+q4K^u2f6hvWNuN8J!3!?2= zHEqvEB3Ec|yfUq*o>8th%iobZG}YdOi9D z@;86{Z~m;QeawLJp(t7fFJJON7k6myX7ns-hju>{^rJMbx$H&G&Hc2H3T9R|%dhWR zD$mFe-19kWzyC>ID*-tuOv^vR$Q_&s<+ATrm4}?4?!n{WlEc$RBdG{?Qmq+`gTP zY~FXfa6&Sme^D0Ze_O(R{i5_W4+RDmTT8xwqp>a%^>*p=_>Tu>PBlEWc6oEgrGdUv5V0sN^= z5^fS@e53Scd${=d*I-is{PiaAlPuXh5Y}N6nG}Aj&6|sVUVL?Z@$ws;Y%)JHq1jyD zZjyh@k8qtJ@pYg#*Tv>%?^U&H+OpptF0ZuCJoTr`U$0-k{3e}EGY0m6WeNXp_Lo3K zb=j9qeR&mTk=NYfZ|v=x%P{pGxO2evu*Ls-hViP3)}+lSSa0AN&U6)sij-x!w@CQ05<99gP=Q!H)XkIt4a?8WpyxI;`&iq9{ zJJd+x#n;yt@8;@YGUW&1v$R2}nOIZfXHm29UCYjC?tCdx*LZf^Q zvli+JtW$w-?kc*ga}cy5uw142QBN3F8N8`b0q- z>DoVA5(%&*2tQvEpn#EHN&+mR0b!(YpI3OOKx6;!mnZv())mXtwI3Ws%MKvEA6M@voFcHL5u^s&%fV4!Wv-g0)iQ7ZL-OYn3PzJ zumb!-2^yu*P1qKg4*2~G7)%ncYZ&=qkFM*;oo?R@Rl#lWBS&5*uPO%ZbHsh`JP;!> zPM049v}?)Rz6alo3;z`a7G;0lKZH(lUwP@Mm^LYz`itIY>4TMf#2f>5sM8X4IAVoi9G6+zggHk(g7%E)!Ra*b@&^eL>n|x7vq9uE3p31bobzB ztxPM3&$fjF7&z9OhQWLG+sYFMjxguIah-xgAp02Ut*z|)%NS!1lHGrT1>$L8+yEcS z{HCJVAu%vN@3}?%(MjwLb@^_vGTg`@53%Z?KvLsjgX(rNlS+ zJOYip&|kgWaRlLti9UZj_>Fbqn>acTe&ITYYr!v|PqxWLzx9r3mw+(xz{+*K$h&i6 zxkQL8PryP$ft=Z*;ze7*YXpmN#3rorKxX1w2c1N|b0n0$;8n3p1l97TzQ?JmZJqc(iaej7W?hr!m}(*oWIRh7o#27#X8P`!S%%YXKE@*IL_sOeStntUILQrR&TyU(a*tu)zTE9k7>rC=+_iCJa;Zx(K2>y+v4ad8&JNaV zA&zcnZ}Y8P#*_!!+xFujWrj9mWc6X?_^F>npN#eu+<1Q##7mmWx?5L~G|HZ#B1$L0 z;sp_2pG&oEVlS74e>CQO$`(JxLHSJzlJ{E>dlLrPH(gEm;vMNK`$i z>=FDi|`psRX4pET5cQ~N-E&2l!&KDs7!^d1k?GxZ7K%f^j)`>m{sMSq_|-sh3+uX zlz4wLh|2s4r776mQksbXD!$L>U_prEa|BmSy&Jn4!t}D>0aUO<)7sNj&{rX(6bLMb zK8dKYWWUIQyueeNSy>-YPhK5xIev9Wv?DKKekG(ED}2~l%HLGVc^Uk6_r!8&4fj6Q zATsamC8&>OU~SRH(S*H#CW)-Cl)y?1aVvi}Z9(<_88X*nC?_vv14=K4gKf)gUbzLp z&EJ$2)@|^y1aw_!{PE+6D>VtGdb=G+ts#$p*jq~N<++7x11LBZwVl)ksNy#(62vq9 zqCT2zEERBgh`$9FA0jDg%qG`)Ke*}#YMge8g#i0*pju-m3;$^I)|E7*_z+D<0&jm; z>kxD^fY~MUv>7_Ofmm59=M}nx&1)&lNj^`lvB=h1S8d}O8CB0@Lhf!YF|WNts$=DS zD;kTp?L9qXwNhncc0+3_#bA*R;<#yJA#3EZkUfq}$6q-$Z%Q<)OzJ~Q2vwOQ^ip|u z4B%I`UNq`EK_e+DDf40fc7{zIzy%hVM!~vn;`Ey<>1DO!)2@=ZUR} zZDXEHY))+3&ct|P+qP}nHYc_{vGzTCcDK$}{j2)JUH!SMZ(M!-TEJEh2e;P<|B7z8 z(V@*1YK9DtFyyqWr9t$p3|$BCiy&-!Z49Coi!@$8UUdAg1rr`wSVRWmMW*2bjBmRr z3!f?($qD~u*uZlAGjW$cLpuP;YZ#E-jOZkNC@m4zY)?mTF;;E7x&ir|X{TKPdc7EV zgnxq9vZ}(6;+7MO`F1FJ+ z0&Jz>NxS@ZM2@VKvkWsK(Y;FOX!w1(m80z#IT+5+SWv6zWrm_`Shi^HTDG?OAv5A4 z^>j&_+h!duZQqk{$d@3e%ZZd*<-dt%S6r&K2Za5wo8X_>xB=IV7EJzZ5T^I{CR%>e zj6N<$YX{Ivoab^N1b%*usl{y*zZ!#83co^9j4EmEw+Je+7?WvGp`gNhZ4PgqnKKmZ z_c2=}$?{eV)dK?*A{L+AJez%amCz1ToR!cZH#&U%=>a65lKwS7h@(ftI|7XD1?;I3 z3h2ZN=$`PYVi_w%4K@1%`f8X)oP&o(`gWZbatQHty7>?b=E22tfDR4b01~Oq2<@qj zOmsVmnN<*h`B2DM)R(}{T)}MXO3iw&ne-A)>BEk9mh=nH__6w8gI__eWWRhFs}Il- zSZG~fU)%oH<9O=9fN)KVJr)+FO%$Th-dGWyz4~Kv854i4rLijs;-|m8VM)*68~JUF zduumOn%wS9wa`>JK;B{7e!0WKZ1yJ2!{dX5Az6YkudW|H@}>I(efO9!~(oAf0_*PqDH1AT)h(y9iCd zF!;dDXU>#@x}B6o{QfSQILW>RFb_`G1SJ|ffS{G(yCJ>LB1pJLvmmr^QWS;M0*1De zFZ+5do2XxVJu90Z{n;K}g;LI@DL*VYfBOf{X?v{koQW&Vscew&NlJl?>2ZHO={vty z0xWNg-m43aQAg)Ou+EZ8kA5B4UNH$u3*TUd z+A3}TIVX8gxmj5LKePxN*H4zzev|*2AMM|<`0Z%j7wWfZ1j6+d8e-@g3O2tdVCq&bBrM}T08cnmRvt=fc+>(FXVzVC2;3Pi0Y7K=#}E`- z8#FDn5+$@{44#|weJXsYY%>FHZVq&8!(m+GD;%aFTx?{pPJ@7+aE)mI9>*(=B!cvp zl6SS!U|LpS#EVpa_<8_4^z)Oq$K_K4B?CV`SEvZdvTQ)cKN4WN znr1{6}fW*uRN7;$aVlFm)V?h&4wH%_vt`b_y zSp7yg#foM&mm$vuC2Xxq=LasNnj2b>|6`j0$notj!Z-)HN??_2St4u;a%UDXDLixo za?sfJFGG}|fC*2gapzgAQ@2T5z)xbFcCOo{h|ojpFZ`EA%?6PU7Kkm2~jG2%1nG4U>vs|@YhOf%*SKDa=k#*jl-Q56zuQ2e)qskrrs)760quR>h`*E{w-RjoXI;!Vw zoXDfd<*Vbx(aPkVg01S_s%<@e{%vpMS`0f}!Q>Gfgs_(|b3-YR&t~DHC!}I6_098Y z$Ma20F|oBk%T~OSfRccdfV9A|@8x~jWFb>*2k-fP+vEXLY$xya|38rL;61x9noMN+ zKZEu0PL0do{YACI_eZ5aH_qN>S1&+JDX~9^cWU_MDoP@cW+(MiA+pl(yfg6EI8mOML~H%Tc6XbPW`v8xTY!)NN!pJ5xD<`urHmhfcZ!%C z$YRTDsD94PG(e?sG*+Hg^myVP5svzHHZnt;hMdKpFsVJ(-0G zWC|N)kA^=jPIy>0Y(40*AFn)9JNTOkVcpq;#X)08yKlGDo1id=_O2b zb_FRnBuNe09;PPh)1^+q&{QcMO>C>##5`4usH=@l9ZV!TxhFSu8mT>$pFok) zNqm-}=MX#T3sa3HU9)nN(s6#2{7jirLFz*iTnXDF2H85C*8H7-Q4SvMtvBW z9Z^JdXhNQKZIog47@wYqune_DF=D82v{8^Le`F* zgqd-kH;Ib~o~)a!0d1f<02jz%No^6l;LeZ-sntyiY0m_3F+rIsowCwb$#mz@85 zOtaei$=CN1X^q=F^|m-YJ>2iOoh;XAj5$tYxbif@w^h}OF;u#ZIP-U-Q18I(0%yN> z>09rGxmq8HvEB?tYWMnaaD09Q{|j#NM1T)zQXNz|yAjIQ6KcDX&}-3%{k6hneSIZ$ zW&1xaxeKSNR_^M_MyA;g-i!OH|2L3MRX;_vo!!R@bR)%ITCx8uuF zi@UTQ;`UFAMTTT_wDHWH%}U9&D^1}ck-1;>c7J`y@Pq}!ertZoC+@g1z!jdc#aRQ+ zKfh8=EHEG+-%CXPzq2u0a?ICR?$97jTn-m zBfSe#rYR_3esF%^{4Zl!(?cYCKyQ=I!Ldn4&f=P%sB^-l^<1KUfvJP5uMiWV^`PwEZ#dUej?Vwbjy7XM6M#X5yt*Xb&f4p$WPD8Wtv9!HIS8 z^(+Eup~j;g>ha)zeUdBJ6$Raxzqh-Q-WS^(@YYE==lpFTjM%-Mvi4%Rar)c17^Js} z$z84R7k{*85l~D|NEd*t@)O01Wan7;@itz5dGILViUVXNv6%q-LvZ_BSD4VI}if#Bme) zSCMfkt((7GobCh~N$bXP=j3DVHps@V<=Yq3t|!oR?rHR@Pn`4=Y+OklB@-9QcIEfD z^V1zD%*Z|xi=ZFh{yuzQ{Z7;x_iwm{euwfY+HT&nef$4h=aO!BrtC}Hy9-#HF*n^J zBmU8HTfew%eyrN7r~aH}vWN9VAW%mbW0xj;j8=5eVWDIJ{j9_0Mt8IqsH&;i(bfO# z>L57fz%wbw+R3J#e}*x`Jh%Oe6LDy9#FF)#nYj$aH6kHrF<8n65VdSjk#G>c3i7zD zxb-Ghzf^R+S#`%)G+D;QF!6hpuiZ?F6R{R{ry-Sz6?{AfoE zT@Y)}!$+9`x{7`GWPjMh#bCJ#ot~Mzf;hS0QX4LbZvEy~}_NyArrj5rdEflSb)}nHt{l8Bbai1p z$?e2{9tVjps_7)Ec(hSlXdm2U6Z9DGZV{%Acg=2H^>iG+D-w+R9Z z$aj~<{2#{i?1_ei7*MR-oUH#h&Z${z+-XA`wflnJp=e^y;)#-*J6xBRCpAemIj|a1 z){nv_Ax}!7;p6eF{}&{pl!BQwtngCRXNUf?_2~vuILk+zm z4NZKa?6jPqDW+}dwmpJ>^TYY!{d0OtyM!z-s)(&4S7L(1E;SyaKkJ?14FvS));jF0 z(x|a7m3@GFe|*~e+S<~-no59|vXWPndtv_!g4;34gq||6QDRVj@1x#u$Eme1&%r#i z+xcK*swnkt^sEUP-mrZHfM&d8s`d~nsH8d?O4~e~K@ZcNJrt5op7Wn@j&=ogGD zURb)>=GInscTb)XdhNqtNmELI~z^D=>=8GBZ~?abQLjW;W)H{U(0OU-%8P55GNLD40poH84{DTje{RkT6 zF+>*}KX{uE;)ff-e&tI$V%|cGPv3!2_D$>LADphbq_FwzXi}}>=qoA3**-K;f1?gW zzz}QTU09~4`xrJn$dHcAd=B6&NuU7`M=kzUXvC!>MhdaPA#Qr!rb-(WZvbA2z24#b zmW3^EsfF)|U26t=;qx2!s_#Y0_Uy3Eny;hz$#(Q({cB0l@Ha9NcZnFv))n10hdy$=oiA}91vF}z zng9Z2A>tVu5h26DAuFa7m(y@uj`v?jMbG!Q8x;Exs*)B81Dv#%9aDJh&DRm12z=~D z?(Ql0%$J7>5NY)xYqpDF>T2Ro567S(iWj*tfUlS!i-@R%4ggB3TOE_d;i-fsFAjDp zyur^PJdEQ=Iw{d=a#j!-d=OGpI1J%FfJhg%X{Iyg=d7-HwJx)7#0B$7r}viIk@s@Z zYAG9cmXNvr;RX?{aF>b=j3x$p?kx2*|Cu+kG2wGJ5;i@FGQ;qlnZ@c)_xltaU_}r>2Mjh!1be0v& zPe?|0*GhQuZ0pH!8UbIPOOY1l9YBLM&-sPWjbdX?g7rXu$yGdJ=7L`b0Vg(MpmUO9 zi)su5+SN_*8;gfJ45FnP8WfD4RKFQ>iKYyK>JFoPpDpo|!+uR6>)G z*3~zB$US$2hoih*E$_89YYX#+I5*NV5?|A~;&SEOHn*g^H`gB5$y`?p?lKjZ-;7z* z-!M+Iz&IpHOW^8nBf49XAwghW)IUajk9JuF3csYJa9gxvl+^7~W!9ugN zoxqeSh3E>hX@%+5kjk0!9pVZ5P{3L8d`-YDk8(F2(MPwMZfqkK5jbq| z=~tj8^#qt)|2pLZ!4%q>Fvn2I&rKa2Ua`QNXVhvT{#f%s^-U?1--!>a>aEjjgD@H3 zV+PX%rL$A!A+i~?GLrjvI9KhK_nWkjC=Ru8(F!KuN8~MicQH_RL^V0#dT6YQ$RD#YSK-Qq5O!MrZCVDky!~mC{VrljBQNX9K9+P9GB=lfz zcoWX<&N3tjT(CgHQZBw3p4CcVga-big7uCO|po&*puAamrNn*{(q zbrcISVgGq*$u?3w7A}Mgdq_=QR$tv3=Su`Vg<~)ME%_hst#0pM_%-^W2w?cS$yMT* zI-VTezDN@xHE{Rvd8JLk)Ap%-qi2cSm>31p4t^dmiljSq-2VM9`bN{c6RplW-a)(_jJBNd^Lbp+OD^` z%~(YxHxX=@q+p2MS~=W!S$h5^?vQwtsovRPv#R}J$?o&H|8%qSHMVBat~LbHY|S$? z{MxG6#8y?luAq`7vM=VYugKNrGE8*Ug}U?DSUH;X(f;%4fv-JmhCzLk$>P@C8PW?v z$gV7C+v!4qRGn`cwj#ruQC#Jo0p$Y0)RO>%?-&G?w&DB#O?-5AB*zGaIBH&O=? z(Kk}BnK#@sMJ3y&5xW}Wp$N=gt=!cAz0$WUfG|W!>_!pDRTg`&;x!pWWr*RyenrQr zI`~?yaL38$EYo6H)&P^ds;Xy7U2A@VDT14Hg#KE)6t+&c=i19iRwn`xZ4hk2x*f7j zRsxT!17^AS3n|cux>fUh43dRd!n$|<=ms8%9rO8{e)qc))JDivx^7)P-oL?^GClYx zd-t_;RWR} zL;JgtjnhcS<%rd1Y0>{VB2Jj2tx_z&^Hel5Q#5*E0LI7VcgO^?zPClwn$&G(xZZey z6j2XIb1wt7(^SmS9ozzL>$O8dd%bsXQ8r}#Z=@)9yE;EBUDE#JyOBkG9TU)`oU;Vze6wd)J{;)GN#EAImpbr~$ho-jf}`nd3Q zcasa^-;Pt>cNYM`lIa0CMR}X%gYWPT2(>)CxjL(3W3dOwT_634|Hh@$U0N1~(a`M< zi5_qDJX?Jn>B9W*h3wl{3%&sFG4Gh?#%U_yYjndpIIRa1i*Vh+lW}Zb5$1RwC9hFX zeL51#yWh%~In<0G)3(HZosIPD%K#k~+d(3NE`F4B^Do8X+E|OmM@@iBLNoYva_fmm zQjsu~QHJAZ_^Jr>Eh0~MZZ69yC3=F_E(PkoWN^kD>}oGeRzN1ZntAIf8$gXep(q*% z{s5B|C)ojt==`Lb0xP{H_z}v|Yt%Ygw#EOaCgOwXlSrrOjhpkt`Gu*3?yQS?76P{>F5S z8$$cGj5NX{7#thK{hvU{TOoP;=76l_q{@OETtPP&LE&9dQEH0;-TVu?gRA>)lmyS}^1)6aWicG4tj=sBea52v zW0;;ZyRLW+N}Se~h_OTU#LuG&ZNJPKC>-w!86!{Q#w^7)A$d|1h=XhTyhe>x?`l4= z9d>QoADS_u_Wn^D{t<1RAbayFC6+tNr-w=cf!z*UGhU0>0|5Rpx)Nlu-Kr|4Dm=oi z5#7I&aE;OIiV?YK&K}Y5|AK*7crZ2ZNJx=9EyZ}X+)y+?Z#n$rhMkv}hd$`o150vj zApi@9$JC9=Z#~l6MQClXRfYe&(U(T;-JVYYOlor|R>IP3kvkt%SHe~Zv(x*ll^|Wv zr{7~U?g`vMm?$?vrwwp5S9}Bu8X#pof!ACQa;~74m~}#e0*RI8+yW zGMf-y<0f-7#K8jArQ}*Y=pu)b7cL4!K>K^E$uLx5pGZb6i)LQCjW>lMj6lOKX%o}W zx6&a=Ie-&2Vo!DGBFH6-YhTbIHq{(6#5(VUHihG}CqGDt&xd$9dpjHW=}J_x|>qwNHQtfRsu zL-G<6FxZhLSWD&D zX6H6hIZs{tm%NS6E$3KvAp-7#p?KMsaw30FG3I|A4FGMZw1f=l2>~GX1l-9^cJ?ds zldXDBY_8o0zE2G>>Xdd!`5%L^dw%+x=B1Jyxh1zT%5VaxHx!C--JerNiE^Rhh zrt{>0k?e>z6+&rCqU|7Na5Dl{-oB_`u{8LK{rO|Q8Ip=h|DO;4u+)` z`KmWS`9w;T1Qkm2)xgANh;zbs+DD}-%3yH9B-xdO^M~bxo5UTt<}`H~_`CuDQLdIO zJR{)4gMo@Ta(q@qJJ%mj!~~k2!{uEL}*KIT66Y z{c*h$jp#5KJ#BFw7Khu+4H6X>B2J?yBUedBP{AIf=zEZ&n?#M>5(ay0x?hAhu#Qczr3RF1pA{|Laq zINNKc7=>#&dkX@Z;l(?UfFCEy5}>w2odWR22B34GRnjfuLU|)y!VV_6cQMEay^NH~ zr^32LU*!5=&)9tNZIxr>N5zI6))!k{>~`@O9AyoflV%YdkwcCZUH%T zOw9ez44P7^#ohxZWH4V@&r8{2*>HpkIDeeDzg@!OAlanm#(Ib#j_uabCx19i$-uXg zG5I31&+T^{A)Q#SYXwWh`fkUle+w1 zQxLunx4ykQf?z#iV8M9f9)N~sn_>Oma;C-8Fz&9)S@+j<=^W6AZIZ4E?kAFcsexGtB8)u;E*!aW$p|<8qHT;i!4#~yA_P=Xu z0^QgRu6rL)Fmba*3RZ79On*LKlN+Na&GnBw6icF}7Ou(>dV9*w@#EDUL@B8v*~#r8 zDd*4vK?cP`2Q%Q#;MEPzpZG!0pZs-UWiia7$fK>{$kbOO=mP-;rvij-cVqJ{#vr!a zPQ4HByPHV+9DVOs!qvzC%!u;ghfGi~Q1Syeg|IXy2Q!7)e%L9ChLyoOIy*KK5WsA zS0CqINTsM0%>ZTy^9rJFQ1V8L@5SjSXX>j}W2c__b+^sNeZtu#IR6|Jbwq#yw;2of&;;=UXOMTf!Bmbn$l zf5j%u(f&
bijud!G16oOny(XT%5tT+R+N>%tR{t~v+Xr8Jrn;Av*WF8?|{GKjo zD;y2q7dIZv(Pz+OZtiXfqdI{Tf|2H?kV#WU&JI5$ib1u+YISxvWQ+}JM7zrw`rwl) zGI)oQRWk5`Vm!7i%5x0};gDmI7}Q|E97_udcGc#HptA;-Nld1fuLaaY`CmGIaN^{k zW-#}CS=eP6Qb1<~l7uXdQJfkikYphxJd=S#BZCbw99ts_9tN7e1oZqPaSsE8r5cd8 zc))9m;VxoqaEc`niKu|GBTgrW(xq9r&}CZ{D1Mq<%R-a?En7nvs**5I9lR!^R;kZ% zsJN`}*^rPM?5}7f9GvvID}|ny)!?~WKDC_a@3MheKkQnS|%tEZfQCB1|a4S-!)D}BT*{WuZ z6A-YweuQzelxjfQS_}{nEX5~geTDxbLjr#ChkOw)$IniaUYCahYpBjKIpbkWD0BJT z;mVWI>NA486ak<_Qs_if46Ev`6b2!jtODeiH*)LwEahO0O}~-6ALDqO0T#GWub7ZIiqrb-%gbL);x*=pI1sI@)&F(qHG=k-T&Fw^s*vu zv!qa=#zViieqIThWApc zzXrrAaN9WRr{zPz#RwVd~|aOHg~0Xd0~NEqoka7{?i z>Bb}q8mb_yT$v)i)LJcAm(4SHv8XH>Rc%{0+eD|->;I&I2>HYY0wgMcig;>0j1nP!?>_B<#Jj}IBsD||~xf|^^}>D3v@H(SQsG*@Ne+*x3Zg1*#{oWMFLf||avttuyCn5clg$*87=%b^mkGZ8)Uw$jpW^SEPLRsY2dQ1-$@xIK zyzql1WTMO0L4M=Dd3d;+TNJo94Rd4y+qAPc*xcwg7Te;CQFZ4>X?Nk$?KJr1qV8g0 z5!V}FDqz1UQF>fgX4hd0Cw=bN_J{(S?9i?GbbfrVA?R$chec0FtCxCr)u*5+k{XBz z`emVl6~7r7l>1NY+zE{JPgoC;5)W&C%q7$w1aQ-#)C3tG?|zNmUU^3E;y~LH_12;C zZ?5v0FH9%Y==?=bG7f+Oko)g(k|~%PxO%rRuu)2aX|O|#KI|ltga-lr4+;)s08K-c ziAs2K?Y@y0I{!vbsOQ@brl@TX^REB;j#L@cJ&F$r;`2j+$;;u&W zL_OeeN6qD8J4>xV0b`Z{vHZ_emHzn^qg?4{HUW00_{(k=DM}Y4F|W+Ywx@Eh=e}7@ z_59%q`--inZkOM^JN=9~#$wnCL)6){e&xwWd6&RiFDGy0uNHe)l%Nf}*@ zDzqyqoi#>4dJZAxO9wvLr|}_fM?>4z(Y6wR!Y;M~k8K_x2*kC{Py7MGBK`Uat#VSl;mzksNR^(#sT-FEd1)!+P3abE2vnmGgqR?~>(o?xS{;H8b z+YlY|KZzCBP_sfZiHCw<=B|;e#zpG+!^}{nFQco@@1HxA=`$}qRt9++vngl?A& zk`#+5T{KD~;2}PcC=22g!`b)iWko;3C0G<6giX@M_|3r@myd{D+?p^at)qaLG6qXq&RwnF8L~#! zYLoFb?6h9CC(q#n`+fM?Z}-|UOJB`&PYZiAqrP}NKILLKyXPf-P5C$#{(gGw*x;4Y zy*UUv655*}&1{K@!vr6nFjq5vbJjw0ZKcy7pC@dhMRBPX&T8gS&kRtt*TxpBi-O= zPc6mKHUlC$Zl(=NG+_%P65REL;u!iw-tWF5@F)h$wNgsrpaW(J* zV>~T_#s~$a#@SomHYZ6IQg8IS@Rr7T(+SQxINri@7j+mJEa6y^)wg;6iYFMlm*sGR z;XWcIBlaXKrWGaw$)rmd|I-XtS;9V>6{Zx;TicXYeznVE!y!$E!x4jC$qAhCpR!#4 zo*#ff;6pV4$fA$h7?>9T@GY)FA;=3;30I{=%a!z3EU5=8kl z=fufTaTkta4?!OFI>x%N>6V8+95}v8cZf?20w2AiCc6Q2U_IHd*2Ur*-YElGBxr=n zSIsnVA^L5m4f7F^1U%_QH2gvL-Y+ zCUiId2`gJg*Gs!+`+H-9W^v!qV+&=gO+PcsIufr78cFSvkE6%OarJrICgBF3uvz}5 z25m7E4#MXLit&MFTvB(ad#Vzz641@_P-&nCgKg1--&M%C&jN(J8Ez18dnY~ie$#UT zjxvl&r<%v%{5TE?qD9P+pZ(-!J_Z>HW$b5Lz8L{p-F5{CF=DXgLieZ0-5q#U-!XaT zZiXSg44p{Kt)el%o5s^v;*I?^u?#-(;EP*0$9F3fnRI!En;+C%C0|?kydS2epPd@l zH3Q?{zocV)p6@`^V6}hs>=lGsTHWAOPBx8%94(y4u~|BW7TTNr)g$_@~R=eKQww(d)iHrMtEmw%?@ zzmoPIz!||ET_S2y7+`+TY(E?H|ArXK)LTjH17U*y{9h6d1d!!_`6cN<_#1W`;!j)p z{SxrurOv%ery`x5&{_-%3|xZ5o4hROwv8o{5=Hw(`n~2%MUqw&imv-jod^PP8QfXv z&b?E2?+6J7FXZ6`;biDi0|`fO`)`bLYAj#Q0r6~f9)A=rf@F|p*>^^n_!{5!KMtmc-_g#~$O?xR6<5*mW-u&q$$~s(eJhAsuJ)Bc^zq_#$Jk1)8Xy5a zT6xeQMD6)iC$!Y0V4zLoID>DlK@8$;I>9kpm5&sFP56b-cfG|Si`gws!k{5{^S?XR z24BE?(eVUP{AuTKec>8?WqQ&(TirD;JMxd?0Vy1wAOsi}Vb6MNC4`!7M28hwffQOI zpKZ@Oa!kb^Y4Qz_a(IvmAq9!{6+%XSm_j_j7Ijfs(^&kuAq0aG&2&Gn4J}T+!jvpn zI7z0roKhP~+b@oUJAu!=@i~g%wIkwKZ-<6tv0br$3;^Dg-+CmePYh%$#H5^LM znKK!p@`nOp@E9KXqmigPc)l!Ukiazn2HeZz4NGt?^607d#w>1YWBMR8e8b~eg**hV znMc7@<30(aIEVI3+`-JRh%TD)!)DQINAAZ

h;BV=K|%(%#3IUe;g)eR_exS$xDpekTpOGbg(4fj5fIQhEt(~L8n5;juCVe z93Z+{s+Ise(LR2uIy`ZLW-LtEW;Qbd^JtV201$}<+dz-i0PBeoT_K+J+H%cL?rPXV zOf(o5t;1Pu&=heYM0RR$Oxzku4X15H6Tqh@mK*{=N`XRf&C&3U2&ZgR++e6b^fJOT zEe0ugmd?i)17LdRWEPeU%fa|oy+dFc*`c0U%3lbS%Big#WG}>gD%OHWBBgC_P@5;(v zYp#pBn&(9vLm%Qjks4S)tw>H{oFR!)oI5xTl7jvBuO9_2L?Yfel9!zmhJ`0_`9ILE zA?HE36!Hr>WS_w}?k7V%r-u`&Gfm4eyOH&m6Yb3M=hyzyDx5x@=-VXg{skrXLpx^+ z9_9i8OnhYB$O-}H8m1A;$iH}8M6-T`2GKse`Xo>WN2oy@y(`^pyU7|b)Wo`;U=nBA zWzBrb%<3~s~@T~3t#(iR5ABFg#-anvFJ-H@pBLzZB~ zv&P18WMqKzucDFq?2mD5zGA}eTd}gjtjp=OZwK=df18vqrmM(|r^v!cGIU z7g~orR58Q?XJN6o=lwy5{RD64O!Z0cZ*OePi>1M8o5r?7ouXKTiiOSI6XLWkkm4Lz0*6DTcinVy{_XIHx2wu7Y` z(XfsESXG@9ldCLw8d}G;ZZIhI6G9mtSWi^ zZxJ!p^IE||I0KH-adC6&C0fr=px+@`!}kg$HDb|q5G#OwgswpdgUVedzD)ppEMhkvIH5X*y=6>o4k)4`Xz^QE!EncTKWl3S851hgKD8 zznRsAY$oIprj_z)`p7<)do}_AX3pmB_YQ2h8rm)0r!^-~ZC;3OQdVKqo#Ap;9~ z0V#c28*(gJS^+v-^#mXdWrZz%qV*8(XAugm;7gwqvI^CzT|<(VGeaU{H0GjCAD~mJ z{lHzLQ=&ON38K9I23n$7^l06p;yeF>qC73Jkw3KQ3R4*C9WmkY%1h!O-OcS+GuY=v z%Vrnx$Gy)jNeoADh(EM_=I^)G-gwASqh$qmMSz_-F3>pJri5e7G zyFMd2a#43>r!i9cF-(J9wvAD*DYXS8+A|>$-&;*?5yR&xe3kq>ga33nr)abf+!m#n z1({{bO-2_x-YuL2rr7Uag)oLSxmyQAf(}_<5}sNA61}p#Ph?Lc+tX#Q?`{NfR5;Il z{?=24dZfl`N~y8yQH6A6rX#t;82$0{SZrYetT>-m zL|}3n0E4iJ?}#VLwO6~1Ua)G>ox3Wh0meL;?23Kez7=S{3qMsVjR?nGFpZop)uoDB z%KSd8PQl$C#rT+3AYXq?e6!cu`RJ#U&wa7lk|V2Q%*28|+t;=HfngWVDdG zpF%wd6#CctgK5d@9A{~HqUDDL0hgzGPzKm<0tbZMZnmWRyB4`T+Gfw(VLZnVFOg_sl}2hyj8x`r+E!eI}|N6$1Tu1ANdi&%~h zgV{AQ;{L6yqddMi#f4MB^Ig%f0Qbdw$(1-Vu9SGwRi ze;Ut?3fLK2vOxLXr%%ct&dBMWq~U9(Ot`rSDPK^5?Ew8lxvQKJ=K0|O8b`SL*+(VaAdGr(RjSka(zRH`jDSfeR zkB5VLyUW=H0kw3A!0XhA4>a?ZdTN&N%i@dqG4U?a%GdOW(o_0R+j>{xF63Z!{Z~g8 zRrmJEkx7o47j6yHfjJ$jJLs#|Z|C*FpAJo>n0KZk7m@;BKXBr$&L*)s`IanV*AjL=edM;fTru-%V$1|n5f^@`n8*UC zi@w1@3NvGg`EMBDEb(XTS#DS4Rg;M(+;Lo{J713Pyg$k zjKwmFChTgSGu<{kySf$@>@NI$D-Ekqjx?^$9u9oQF-G1aeh@SLZeh$c9;OF%Y%B-0 zyh%p;aHlMJwsj@Ewp4D&yx@84jdoa;xg3O49^Ow#H+J{bdQz!AJ(R%oFb%g{$8>$Q zT%gbsIY90fojZ!0+D+77|DAkZ6|h^FPDYh7M9l6i2Z`wUbtRzp{Dm*;bj=z;AmGs6 zd0ul3?Xbzw5;8XJEQN8PGiV1ncp0YtZ2+oW2*PV2BtbBKJe8)7f_h7y@|_d@s&_p& z3Nn%~=D|17Z$crXbKe>@@)|5)<{f#47Czsm7tdhVdF7Qa*L-ne{rC;xWv%z`?YWQ| z+#0ja*01nJ(XH-NeFqLLEnCG>X^bGvY3f5rS$J?NaS9-C&F#Pye5eT$W;hE++l{d` zA9|7~U5L;u7-qR^ZE-H#?1dHLp8OXiG8t8uQ$fMVHv6|!c_mU*>uOYSuT-?A30(Ko zs6260S&J%O%Tr4#DB<_e&}3~n2dk@+B~Aj=JBgv-LCa<|VdmSZT`PV~Mu<7l>vK+! zIB{nQzL6)EICbzu&Qc|4O1}NfC;(>sFp+@RxTq;zb}W6*yKWb|A+TW2%~CdmE#9c$ zU+rS{p8|7ZteaQqF9-YsEo!cJBXDnrl)nNY3w+G!Q&i%Z@{(qToXkd;2^`D%23&`k z*?37~=b_`82}AS!I+mmuiJ8T}<@dm;wA)?2`lZzpp`X>C+*IX3*~!i^z>5?ZkCd!# ztVEIL%*i?HK?(=jQM$ zzB>9PWku!)EdXYq((tfX7F4{o!cCq2aRf&-a<1{^KM1}3fVjXvvUF)hdcRN-VPjaM zx4c$8wPvWs#aM>J0C>rVjm6#(ce+IwJKwy6q42L^I+luMP^c1p(iLXDeF?#GNg)Rc zf51@;geuVk5UrKLu~ES^zqGF};9wY^!NS0tCMhcoa^NOFlc&gi_RDIY|0xUEj!;}b zfz2CNbA%N~h!^Gxts+iqFA6A+zXyr)n|D{Yy4fpm{%!f!KVCc@9t$j?4iOer*rO^3 z|EnrpP4$AsJ+m&m`P+aumx|x)!_9zl#ykSgxs?PttpNBrK158A7%S3UxL7GD?Ab}L zEo!tSnTse7ve-t>N(x+gnfLVc>f7w@^o*6m^(y(>99??Wr@6lU+T7~ncANOZPxj-O z{_ni~`Y&**#^JU=salUVJ&&1|1V9URK=z7FZ{@pT(XsqdF*-6_A8fmo@EJhD(Byk9 z1vU-_33Wes{to^#X_&zzZkTY-0HT)& zuETjyeSN{+EwJD4z1QmJeN(&|@tk-JBuKSSLIeX>rf=Z@5Vsm9P_@yij7*eqP^ZOV z9Ui{9umqQur~6W!rdHE}tV07ZBnlku<2mMrK)k}p``HBlvAZd2faz{fwtYVo`{*vu zC_VWflqn|E&b?0%j>imDHt-_mz(hHca`68GnLuX0k;is$y_qszJj{l)v#>pN_A62_ zXF)A;q?sKMNSZEG3ZI~Xgf@BU>}?){4j#O(9J~$ZuXimy@oC0G zQ??Z^3-coQ+?AYfLA$A(_u(%-|D_AGk;6LE%uV18;G=&!)FXL=950JATWIywuBtyc zH?~K3Qxw~mKI?(u25^pZkVWqCJM=mymHRt~9s8=J7Wpk`ye@k*3T)EB?3O{!bvV$f?OU2}B)qhrk+U2?#`2kago(goV_$=ib1W z+$8WAj-`L~>REoy%1WN^M1jBUQ1v5uQ=orrL1lyIr=nGpvW3so7Z-&G`lSJLeBE`N zNW%=Oll4)ko961>1L91q;~Ntj2!(3segoQ&fV`nhRJXOh41C-Fd4 zfpE7vshFvnsh2lH*WY+*1n-FQDFF@0a(`&dc87z`iAWACGu zOWELe9S{D&vzyXqoG=LiPf%ij9$h;8I z5W0rB0Cj&I0hol93Xyv}ChX^s-P_a9mL*v}jeiZd2LyXfg)=k77i^DQc+=nyO1i65 zaMORj(1y42ff`i)GJZq{CXAk1=jg!Q6~tNW=tD~6=#f%Sza>o=>O+&7HwvLZPu z$5d2kx}rlZG%!@V&ZiC>ntJ*=xEj^Szz&oEIzkJHWC;KQvSI?-zrZ?GK=7uS3S?PW z$PXM=PK*Xvo(Z$Y|2CMGB~nf)f{bSUh@pRHGVTWH$*%R*+c)4y23b2-acdZZ0v1}N zNoe!KRM$H-sw-jgBri~S&?(LHZR^)mshD}CCa^AIo&jP6g(3f43wmv5*sZrFTIYd8 zH>7>CwM=X_B|VueO|}XVtL*= z$LiqyM2R8eOw|D+qpx$1Pb*Wye)(i-Z(=1CVRe}5Q$V>A7Gxy#(%(BqWo{=YjqN=a z#ua$kcE_WuYP6+lG>(ih0_5efMP7eCCojL4AHos$jed1817t^!3*?kpemH{iTTEqS zLFbG_P8Sd1oD!AG=FZVFa0kv#_O(!@98BLF9 zkLlKo^@0Eoz52$b3>;ChClcX>T4VHVD$bEX^}Y;2CU;-@KsErVX8#|@2ws1p&T#Dd zvgGG|c^WG-K?*#(%Acdg=Gx94+ z#{G)05Kj!dmF)R$<=c3bFoaYZ&Ufvzx#bhq4m(AV7Xm&lclGGA9~g6Tn)5*sRuRxZ zQ|qBMn#S}*0xRh1Or{GxlVpE^Ozks8xJET0V%()$a}?W`I&LN|QFZP>B$;6kR-o&c$$`*gXl~!iupx369 zL*O%KBh+8IbYB|8)|bwUp536OxP`6|3nbNvUKV!_pi*9lKNG+3xd_Czh+n^8sfl-_ zoNjtbMFt(3HPcJ!B2hA{bD7DR#DcatCs~S-ppVyxR{88Hj=%iXR!wmt&E099}@e^#7YyXpaSEg=Ywp*>9tcwPp{TlGLT za%J4V3oh9wWn2S?*=@xs3eFJFLg(AK z>A!fGp)k_|)oGV31PIp&=F z45ztCl(usQbZURQX<~~7r!V|t!`?r5aG1i*{hkVc4#N8+nvD{<0;603{9{{>Qh(KSVAxj)yse7vdDi?Bm{^|3C!;1C!n{H z*ow6Y`;0eL^|u`cLV&W1qfGC<(V!xL#rdBcKSvEVGuiXi@i~C`Ct-uIA~8h~zUJy1 zuOCo^v98nwcAZ$8|D~NSFQX1NC<2fQV`(90kh^{yhV1_nj8$uu)dS4@V4#( zYjBV906=s;12`&#A@~0WZ`e{VlcD+(0Wz0iRsj?PG%+xj(W(I{e;Uh<+eY&4uh1eoQ{tGUJej}WdNtXUsPP!P2(TA*v%9*ws=B(m z9(sHC>dpIXlZSbtlg-`zCQHKH+D)pWFf!@puG)MI?)LS~tx0q+)FXGgdu&xue?Aps z(;WvMZjRi(`+T}le*w+#faT`C>kr%;_W&SRx5dy5K3<%zd4sV&Jlx#sEU5cpJoU1o z{JjYib3cpN2EEAgMz4nsY5di&2a~NCPoK8e;wN=2G|$vJwtTTGLpuD*Sfxo`F zwF*w=SP}ox8Rv+?M)^dRRZ)OPgJT6Z1LAoAg!>x#Rsph`>fl4i^N%-7I`)rsU2$*h z7+F!49gxTLf8zvb1kW(f9q0w`dgS@;)N{va8f|BSUv4tvwy9+6abJwf)$e2xf5r1! z3u{*d@TI9AL1xN`G!?)d>wfpdgMD3;d=NeaY^s6-ilQ4HSSmPQ4AOE#@^5-~5_mt_ zq8AK+n4w5Ppp{*L$JaQJf^wi_5O^fn3vm;FxQJxAe`VN15?d1V1O+ z^BNg>^Ij>>jF~hE(>MY4h^?MM7KSd=aq8wBRiopjFRJD=Fc-v)Op?_wSsX^nh~yGR z!7_crf4m~)U<2NQ;^;i1)255l;8oo5;DU3VrzBdOC=jR;An1Nx0ByN#Oz=P^^J!>G0cxAkdr%D7Cu~oH z43xz~GZw9Y^UcC_MZXh>4h|xYgFoaUAf%r}?6fD@(1ED5=PwYxXAJh}Eh!v1$8Kc# zX%(iaS&FafjtCZ^4AIt(`~go-DdWxtW4|np+^OIZsb~<4cz2NLVLbf?s>~nVX(Yu> zf1QaW;2Itanm#=UdbUMT=4liH#sWu{4_dxVFabN*BR!xn>e;L_Qki||>^ihRYY!A2 zlc8e@SM*2gB!ssg#Ad==@si&nqfn?$fzu5*IH}1<-=Z)B4F|1*%S_PvQs=ZXq0*qr zGt_TU9K{9vDmf+C*QyLUd6?#!f$Z9ye+u(#(%%9h_C&M{k8LMNcNf)4>Le@ zF0Y?ge*;cK zIPX?*YIu}9XnV=R8cNogSMTm#eSU>n8g0}@rzQmZ9fM}ak=c}oS08_mHWkdl<%F4R z^GJ|~O>W^$M5f!#hgbi8_4YilFcC-vHj8x>D&YAWFUj{ex2akaA(+S*)@x9e?CMof zxeBd`K`7IEO*f_VZc3s;o&P`If0Wq4{8eiG7pWkeT@0b9&EqiB>Ny>Z!6i}IGdc)_ zlh#zdZGQ?E)(ts6A)TPR}g%f6JmRPq0_* zut;auc3XU;5vD*)5-AruSvZ{f`=WHqE&_7|L08#BYNtpN2b*!I+k5gb6gfoc(jj`i z9+Q$|XS`S$`WW)z8ks_Wi8_0aa2_G|2ix&5hiCBp$7zr?PqaIEKH%iPEx=1GT8iCa za&pf=(GML3AXVMA7}w%7f4ev^C*nxGJOxZs~ce+nhOG~H>S1EW>6 zHzq8Qn}^vwb>sKo*0V6JxT@Y>3r4&}LYqG&67qm3I_PEWxW?raRzgS*>yNHibB8%a z+H@4`SCUps@Tx)I9SCC2A4VF%%@+bXL$f;~l*Kqe(nc^`AG_0TFX%dM7r7Z6kbDAQ z<**>1!vX|v2U%Fvf8^lTGj(g{>kBs1EO~6X!NgfBQ*FTkA{hmYpYkZU<70(c*H$M2 zS4@BAQh$iDEbC!twhcsiD7PnuBfawB4s1l=KBL6hO7dNRN$Srs!*#OHq4?y%HRE#A zwqBYsd1S;w<-zILh`Ae@k@=+Yp*i5!sdcv%#&)1Cr0R(Ze|{qQ8d7jd&X`=nA!uic z3~3$`Epy9LHIi{-M6zIM8bzJWq~JIrZO1uH=wSx1=*NaE<=Sy?hpyjJhBWiCS(t&d zk)(`ZMsk%oy`DrE=09YvIW(LigZW`BdU{)FiYSE9zD9AeJUQD6_K+kElLf`ChzKHB zp#&mao}AKpe=b>4pr$Y;fkl$=zS4oXy>m9LYghY>78|Lcl`Bji=i9XPaX0P<5=qJ; zL9i+J8oAu7nsKKNcNCOeTk$M0iXCATyTmAV9HRs%Xxk1oNN7r@$Nqw*e+aT-jo*Q@ z2_{0_CVL96dO;~{7^Cb+GG#{$XVl2)z>kGSSZjh`f3e@4c$RY((2<+c+&}TRa|V>l zA<<}CGY4`nB1&&e*F;i{utpR<60Jijr7gH&)qze`IJ*HKa$%x%F+A>@)@55IZ%6$W z?v#5#yA!|EoP2F$7+tVl-s4}@sxGMPof}%dJBeqQ00mwIDFvM$>*~e> zJGGJ|A4hzV+1)L~(H{0)FYfLF#o}&ZYWO`Ve|#^in!`iel=2{aH!y->GV2q%+Rcdi zPhmhIo6-fu4twHucJDzp-wFNBCg8B=N#m5uJf4X|a>!c5$DVG*L)(cK?RL|i*oj{; z`8dNm$E4_BGO+lmqz1-VZympC-Zh(ceVAS!g4oK1#r`!S6a>a#8L3pW>Z7=-=IH93 zf72^LgQT$Yv|8#`qCMS$$wpeaA(f0Ckx))IEB5OJ7u_hVv2t!UQ64#N=b0XT1^>1n zQ}bz+z1cBPE;|dI`9O?f2OIT?>xHx5X95A|q8?!oOhqNZlv-qj;VV9e6lWw21YBH9 zkD9sOmMx1>@a?gRYsJ)MFLF7JVcAIJe`VPG7*{Ma){8IA9A+TeMUhwxAeK8#Y%m(* z4te#^Ry96{*mouv2A9F|4L;}$!KEcLLrz4*W{$V<0}Sd)!aFu$o~CD+C>43B7|fYy zpgpv?Bq|=(GE7RFjR(Wp=o7Y5h>y)B{Uq~ci5U4@r5>>9FiVoLTs55JU@x|kG|Y_gD{mm! zDH=qEs_Kk=cpMLNxm3lMnGFlxe}-3~2cIL^@+kjZU^#2anqb=q^l~;S@#%*b{>S6m z;-pwB6Ju^M_0pm$T^Hw~P;8xdg&nr};G9p&fTO4k)>YyOY_dhKCEc9E4klgs1BS`a zjVnqqqnX^Y%*?hiGwxBy%)AKpaQ{MZUSco*vdJ8wRFBN(|4-mLt_)WEf8iN$_(}?H zua<00oQILgUR>))S85$+RrzdLqhU|dE0h8+6|mJ*+@IVZ{Fs6>jQGPS(o6Yz%z=@o z*U88~HH=;Os`v(U{xFZ>RYQK*Go#5rNfm{*rIT#f6`}D`e_I%>!YzubG31zXsWto!7sgn2I?3q95#e#`kM<%-~NmP zcd7Ob|1+hhG)$xTWwj^sEmhhNYdE~p)8F8A)q3?P#n1Ydv%IV@XDYxObpU)9IHM*Yg6gJ#6%dU&Ofn*g?4heoH*7IG6%SNnVsErBgF0|wT- zP#RxxX5y>tsXPrMcoN`-=*+ule&tpxxE)}1EGV@W)mM`Y{sYK}#ix^@`V^O8Rsj

>RWAFB2u$YA#Fc!8SSW0E3>`W=G zqsuj4zj0AVmfY=GzeqfSWH1;v`Spi)Uw-QkWm;Ng4<#lf8h~;>T0ZyUqDxxCF8l~;bFXX z!|h!6HIJ!6%N-TYdk*chbTraF)>oOX590)r_i-jc=miJXmrMHa=v9_{I5&gLAOP16 z#=GPQF!hm}o^Z_T!%rXn>+qNx+U#SVr)5#_X21D$3S-kD3f?CUHc=>>yqp`xlACFM z_fBILh4b8Q=gq|y7$Nz7B1;p1=+6vGuGY{x8DWEOH!q8o%^b1WbGas8Dvs?ps zTh+4kcGfm}^_w6v!5d_?&cS(1m9cJ6T4b#)uhiYuvX9nZ5fkGdSO&Dt#eXhfZ zC5!WH0XK(;3js!4;=|zbvEzR;%5dy^X{ws=f3@+XU;+L+I2PucFb(zZFS)ZP!5pU1 zWyD;U7MV!#DPa3>3y3EcLwjTh=u?7r=#PUmo&{`}`qMlH$*}3YT|!%r$lihvJljsXg~&XCphz8osQmgO3;`|mWvC-2 zB;Zh5&LU#C-k;_DEyoPl<|%@F`E8!Bbd$}XXki?||5YHe1E?&gJwmuNS1@a8N+Xjp z&_=_hxycVJ7-T`MwH&TCz$~OSNT4c|e>?*sTydW;7=Tv+c&Zs$olqa0;WCk4ZHcyX z$TO2>7BEykbym*x$1KZtHtSQJskqkN&}wmP+i~s@Kbg;LMO;ns!M-(A<*l=snlm0ikHK8@BZiA*J$jw z=agHJ26M1r2`v!iPYISn?#?W7f3ETid$_obFTd6Hz#2^vRZLN&${ikco)%Vo4V?m| z^IR2Z9)aerNd6ASbDWN`*0s;8>VNdj@hvK-S^y29_4mzq7L6SBcZIS&_2g5usJlmQ zCx^kK!$7)S&sGh{3d$CBBMlFiYPyg{+)Vp?0jKD~(1A26I|$)9Le^JYe_0d^x;3a9 z9<6r3Ti&pt@V`6%)+5?Ch#PMzQ%SgVWbU(ER6n%M#tmD^AW{L<6`^+q!jSswxj^%b z47KFZKNI>9Fkt)U~-#&Pqbp1HBKn*fY zvX7mev#ISbXy0`XG$6%}e-r>idwk{AV~q;Etp#Y9qF+al+=%OQiOeb%CfpN(h;q-9 z%fgmeTe0P4h97eO6YRwpBOHAC&C(8HM~eps3eHMP|3EFXe$k? z_yDWTaJNXfb`#46*U43Y|FM4V>w1O`V?<-uLu#Lqrm8d?JE;=JgkMC+uo?WYHUh8) zAtDptSzuPPAQsfbe;`%UR~J-A2AJ@>j{7q1n-Rsf6{)e>NV6CDR&NaUI37B8RVf50u-Qq8lYz2maS? z(a_vNAsYNypa>?wrr^_5sMe{k>#w*55VzjWSH)nHt7!W=e?g>a?{Tieuq)WNp`MN` z|5da_vp;;;3t0cLGXlBD3m2B8)!^6Hx4s@~W{VWP4g^>7{EegNvhVB%u=-lC{ zjmQJw-Vk$Of0Rd+IfH>vD{62#K7@VvP^odgAj_^dv zFSkq^Xz3|*<5jqaRSh;=ZG2?6{l*2Yq(N|&;V;Ep`}4dmiqBU}11`Ra1vo{tX&*uBg2DFG)EDyLyv%?NaF2Gr@; zAkqgcQUgC>>Jh@E= z#XE7mwyAY~6NkSEl^`ZvMe0S4lyJp5r-dt#iHCo{<5D&Qb=(SSjUY4BqU5oXr)=gv zf5Z)p-AI(hVsou`uvHmEt3@7h8TU}lOBefL3t3a}bTELdn@7>bi zaptLWc1!$EB|!kr6lKIEoY>rer&2E|VXRK<#~wM9%OsPSMV~jDL%MY|XmrewA^`tI zbwWK<)ykKI298lSb271M6cSr{!*~a`f27B`&Jhz7h9+uS%n7qR@{TtenbL|JJu1%i zW*p9N+&L`aoxtFHJ-aiHw#bt2&p}4LBD2xm0#vR+vT9fXtKL-gc5Vp(?>PwOHR@kX zn%&+Wu1PJ(#0utzy~R>zXVF5=#$@PUK*+6?YS+Gvv0kd%;(?obQR;Riw04__7%|+_M+Ghr#$Gil^?YdNp4(BQ}CKT!* z!O>fEODN{WJso!h4zo(LytT)@otGrLo2mBBAa|)>4x#FZ)t@lbmP3GX{1fbX^ibEkm)JGTf8im`cC3Hn;tgy=XnIVTWb@s`%-}%$0+WVntC@h# zR%|7xF1|#;|C0JSa>EnOPAMI3Daa0DkHp-?5-5T#L9Z%T$^TL&YLYq0Jp;gxP5rVf zbR`I#{?q)1X?edEy4fyn@qIZ4LQp5lduW3h(c5HEG)dz+ry^H#MD-X7cb;Le`oB<=}d$58Yp1Pv!pq37e|0lV6nsr@ZPv3&two7N(5ku zEvi|CZW$#`F7@$ko?ls$dQ(uUU(n3=?psWW8SMpV*+Bs8&g>@`bS@0>ai%x-hfsab z5HC&KLpAS4EVls*Ie;bQ&;WQ?rP`?7;2;xFF3+n%`3UEEWY<3ve`gg-H+HMA$liMv zz4vV8y-P>Oe=zWP5GG&E)3g|`%~3(dF)ahj{H!5y%}W>8WDU4pH0l9#j3A8q9#cWP z7l=nXPR|Qvr6gOhy0lM8@fx%*UV_8fuEEn|h5QI|&u9!YQ$Me<#7vL>e^fEc4-Gf8>R@($hUkXU z_<6ieQuzWk%NPuuWenPfv7ag=3MH0Uv;l-|D)j$64WmFZ@ox;kjI&;0PUi@I-CaN9 zX_KF0vb-AqZ8x>L$u^02s?tkxMA5|+{rWi5>FzQJQ&N%>pc8UJd08TC4mrS0iw>vtizjK(A6gO&G|DJ%{mMkS9`+h?4I$>2ez#A0*|G{i;Hgvpm3U4 zsIXHO*}EFREqlFw5oMtC6~$oKK?avftZS54F+<^(e_Kv0-@+i15o>roPmUKU*BTgo z*fEdVrb?UjO}N@KkIIXAwDDDotg$4huv$thsS_{q$k+q%hV4%D=FSuA$Ej!K;`QQ6 zD{wUmm2X)99G_~6M#|kMtlXW+bDSzPb2M$_?G`r83i8PHyPOm^&INW=jNc@2hP`Jm zTKm-6e>pMo-A+UUA)lFD@KeOGp^2-Q3LG{IyEoaR1A?VKGxuqbB8zN=JMx@v@zKCy z%l7)0+nV?n7|IUgFg|jRuhEvA5!7{RxUg_zd3UmGDOu_Wlj|`yNBF7l>oppj09gu@+{(S;Q_4a>zDuCJfE>N@;ivXzE+p|a}OcDA{JO*gP0iLL1Cy#xqrc_ zTaf^}y}C5=QVss`85owMG+0dR^O4m<>=N<7*9EuubP#(Qf!Nag(SXeU=k`X=C+xu5 zf9TUeiE|Bo6W8Hf?`{qqDHKK8&DYaIBWK_wqwQj5%pq^K+|t*mp7|O`V7mMH=p7vf zIM6!3;&AN5{T6{AI9g-+u9zHq&zr0Y!OIk&i<@UbC2-SeYO4iv0Ni=Nl$+F;Pb&;# z=2S_H2|Yy5A0JkiY(_!Mac;Yir>hD*F$a6|jdC4Ro&hE|{$J-GCe zknm>iEaLTnmj`t|UZZ<6KUu^^dBcKqFMZ6Hdb!>LSk6#Wi!8Ce1c7EC!XCf8C(6#@ zgU>eOT$Btf%wExz0YTw*ml*Omxi5wG=rceEJ&VSy(E7yygYIMstWWdLX?}bzeQ*%qjB zk**B}zS0L$`@l8`0p-EWvI85<3p8`64F$d?UQfJ!lLhVgg!qMD%{~_NY+5|N>5&%- z5f#aRT06g|kq0+u9&C1p>%1I#xN$8`wPBt$1^@8ySb{u7MMp2CV$!8Bw6SL745}FO zqFB0TLAiStsme5i(|I(Um}eGOQKJ42?lRWm3T19&b98cLVQmU!Ze(v_Y6>$lH<#h- z1sjuX1`H23HVQ9HWo~D5Xdp5(H#d{f<0^kkj~lrWzUx=;m>fc}$YK=>Fc#SL!byMx zSgd{6WZ;85mN$cFC1)PNCci#kwWwKXUTV*@mCLZzQ_cQZ&#%ZXIfWETrobt%hQ|1j z17!}C0ttp1a>8B0$o^jorL|BB9%%)?OQ^ZbN^YTw;=TqYf;@*-F?GqoT&|QrL@s~8 zn11+=1uFhRyqY-s-1rv@gc%TO63kk0!Gb$@yqZ5HfK_lIz^Bb8gp9Qe89*f9DtI7g zg$!1dIYEY7$QA!DY$1yQFA(JB!dPcE!HO!TpoBklSQdmU`}?q9$5a!9v-n*K6*p^x zh~S1~zfk{CXT_(|bgv}>~Qkjy^AptA**)?!c^;rW~S0G-&;*V>A zWg5>gM__XVnsI?Q0~SzW_LgwrI&FZKpeCTH1eF)9xbPXUusRq|-KNQ9@wAjSa~o8J zV8Mc_!52!y+zF5h^efqQ0+Wjysx%A20LpL*5qO0XMl1*uh!_@zwTqTIg>eXWxADpj?w^h`w4Zm>hyO zW|;Iq?#*U>9bUZ(^EbuA(Y8;#@rX?Q8V1QKyC00mZ2bo!xX|tqSSf$E-4DzK8*Hz! z1UJ6_z)R;pTyD=VtFYZuVUbZPEX-TEZ`bP$raBwyhhy>ju^mevxA*Tr z8J?TX-`;$<9)ADjV*StA{JYKN$K~blN_s#4)BMl#*Jp04^xi?9V|CVIVNXFC32Jfw z6(n#ajaD7tw}aZ>hWQ^i?=}HO``u#o^XB|hl;69aCIOL|qNjf&%{=};7`xgmykD2h_dqd?T@KycY6E)=Gi;KAH-R6$wN8WZzq6dqhf#|7bm9P)AH zcucIvDwAP6IwNXtL~$84C5m<=v7>Vm)%%(Iw>0r+W;jR&2g#&5aiWJ3$U)B7PrG~h zA8P71C?>e5xg6vkJ`u9$1Ud4RaCYKd|-gvvFDol!d!#Pecv{X$!T+f zZ&xR398+>82;WW*N7(tr^)mh&k8duo&KIl2<)@3~>f_Z*0`3qLh*MNhF7SCoy|cO@ z-avtng6iX#R*TQ8#refzJz*NGPHx;iqY?5?s)&f}l^K7K^g$@gf88vuFE;C#BTblu zxJ75QJ0xx>XEh^{O?kR0VmWP6WBKTh}h6D zWTa|iIi{U5Ard%@cRW-Dh|HOOL?1|k0+zn6nGS)FStOK9@cgLWb5@j2Bv+ym(T+V; zwRFk?4(5N@=oW<+aPP5C3WCLuPs%Nbn!#;S9)n^+E`yb$`9g0Oy%VR5D6*|$P~E?X zLY){KNJz$BA>ruI^s2dN_jk|K*)bR+pWU*B_Drc}{$`dvuWB9~D zPY2q9oF}_Sd>cyYi)e@HJ=&r5xwNBpx=}mbsGWaq)J`{QryE+PY+Z=!5NTLTEI>)9 z0$Xp11!^cF>-Hl)JSqF|C(eOI!hU}^B#Q79(NI@}sMD7i&Z8HC1U z42n8sF+%v;u!$NyhAOCo`c@+tU1|@4xVrgpg=f7k@}%?ydD!0#YgG44Z3A;?DZ)UH zvzLDhMCs+{&1$IBcN4P8xP+|tch49RL+OaDCuGzt7C9>CB)L=>^=@KD?KwIn5yx^@ z?nTLVKfn6!@9~YGmv5$_!?~MYeaH8i=~eqqQ0rY;+x_loxAnB!ms$GKOJC4L=@tzD zg4;K;(V(LWJN+e;B{6hyoKHx5J>?qc3>SZ-+TzD1pjdutkYZ}~G?4PLKIu+)qZ9Bw z{2dP8#`1pl2_Qp!UtKRhE!KbduvuOI_m{hjVtL=`od*JB7&)*v1s5L%AFz z;kB$sBY7-NUb?q{!k2$5!4(JuN*`5%%alwXsUpD|em0_IC^P=4 zglLM=>Iv%%A<6hD^bUxCJ;Ixw0x~31xboul#pU^GIUy}U_k%pvp&(5B*l2&OPNr-+ zkg)t@WCz6i9~!5Ux1UjDCR7P2NWY(`fsQC@9EvU7s_3h_$=w4+-=E}LAjqDv_-7iU zfaEE+DAA{vJs@rs|0rY>kSSA1$_Ee;>xBcLJq% z0{x>X?jJ>Q|0s(42N1md>}tD&{{e*(jn|W*`V#>*kr5LFG&4CklhNZSf6Y7Dj@-zR z@A`^@UzQE4=)990uOEC3Fn-v@t^_O=vL2`^b~iCqtR9l3w*KA`8IimytGeZx5exyU zWM(iKcgB(Z(;K-F@K0{M+IZ=5C-r7`eDmR>*z95cZyS;O(r=yv)Nx~60l$aMyEp&y z=1=e6{O)`0H)UQro{e>c9&4eld+u7%#b-)}x-e>^;#x@LGh-feYZvhusTkMIBX zyYGwHYtH9RAs*p{_m4GzYMmXcrp1xT?$7ORXihE7pYG{*AV8B1cQS*a%#KfYTjjI5 ztA=yOi@WNuJ0B{1y~j_#`Rn^PKP{*hDlfhL*QqXCUK+D;rOutRe?-I&?bCTkkg9EN zg^Q#P&9NpJDQ7@R<*rmCP-2(dmPK5DOWdfAr*nI!3V;uEM=sTE-93DX9IJTsu^IXW z7j^b@sM>l+pd-D>rPc9!?+9eUf~^9=N>gsOQs$*)Cj9q#NOQsHT*{FP@9zpgGs+I- zi1GuOMiH(AehXDuf8XI>F;G&G{9}@4Y+)v;6yAa}X51)H8f|MeGEsjPZfBrrt9;0SEd`vJ0T$!+= zPuZU?O}_-@DZ6pttO{WB%KSALSTujJv7lDqBCdG=2`)qxZsRQM^`aQcr5M1iCB)!> zN%qx(NHG!FT)vix+9kQDWG=M2#YGA1GtO_E5_w_lZ8mD1YtW7v8&}qg2SK@U20XIS zzqAd1NV!^2e^Ff$wZe}pooL%wn?9=5d$W*VP@|(DH{VTZiZ{iu;P0ye=lN)e?HjXEq@HQR!Vi#9}6%taPAOh7e;=C zKTh}zhX;iT{#Y&i@hVXVe+=T@N*yX30kCfO2nv(HDuYfK;%_S#ix*`R3;B};psy*L zEY1(u!UE2oN&3G~1;G4SW#_(LW&FDnmn-I_AeDs_n;=iIX!Jx&4c2Q(78P>Fh^FG$T-qP$RES&Hwebeq@iEOO=G(G?Fe*5~N zt81QQ)D06xAOwi%Z1cGbSAT9(Z7e;t)?!sj}eh7|b7l=6GT;_1Bv`JeE^Uw{Lp z$&Nt;hoN~od}-PTn#8^EmjN$5NC|#VNc4V6ji*h*l%-Q(ujR&SNZP^Y+%jcAF!;Zj zF8jq{8MgvJJ}+gFD1Cs{NrAq|XjXev5iLPQP%cQJ2y6(-8;gVG;qDX8Z7TV~baKoeLW?E{A#8xgGb_3jkZ6adIAz#wQf zETXQ~yco0%Uuam7s)2DC;$8<}f61wRKs(|YHk1jdU=IOnj}?FIc)|@o2Zi6Kv^cI8 zB+-vZSWdE>q z#c6#FVpN|!f$hW3ghv$riUVP#8XcG^LY4kR!&sBYolX1%48~eDjKO=Le@nB1ozfg` zjw(C`RHt>4m<*;>M8$dWEzfd>K~N@Bj1arix$EO5P5WaYIw^NlIU|{=IM|)LZgk^e z1xx;6gcgYkWu%|r0}eQ7dj93-ihd@^&h})<^bPrq0M1MHI|v;arE0O}Gl`36kEm-P z;CGCC^!+#{% zR^b6#ID~>Tc9SK*E7T8IH-L=D?PPOP?s~mBF{FA#V(M_-Qc_4l%8_gP%Z-ZM732Ez ztR=U=xqw`&_$5&eN60HhQne|{q=2Nlcr|JB50a`Fh=AS7f59x8#J;2x&X+UK2oFIE z;J2b5_KcXGfmYf=PN|xwfGgF%@*+3N|7@1(shU`>2$_RdrX;JB!B$er=nKds^bLZx#zBHE)GBHq z1XM&=Qhawhe;@Yrc$~-D0kUDh@zv84rHvQ`)U-xXJLSsbD*$=!Xb{W_PQLm;&lDlx z=Lnt1sg8o$m7f}e_*8c{MhVpk4Ku~7ZtB#!F^`65;3n#%3_p7%j7G8dgOcu`my6@v_q-`P-Z^)ON&WuD80#-qZ82mg{9Ydgo7*S3qFXOzB#i%u*;@I6+u`pNhBv&0DMtRZk ze*{xp=c^aRMLpgfyOb4P#d77(zR#v1B1PZx75CYiwm-3}zC0bVgK1`viRzfi#neZ7 zyCOfaqt4~j;aFa3Dwa*T*)5j1?^q2;Yz&#f)bF_7O_SJSSzpAvcB!v`a8AB(sn4hO znw4BfJ&A$&<#(Ki@Y}A!#?`$s#Cyylf4=Ur-X9m&45zzqY=D>e6f)f9S>EMXFi}9l zIx;&Js`Yq9(Olg7yKY4zWVEApQ7f;vk)ha82vxyPO=qZ-n#JJGlW}w|?L0G)sYamm*zYQ|x@h9*>m68;YV=`Kf6=X! zbb0Z{m1droX*uR)i}o>`&~lx;tXi;U-gQhC=sn~R8x4t&EX!NywPZrg$+@+ zDvNMM;#x+99?#fNp0_vdG)QH0DfH5Q-X)|5hn|&Rb7Nq1i|fmPYD#h^C0Je=C@1f- zJM}XiSYJS#`sb^ApsW5rpoM-yf8TDR;I%&uoP~qkn4i}~;jQ5O(Xx157sbvLXbTDx zNxwoq3Rvma-M^Hjd?9^ZTvNU378X*HpkQXL_N#9@I0ef~X)l{xx%1`A;!%aj9lY@i zh-cjDRpODC(m|)2Zb=K57jObB%&ECgm(-?9ukUb6tf*ZgfWy(bh{QLGe_V^{f<5M? z*RBUEa6-P6x9_z&^iwZg4vss8Z%*0FMLZ=-dkgig6}i=`!@EB8^>q?L6t?Hgze_h;d<7QV#AFB2tWVE<*Pw!B^dpNx1GGL!#CFru0x1%R% z&7ukjTeq>-R)#n?G$9d{Qww>{*uaCC`x7sX*^7qAMU7qD*v)%99grMAc#Of6k1<%d z=Ac8d8fOo*jQpU9{fVAAwo}{*Qp;)$OiQ{kp|bxv4fX7ugd;B{f1FSL24i4kmeo-# zA=jZu5hQ`1@8d^mn&486;!Fdw|^`Kl} zg^=xj3ei#>tLAfLF>?o>6yFN4p~)Dq;7nba>{Hb@h~pQUX1paGbze;Sy?Q<6lXxh$yg52kwFHBilC68nGj1l*&=zzZ^?7+gjl4{IM} zXrdX(oiBK~nzh5Lhd6oQdo{$6ixzrFt0yFI{8vc2A88o+qe9bVgo5fd_$+dTy%X!Q zzno~M4Z1{IRSY$@IANCBK4_oGCYTH-tyo;nS{%g?p|5Uqe?BE^^)Q&h#3F^Ef`XoG zliIq1Zp#D`TL$d9MJe7{JC@=RZhwkoM&=AW0~*5>-C*L%U|{W5t%3cX%PLeV#$PIA z?YOmv6CMA8=5_py8qkU_#9uDFsOmD#)MSjYA8TlaC#@ttbYesGNjqN>ZT zH^R?99Ij^Ie_#zd*DM#$txID`m%Z@V!!E|Hu&Ds~hrE5Be3aOD_MSwqA!t#X(n9{f ztl>fwbD8l|#mg1!3;&_tf8qLCtZoM)K=&siG+!%>joBof zrAb^jU2X&U&bo!Y+QhqM_DGaY{k;`hxp8*YPF`#X5yn(z{6k_347k5NS$qrV|L+QP zaYSS&ZH!WCSjbgM9B81qhuCKenW!_@KkVmK)=*+JLTsH=cO}raZo`Ug+qNsVZLT<} z*jh0vwr$(CZKq-<6+5@~KDV{=aBrLQ7tFVB%y0BA76Lo`k#I4>uIQ)czj)s9R$jVe zti=nQ7Ggw6C;{>LU?8MdvhvvM5lIj%BwdZtOC((@)6)gY&QUJqTj;yh1-nN*q#99M zP)2VtBJVEE()mqYTM?UD((eubz{i((7`Rb2%oP>QgE0SdRc||+sV1lU2o~FJ)ug^R zcw5UANPl3Kxt7-NKN2b%Z+7~wB}(Ae=n$?z!I6svR6JM2A2aBpCYWUQEi^qBh9#y|cVzcf$sjmDyg z@$laP3wL6i2|73%*Z&m-=xW;^j-dGM{$n^Ib``91;gCURtx1?bz@Wm74|)-`u_cLl zo0n1W#6RAsO5UHQub5pix`7JEt=VFBR#yBwy#+hHsM3gnq>ikP1LhiKrrq9;$G>uH z^S(#PXZ6k!@Cr64HZUEwDFwUVRx1T_d*9xmjuKeus+-1N#ew@1atGY)lWH{y_wsj? zpKjjkZqp9Uy4mF-r6M23k53{J8p-iiRVau-bwZ`-qn{W?P=`OcHC zr@-1lDefiaHmO=oi-lrWO@y$TW31I>H{Ugl7rWTSp0}@$<#(Y&J@aC=UcrgRNY7w~hOKkQg4{H6qj$MuS~f-=G*Y_gllR;(l9@J*bY!%HlS+}|$C*kzj#yg5 z{$ZO>(}3$^HT3i(Yr=HtJBX%pwE%KTx*~|5Z2HzE9l#jowDm1=xQx|AGvdtQ1zK}? z#SittnycDcYvS6#V!FueJ4>+Cul@F0N2J)g@3ho8nI$#QN#tFmeiQXutY~LXfiH0vf%WP57 znI?)vzmu?6;*mrwDjZz>T*=PqR^Xbsc)s~^8b2$s9r7q%3>-U|#j zE!VkNL6Vj@7&CV7*dt#?$wym=iyNeQ~uV4G4Xz8<{ShZ}S%V!>@sDP)y4P!?I)z-s5o-L(%kTP#;wr zpuwVXkOCQ$v1P9Vu$T6|~0)2|S$H zhxyBm%0_R8p0QsKzyEh$m|)*A0LoRo3<7249U(!4s!Rre9Qv^tzV`=a$#{?6%>OiA zN%Exz9BFF1F`fkQNI%TNN=_sa+Edw2^U$+y_y%}?A|Sd3oZx35%&s3LwjqkNK)FZ# zz(eg9`SC6nACQ}K%{HvRDQ8P00z8N(6Ba}1zb4WCdil~fm5@TZTGamaQ2j8k5UOsUEBH8Q0e9qG~b)C4c!^sCzK{k?8f-XB<%WA!xELB8U9!yBCu`H zrui?yr5@qlW|cqMHPp|1cXA78d5?zYa4-$R@?n-IzdDW{=MbdlRF)`t5n{IC!&Alj zRWdZ#>Bj;a_Z*B_sm_})Yha*$YG5qCyM9Qly|OC~qvaWimC6Ku!|jtvS*J8gw`S8& z)-(o5OUDRHt&&f$qilSQ)c~uaFZ@AfBlEG{AAO-Qqs_O9Jq3mSCBiXFsI_uq@v#>dINHsp1YT;k7Ez`8Nl+w%38iTWIV-L zU(LeJKhuc0_*(K?Y@mOLMZjAYy&rk&FbYK<-A)5b43JD`QJYthT#xLbZ-;%}^>^LK z0MID1$veoGvayoA!!6J7mh}+_oA7IV4ftM4uNsSzBhLT>jzl@QiMLj3fjON&)9<3q zkAM~*44?J-RsyXDeqfSkXl-f~q&j#8VojmfoV2jGHhY6Lq-6L4zjxv)YAhCI&v@mo z@>hP`DK)voB%EUsk&PfV(@4>~jF66r!C{U**uq}A3YMWI%vev7zk!TUt}~2OKd1uV zyReMVgs_S3SSo4Uz+?P%5PCpT2sdpm1oqCw$nhi-m@lS@ACP=iZA>yMk#fQ&!Xt;?8&#hQNc z&aApd2+M6rt7=|{^s_zq(JI*+R{?IWO5_qYM)Emnn%F>CM)|EF{hc7fq|3IX_oE@* zug$i^aKfC)4A_|3uzsS+sk%YJc`saHE)!HK`)H;!Q9A)1X$wHozpmvji3y3Xfg%?`E{~BzxKh3PLsM(1t z>>QEz%6(U(BgfVMuVLEH73zi$owWCEm+?6gduz8z+5_{??2%vEWVN}?5=bOeG<}32 zYJ+mhE_RS?UMDbw-dSV)L> z_4fHbsI?Hl_e?b>m2Vy`L}VEpDdr+6E46PWIrsFzdI5>cfwj<~+q3Nju06GJIXeGA z&L)(~0%dFXV7b}4wXwY1Lu5$4g|5Rz2S!6?4s;N|j}aHp#%&?Jov4?R^fld@8xLo9 zWB97|CnCwgo~vn(YAttsb&gO+6mH?s233g<>$A!1Fm#{Ru1)b^M6Vt=x)M@paYD8uTWWW>t-cH|Blw#IM0uamfqK zfMISS$r9gP`;#T>#$%*-fx27mqg*6H>=)K~@$!4d4xPonuWZ$X6w7KKE5%f&%9ys9 zaH>aU@;AOF7(=?dq!p7TO|A^GFE~M(@0~Uo=3j8C=F^%d-`CXTu)rMGO;rl8 zjLnYNl@j8FrqgYmycW8OUl;XC3TXR@zP^Le<)<6DCG-PAfvH#zkNz;InYYvdhF)0= z;dOF4NoR^`9WhyS?83vZVPAdmJ)q2bZucL6C0e6Sr1-qE&y7*i8CLmuD`n#cpfl&EO;>?t z-m@Z9g(1LAZ(^L2dmg(oWR4pns>2FM!mA*HQ54hY-4nB3)8LT6^2}Ora<@PPfGp#0 zEdB|(71=rA9+;lxL?Lh_lOY~B9c_o`E9Xj)(m83dYV%syZuVnwtrte?dONI6E{jVj0o4oSKhOC=Ba;*lr-;AxQY4#yV*BG=k^ zZDq5)ley3#0GGA5Lr%1A6-h2}l`Jtyb)N5F+`xM6tZNyMux3eXU3&ocLmeky^8wubw#b7*A^MGP_1 zS@rhg^u5QfR2)o!enNN%=5(B!FMR(XI(Zy${7R;|+=%KtdWcXhw+ zP7B`H^?XN^4-u1<%U%DZoB$Hrz4ybiOeJ(`-!XnV{7U@3C#4O?8MoXWun{A8cvk zoyJ_;gpo#SCD%87fAwl^tnK+nYP#2Dwv~%l-v2PRiGV+eV278c`2bRXb#LH5#pkmI zK%^XLH6FdybwKt%8<+~R<{Vf0yr0?dOjNbKGwDdFA)Wdmuoqu66|A1G)MDQdgsK}TH4EGfcm2`bG-tmi9 z_|1ApIf`M2px16x$ru|19TivgN>+glq9;2Fim8#JtfK$8 z3#4M*UeGm?^#>mF!gr7Io700a^@3^W+oz$)SiRAbQhP8)84%NZ@R*Q-!kOuCXIrzU zNZDvqN*KMzqIWl#*J7iffurF+NLX<+T)zCmXOYgK~I*+*j5go ztbh$65^_Q1z^}CU*gPYR!uz%9XD-Ad zF=$pw3TZV2K?ZJIE*XowiubFgOm-c4rZNFkL3%evl0PIs)(Se@wQ@sOEw%BstRjlE znHPW?212tu%+V9k9lqwtTIKkc9aj?^_SrXNK7cidddhelQV8ZI5^<=ns*isvTD00E zuqfab>8UW7%0@_X~EQbdzfm~3GkI^UwLTNm;Fhm~Bsm~${oXk&;!loo(o1luAx{Mmz0{!(N zjneRsaacK%N)oJAXp(?Ska+4KcRmTRL^EW*;0v%M<<4IJo9hA4%VVQ5F_p7EImr3eJv6KYW|-lA&#)fCFNg;MIfJGv)qu zY?mnS4Dprc_;z5@+A@^Hc}B{#LGasc^JCJjXZ90IQLcacqcw<(DH7{7_TBUE}uNG^oxar5;ihB^uiHC5%8)Pg=WD5r# zLG)|oP-ZdS*&ZO_i_q)NaqMouxJPSqHa6$ye}B3P(J;s2;AB*tW5 z+a|?YunNXq3}0Q~8n9}V4Cj=AXpaMCKX8hOH?=Y9*MXFl%PU-% zs3irs0|j;{E6fsT<+^^;;J=~h_<-Z4>ciF!9arNBWaCf8KXtvD&v3F-e`S|~}PMA7P}O?@g!fkjmxeQ{^mkFpE{ zZh;V55fnN0Gh>hrUMQOwg^VVPAG2~ajFmJxk;m~22F5#Ois;6u=)v#39;n%a?)>4y z3At&AzIjZL4$IV!MkpqXJFx(Ib6pI?+gYZ9&(%omML8^rz{|lMmxlZlc*zO6tRPxf z9DH1ya!_Z-I_Q(^&3k1l{|gU)GR2aFuhA6vXlIQIV{_t&%}8Q|!U;R*$rP$Oh#z|K zBXoBaTY=++I~?Q!t%$pmJ=EUhb_(4_rvoiFV!L33?EWS(@AX#|l71mj0jsPIz{(~@ zNuObITZZZ?zX7j^gK}EWVKyYGC)?M`@oS5`l(OL@Z3 zP9~{o2|Uta2aD<&dqv$HFg19&2*z5~GpSXu7}ArKc|*aD0obgpcg{hr`-R zo`57*{ zGXKTR#O6f7wGA-Kf&Ud$0=jvp;VZfpTM<0&w!GJiS?FAZq{myuI+=N-s@T(yaiL(? z)haaj>x*V{#!Y^kJ*jQ8wspNUaH|kMxF8*U6>NcnB_N8;t@R?Ix> zaHxK40%{KnhF51}t)FJnf7f<#CFf-V%P)2hb@J zSRzgAR@Pr7ad9Jmc`NwexWBQf66#6fo5av%Go=vC*%D>Oi2Ujl zB-6dM@GY!X%>Go5PNiS9yW(h}eW2@l1(LOJSe$pgFW3=*T8(9mh1&|z9zJ2W(WN{c z?ZdV97ise|81i&05+;AkYq%7axQzDeVi2=@*7cO%AUs0Rlh(LV`JY!5Xb~37>e=7<} zX!?MZ;{y#shK~5=dWjqrrB#g3ZR zW7qmb$1S_!iC~j}qU#e*;#^WhEM7Jytu zQmT}|kosVpO9|y!qXp6Dy!BAcg6riDLPM<-eL^333sm;ENxHZI<_aMkAIYGf*q1v4 zod6|h*Oxs>6kDRl0K{A%JJ&5u2%r5j+H!i|^{xJ{BAGuF3S>4edAY|p5G0ok9O6^N zt~g9pNL0vg=UEi7>V*XAE!@zP_=(CSo&Q~v@HeXha*D?Cjak3PL7xDf?5MW#+GWi2 z?DM@X%kGiuGJu}oUcnnezq*j=(WH^q>#4SK=H^8EaS^PAzeT(GvLeQl_|;Z_g*PR+ zXdc%jClD-qBY8I~*Fh_mWPHFtEJ@}YEkhkM_5a=Q;$Y$Wm)6k1n3?|@){1fUW4Ac3 z1$s>gyM-i@>9rel(Ze9DY6bRmn%4iL%kBbP#ncjdn|OC@f4z~3OSf2b5ee7#=@6ld ztDyI?=Nd*JgbCKOoQ*(FH^pUc|5+YY^il190di)g57=H4EEyNNAnuyqe=RfB?ilpG zoqJnxLejZZaILoDsWOKEJ=)AEH}y0#W5+X(Yc4Jvfo&TTdK4l+-^a5zK||l%*;Hvt zHlYj5k2Qm0Pu3MP)qm0lcLw?-)-$`ml?jgaR(W<|s*PYqlLVw|i#B+Z5CohIP zZUlQK#;^5~w1qs`78~=dW>zCtjdgu(xqVLL4Ad<}jQ20mRas$L$uL=g2^@(hMQg41 zGZ&H$acS!2%P(*OZy8YEsc!So;JTBj1}WUq>$ir6b2YSF>%IxAK!?X`}XN@Ed-p@f?UhIYn!CLOUd#s2DQOB+1Rb7-Y$eG@O-ugZrW} zEw^6sgnU9JFe{!BWo0fbQfAfCkmO`Sq1aeAKn6{;-*Sln(TaXmsxKC>%>*m-PI+A* z=(jAL@e_k$#hrw@CD22KKnciwZEr#;c_mWxrl=ECF}m#D)D%fQJsB~*9tgQ3cHmyV zIaGP;&VTljGQe`-f)QK2>j=R@uBWS-eK+|NObY?v*z`&Oa46)1*S)mRHAWMO{l}3 zi@=ht-*aUW`c;d!VKJN+rF#s%L)W_^DYX+8?{b7--;g= zc$+)X?`&Ser0rk?*C|8!5HAVOpYRyeVJcF1IatVR^B{!CmemJ@GcXwrYDI?3vXcHy zvXHVso!H^*UNu&SAV7eNvjp$V^bAg?3zE?*kI0cY%V?@#2$EQSl)_FE!B(=LJj4-m z7UF1MJaJRXM%X_Z(v6?JK-8*|?E*${C>Oyauj976f6_jpE3{93;^RPW&G(hK| z=SIQZ@9MIt&f5@efj+ARPfs8lbXN3mJhP(0@xH-|khDu!81T;iB5}r*dqIxq-(PoR z{Ky_Vx|5#OdoF6EXik%*PcUeq&TW@%dG7)1Ne;Ssf>r21i9`9ZVmB6Y%-q6#%ij*X z=yE$8KRbPX#znB~qRb(g6lgFBwG9!7)d|Qh^YMv2MoKy_wQFJ*hF6|MG@gr$lS9nF zX?+yRUO3ZL_J0>~UgwDfJJ`7vx=`)}cXn1+5%DH>)65yT{-e+yJ=sw(ZM)9J@!RCb z-5TU$%_JXxa~Cyp{RN`roW`cduI?_dS>GP&2BI4!@VHRI@|u^(J!aMJ`(aD2WS+4& zH6u2Z%`P!C6Ur?K{YOEZ2PU_?1t`MJrF0rb^fH5Q@4F8yEL3;FgY2fY>sx5g;d3jj z+(@jSMV>TycH`BPBa)Q>uf_36DKkHQoOmrqG!~b`?W2y$F-xhxww|d+B()0=Mc7YE zx{4%avQ!C2OJzI^@K9l97?PxATH3n?%c48hbO%qSgf06xS?=jBEkD!1&R2M>e^O?3 z(Cm#O&!gIhHJ{X-Rnlt1{#Pz{-i09M>eJGG((S#)W~3L%>_SwWk0!d75`Km0#g3&| zh8~=M1QcsH)%lh$^*kX0euxA(oA!dE_gG^aUNb>BDxf=E$dULXhKoUqv3OQeQ12M4 ze4OL}1+Sa}?YP`WO==|Cs~|8Q*F@Sp&XBrRWtrCkjMb`~SbyXj@phAgk$W=uXD8Go zA7uG_m;c}^S%O0D9EP%~1KDuZ$Y3O^n%9iOFV$jVyvaOJdTL;FrTYai0i%3F3P$hn z4rdT}fbg;-!4trFmshAUkF= z`og+VuwUgkQN(aHn(3igI5}gfz2#d^?dbelKQdX@lQT(HK)L?<0&$UH=OXi*rQE8+ zkEsuE1l7H{@BRW39R3X8DXyio&9BEcBAW3t4|hlF$_8LwzW%C;(CM~{4V+P4BhRkw?$BFI9vqFHr z<2o5+1k#kQI3>xkJonbgUv$(n6$U$;C|*3#yTizc`?2+CW`P=rx;yu>R(&Rb563j5 zIwDlZAKjCjG<_KRHxGn&GPeViMmADQse{<>GG@tP{>H}~Wv^dsPtYkXF{KYV3~kye z=Yy+=**TD92jt!)B|Sc}@OPYtFt{RC;CE-oBlU5j7zI0iGGwkfrkV)Q5OK+p?=2M1 z0~4wbei)Q+8rdBPpLPyOiuhWHW&kpvlxgwh^E*w}t3or0S?memo<~jKsXTzp#LavH zNrlg37x+`2YXPEqDQ;_sc+D{c5J1;zN9-ZQw;*-(Y|AGI^16#^Q55O*ENgcyE1}47@h35~)9; zXuM1oSe&zaiqWaWJboZhv%<*wb{amMD8~5%A19bUFtbr_IYtcwc0~P5+i^Iqme@bW z9ErLaExZ-9SIC@H71R9Wr7cDS^=cv6FKGILwKvHTDJygBrWm~4T8X()JyU?r?byzCsxkj%SqUc&Wo$*Z+_m1qa~nNLhVb zmzT#O(rqY!ujE7qKiA(+>|?>iU@#Dg3UCz zR~Pf~w0T8@v%rJAo=aY{+M!1+Hfir8Fds7i_MC$h=qKRJ`7j#f?JV$0pereLxx_*m zAdvwwL{0fh*xZK1mER^kUQ{@VfV8KB#-~yTih>y+BIgH7mEHPb^z{24#-lMc4J&sU zM8258rpNMnSFKmy=B1$rdfeteJ2J4yldxp|8XeIEM;7b_}2=P5%-n!R23wX!MY!@=K5UtK5|wenmaqe1_iHz7KMx825Irr#!MOrq;y!!{BCeeEh&K49nn`pehZ(D|q^!tD z?Lz4?%Cd72`+SEP-{8$5G{+8k&{`bmeT~C7HBV19*Dgr!uaiaj@Hc03V|5wSVfFPl zISK^w@`DZbsVgC3wG0Fgfxh`Q_?5 zgGs03c8ECmPc){Ku^{~U?)KJ$!Sw#zao@nOvZc=U-6z+B?#x(Ql=E7EY6}}s5R;Nx z%faJxR7M~KzRehT$JeoogAnX2W0E4J!Obrk(QEk@RZo}&{IOb|p3_n{u;qz7illAv z=9&cMK)0}zzJ@=F2#-2m*e)EKde)Ir~Ed}pmPv>5I z?%Y9C)v(~2+2?hetOr+L;DX0b&353yLbY6=hH6f~m_Q)!@9yW@<*+yweI)MhANy_2 zZE8 zbmS%)U|;VUQIv8-=7QSF{@4D=Le@_yIra7OBbV3cT_JE3cZWZq_z`w+lLe~tR-Ic# zsToX>8Rc&9$70cFU`gfSyo}?~dE!atg@NBl2z#wI|DTk{o@h*f4$i~#KPj(SM>a95 z1#{+W@SeIYxCxe@aS9 zgqQc`etvhG|NZUVM3d62=6-wnYUV6k)hYqEwUg)C;3jt2;q;<)w$`=2HuPk5q~u-o z89#^c9Md@*RM^`6+rcwI4Um>lT8*IMbPTL5L4RI zxs|PvxI9)H0?Koe1AVneZaH%J+B|*r6*BjU0@XRG>7?`+ps5+glBG5&W4XKaVUc=W zlPohq4=^b5Ajju$;>)2ub9vr6v(ser<9Dws2J2Y*QhQ{tdh)T@TLN|qj!o!<@^jf= z@LhKSbIiPfZF)0zGNZrfuBL3swgR5yz`VZoI(>=b(>=7Qg}l=783++m)JNU3*ypDGA%XJton(b?$oQOHk8IFnNsMUA%~j zQpH-*Aw<_7N(h==(yG0gDFGczbrwvjLvVtq&wo%J$acMz-({I(mI%d3#N~{=QErjc zz2my6)CJhLkyn0_JW2Ouz$4d|Vi+ny6^G3@oY`yF8mGvS<^a3xeRQKeaDE-nk374( z@Y;EpU@lxd1AK20n0Pgw4?()b*YUbsenk(&4pxnVUXvxx}WcW=MC2wnRUBIz>s}9T%Ls)`R20!yN zZ@=|_q+4&BX{JThCJ40T7{VpXuA7}Ich4McpojODxx?VKh9|$bZ<6KE6s0yG< zYi1ce#3H`w3$o|p;2l@{n&pPTYCL-!G3Iq_f2WH;2kMe4mgSHwPM}$kWqLl{9j_D3 zDiJMaZ=4NKw$r(%2Mmk%@cjb__$6M)FvB>KvjENNz4MAK)-?His@Ff?E>kUbjYqn> zbk}4$i^i6*GOSY8rUGxH7|nzH9r7Q)47c`*mqSDP{x%N2GsrJ8HNn5*IMuO5E4G8) zf)R%)!Va#nf!F316*Yy#5bs_4taI%f8d*xBm+Dv>e#qDNJFw& z%7B?-VRK8xIQorv8i zh>)q6CGC>0)UIv)&eUpqJol_!W7OWNWqJDC%khmQR4LmGd~Y^zujlew_?(nKgSRLZ zjQit7NQ&9uc(y$tgs|$I}ACdk~t$rD(L5rbU3$Zg9Oz%&?WQZT7fd8 zR4H&IPWw)%R(j}0cgl{{5tB0YQro2iN|5f6W5;G8D;Bk^vI0_SW@3AL_6QcNY(qpkkiq**T`nNKG ziYVNop&{kUI-OjkzS~fF+!(ABngBQ!)INT95YOlIZ#DfTM^+x`YP~no0EPaAMIcyY)qH=Tl?Ap35pjWtFgzJ31>RMmJF zx<+GK-Nap$Mh}TF$!jX7nwOqvhBORII$3bZb?ism%DCsd6cw7I9rC#f^e_<4uP5P< zSrX4AX+S0@=%h!-gV0a#9gTMG4moB?s-l39?8K$ z;~jbNa?(`zE7@B^ zC4=Ej(03NUmF4amsB3Wczr`o^iJ}}ZCBhC0KnJ5k`5o$aNXVgS<5E$bRUA>XfL2%bYS?VqA-v52~AkuotPzfA0$ z5lviFDoo6bFRu`dmfP^1IHcLb6%mkFa<}1YMV>*b2-iQ+m|;bS&OBaCAy2>hbQGWm zMX1S2uNJg->kPvd-_AMlMM#F^iD>hcb2y$;llZAM%-{LvNRPz!p$Nq;Vw1qXqZPXgIN3onr!ZqLHySLe z=x93cyuOX(cDy3~9!6<5f}!sqy`ne>Ce>ksX4t2+qc0RqKJ(~TY6;*0aFixGOmyNt z2?|DGXr`AWignSXto+)sulyT~)O|NttXc+L@tjyZ!h}xiKznToPCx(4LX!& zIZfKBt2)jB>e-v5mMP%hh+O_a`!%W^xPIaUb78UtP50ptl5gYFi*h(I)DhupbB^io z9w4guKw={vEYqr`T>|rhrKD(-reYX%-yxO>IR|`apz1c4{f$HKoQt=w-vYwDj)bTP z^1B4Wglf@3|1nCoue?GHWd*u*+g}6T6mjA_Te_cls&rl=RF=%t%owyGo^evFbRe14 zOh>Jt0nCynO5Y?5TA(9bs?$-LI_+4IO0mwq;l&nC`JY$$D+-Tx?M#(x%B3LRMR!Z- z9ulaZQN*dc&8+SAgh%GyVi!!!l|&+GqR_8YZU**FCfS-XC+EX|w$XOkULz zfWpkZpD8K?v>~a^!{wrOram<-E zCBb;@!cZ)R=@QVZlU<%lg2EkD2W+Y?vjYvLaOU$eoR;W3s}J02Mmf;${a(Gn(VYC! z9vUjKz>cMOy(7ZuV~YM(ioHvm5_wPTVYH=zcR80J1>U+`grP}LHB(KstbK@A@{`?8&KVb+@1KGzpj1J^W@u(+A6FZfn@+|5SrG^k z>^SrK(`ahZ&xv4cxor?So3($k7Q0Rij>A$$UQ1|Z9Gw5#v0O6!H@Wm0IPEpF#@CpA z@V(<1{2D0I1>10@BQI#c(Ex+L89tFmF2FThDFPl<`fD9#M!6;;D9TXufg` znNIHXkU0>ug?yJq_jHs~>2P&`aslXQc@P(r7LfRdB%vNUcpi?-1H78|i}B4wB(PgS zI4OYM3>K!>w#3D*0#_Ukd}+`EAMl$)y`;=wX#RJGd*W$10j+21vIdjgAMZ1KMqj3n z(v2K74O$l^Nd-_2h!K~N6Zsddo7l$(n;0C2v|~UkN#0m2SV6swRv-?V8W*t6TQ3(x zdlPC+c`iXgL#?2Kj=gwbH!|i963D_sVv98aLBj4NT-1I zw(NH$NLgd7+WfXrk4^e0B75cp(OA!Gdm=*a91((nuCEO6R<mSF=zUwgu$W z*puKQ(&!iMp32^A0Eqxpm7WhYe70!*`fcM$C@_vv780EeG)DyOSroX63Z;kp&5U$x z5Qvynqp>Id^R;$M&LY-<;*3SA^hl36eku*bcm&G1vK>0-7rj#ZQGk^VeG4Ol`vB5n z9-T3qF+E}_xqCYQ$_q~f0+dEqc5l1FSrF~XCyY386d38#W~8kiQm)^&Gut;hwxPKe zqJ=l8PcHu$Ql<8ffp#FL&b`SiK=v5S_e)|%*Pw61npA67+UL|uSs$uM1O$xT(WE!_P^V}H-rX= z|F{>ymbbMurByK}#|AUIW`*BA(9Ll_4BlF$H%TxN#swzY-vs-QM>El$U>N4qWb5;^ z-+^4_GbniI`O%H}eTrHQ+{S{rdhorp? z`Fpc}y1E++z*u6_SVx~)YYk3|CUBJW9NVvD@B^^fjduh7nOKu8vwoBm!&WjuRS(&H zz2dLLe1kLcbNBqWSEjAk3iF*toQdC=4%aF<039;E`txoq#(okTRf{3QRAMmDZP=b^yT{ zyurW%R^5V`IuC^e&U*wv>7z6M-e0HL1K}#7XXK@Nk$Ix2j4)DJ5-?;W;2y)ylT+6K3R=T5b-n2U8f?_LX-U z6g~#^Yk>C0xX0*U!1k*kU{w&QsvL43&g@hJzD zunvyFacPsVh1%IvM==P95hlqJRPMx77u|H_u*sH7{~oux_}p?7^$p2&;kG->#qco8gHLO**|B zS$gfQ6mNY3md9iWl0$-qC|N^loLvAIMh2c$a5FPbabiw51T_b$^k4j(_Mp{UIc$D%HdT zy7{=a2z=LVWr*1-)HDGfQOx07AHY84v4eJ^4___^pAI#5Q$+LgJpy2!Tm$?DU0-oW zJC^u__4XyMW%ZClGHU1GqUYd%ZC)NKwRK3z$JIOCn7tnz+XjCeGsOcOc>e9}|Fg6K zoLTis$*HZw*@R4miA{bEGUyFiIgGTrl8W+l$NTfDHYu~%Kc4dFT&uQ>??b-_1tX%4mqF=JIf_= zKhm{+jS7Ar31JU2|EqZ1$68oOK2N}$EnJz^?JNPokD1tnft5 z^yJlLZiOPZUzV6)47hO-lU7{ma@&6fwoAaolJ;2}q8Kd$!%*`O1}4!cS0qXtkqvNy zHGc@lgmCMOr67QE-Ms~)yOIiBAtHh@LEnz+$y9-z^kv5rYQsk1t`n~=hc)a@Gf8p6 z&W@1AQ!kjLWbLhMRUwyzxqe$0QH*2NlTg=kLJ-|LNTrAT1l7|c7c>S1pNb`hC_$VZ zuA}a!o7W=)E*{^RUi9M%2hp(5!qMxI(k>1ZSaq~|{pG>dMjoT4A2u?8g_EtyF%tVC zT-fRv+DuYiG){6>wTp4OPEZ$9YQIipsCpNfzO3WnpqvH!vy}z*j$w1}^cy1y{1D=P zm^;XER1sQV_YLrOQIw{&&Vh;PQycFkkPXNGi~Yp5Lr49(-~VCj8v-j~ zqBUdNwr$(CZQH)F)v;~c=-9SxckKCR-Ynm)7PYQA=i|mAFTr@~RSg~$93aL9lAm|< zbV%R4R@YS|LVZj1t%uQXs}~_rpUykhvRTW)m&2o;;Cy2fs&4D4j_yjq6#wW6#jZo% z6t6f|8MBtBby1(dUb_ z(JL&DcQAK#L+=&pGDFz1DFDPNdu_Xqy2q#FSG>pCZt*q|jqK=pkT6^fV;k>n1Hz$S zVo@t%GvWC2I{vS=y2q5S?RX^-sFmGTqp_)C2RE}s{=t7SfPDRJk=&m(bm7EQ{gjfQ z3Q|~BBp92-$cg50?@DB_;SBfld3!Mp^uzkf|DBydR>yf9dD^qt0AF$kNNHap4ovDC z9$W7HbhtcHdFx*}$xAi{@)jo~Dp1|}T^|;g-ThJjGSLVp&8YoG%v9HofaON-*m+2! z;+;JmO!43-Lk`TCa^S+32Ap`X6d;E#G8D)Bcutpk%%tJwkt!-Yx zcs4FU1qDTa^z8uS`e`@3YZo!y2&QXZ0$}0vnF$M$gN>FN{5o^Wu>DE2*xZ+X2bKeY zKrgp96lfI^zsC-UDFjG*c|VrEeI+YIga;^O9Di{#DBe{D0FzHYxZ>}<)6lc=B^tjzyokkXZPB>gW% z{XaHFIoy;X#xed6kTeJEwLwx;FJ(RApcVma19?3?<@)zCb(8LnndkG=YAk=uU&sj* zag3{n6-~3}dPyaxuaLp$L972F14ha}i>GJ}^p4I1(Q~vNV}3`KU&B}s4DX^JixVXO zE3W;xg|vp9>p?E-=%B8#1klV5VPjTxbTBYr0(w7t{Qv6|xJythRfTOJjIU=1`0sZ5 zj{-}j^X@;$wY94mOFa4$lU`~=!t}MP6NlcN&^?0hqyI)*Ifv5Bhtm@m-k~0qus`9_ zmNLu%+kAX?P}-#yS=qe}Q=d1Fr&=8&b!cwBs0J%0t=jwnKebXMCDT*072CN3jAEIic{@BY==n# z{!A{$`T0}tn>@H>#ZigVrwRC@MK>W*rd7Fe|B8GGI!vTs!Bpm1R0iB(;n$8B-xA_F zQo}h01(ICHK8z_#;!T8itfeyX_@FVitGxVd429w+3^yr2Ie-8JsYADB%DxV2L}v)B zVw4%Zlt<_eQ2QMd2tLCV+4d@$|Jsh{>-fwHGR}N1XCH#7Ngkbp47*VOZ7abi8U^a))nSz0Uorq;YFQpUe^j#tj(}Itt z15x_7p#GB?#2C^((U~)z7m1$UOkxnGk=n8xY}P8UPwKqw=sv~EN#R`~i9c{t+ixv* z_|zF8gP&=^sLe(dHE)2hWING9q^dXsZugJtoQLog{+TUQY{lG*X+_Vj9e#X&XtfC*VeaGz~CSnx&E6#acuPr`yW>?1?#@@ zOT!(szs1(JOS8H`VSLEmkgPq-s7>iu(*`$(y3S1~4*yu@GCb-yuCV^iw4ZrJ09G3F zhL9plNzGb;TGZzvb_&`jru=NFmum@a9wT z=HXn0#%iECC{0%JjssD|v5Eo@0A89zc)Ft}yaj=ewgTUEr0-xpZ@DkiG}!OC*vFoI zT|MXjx;ct{VL^uWZivzUSwPqv527T7?K?2C876vvIFQIp*SMZr8;#aVsN57nQ3-M?x8)IffujSWgzBGn4RBq6Re)4h1I&| zpKhNmy}AM@)WF27xfSh(1qgwJ35v|5Y8UOAaSysx&f_CT;sO`DC|qMg@S8%6^Z({^ z%?#f#9^6Ym+nZ-JR9IQq&dzZz2E@#El*?-vdSzDmZd}G`Y^ODL0W%X031h|r^ z!)x^F1thPH%f_}-CQSo5t|aQr3vP2ciQO`rtcFAN$9e(mQgKhVm4CSL+GW)8dEhbf zDm~?^4w@vw)Mm8kHuPo?OS1IKPOX=VpICP8%&X9ysex&8J-!gen1gL~asD;cbhtXaY{o9_?2qRrYjVN;pVuVhe@NYc4G z?NYZ>=ZS4**KdDq6l1QZ6uP^X&sR)bvi)Clkrj=3MI&=X# zx0f8>Rgk*$8W~{6m#V993HAMsoU|(F!M;`SW*%n(r*JhUfZ<<6W*+%9BrB}fAxkV6 zWVG@d{-Fw=x`9e0HN$5()0PDZ{0}(MfIoPj2(wJX2Pn_NvrKSRNTN`BR%V*@+(Q+X zAa0R=SmBW8n1)MO;U2~WhOj0*kZ`2Yk1esTaQ{8zS4ol~bn4d%N^UrKqSYAtpxw&8 z9ts<>zhD+A0p@%_z{=}bk)>-dcEdVXdp(!@{#HW4ztTw`Rgkq1bjcFiGLB4lT>xH8 zQ943I$5o3H0s=?(H%K>S2fpRIsrvioFW!{`2#QJQGkuAQp`jOi znZx;FkRPl;1(xIMMEAmsKV1x{nil_U^uDgwHXQIL10uDP*`PV(SCO2UNj7%vyZ4jP zm1z9SE}M7@Bh8m~v2_9xXVKOJ9^uY+y~X#`$xyk%7y%wdBD)luLYqJ_E{bbjv z0by65WJ1YD5oiJer{J5cmR)be{vVNHX|>zgGDPkjKk)a38O~L-&|)Pr#Ei6B>U5S& z8=JGu_9z=He`LvDH-mkghKI)jL#X`T29W=D4LNNnQkN_?rolt$lD?$qA{QymYk3>p z7m}pljdy6FXedg_RS*xg7BPEh9Hivm39IpefF>nR+Bozt{{q3eK!*P>qbJAzZ&GIF zVEey_AvHi(Hu|iAS~H{m0)_F4k$8!;BO@-d};8 za|mde6bp`BSsMh92?@~iv9%qb(=|>L^?`gX?oOA%G>wWCpV!kf!>SdC-QSKX8O-fV zYLy#}O`o@&y4~LQ*X;g2z~jv8WUUBxO-uEwCoKR|CeDvWm#5jMU;A6nuf6x~6QI2`=l{7C7kaY29c`jm@6;P{RA$`u z9gY*>fjQ>;nDFWtFr#iRs%~TZ>#6Ro3sL)DY`O}Th5>m}JLQz&eg#10K&)tQcY6}%#CujVEj6j!ulxI3e6;XM zWDdKWeFm$Vg$ppqMSU7t{#5#SWQJ)`DFaHQvyXmLvNLyWrdq5lz!+<)Z+(2uj9Zj( z@v3pqQ<|-NE|?Huj$WKHQgL|af&Ye*LA6D%BRHFYfA1$?BrcpF@5)mh}C|i#?Znof2s6g6Fy-BbHUw1+4*^OSlop^6G3@*TqKjRr`?Ao1t5L~I64^CDr07B!8;cNAm1G6f<%wN(;4^@7t5N;7gKaH7Quy@h zKw>?L_3;GMWauKNHHcWieNYNq+|^Io)E4#_tN0#JEEc)RyeBc>kL}O8BIY%t^j=dI zh+7zkqNvy@Y{mmH@-3=>b^y2!`*QJv#Ri zQe4&38W`TjMk?Aerj*^P*w|(Q#JYB^!!Y||UDf;K!UQmHT28Dt%kE>!%xB$ZU?}{+ zT12!LPlI1OCl}e|uwh?%oj`E%*vsllB2WmF2Du3oLlhW^ZiKWy(J^Og;c&!@ru@?jQl&=9+7*9B4HET7opbJ63 zhRFJ@hf#)AEMnjb-M1#`OC6ZH`zm_slXE1*0x5W9i7MxnH~81r&885fwP zl#Hb?vQESnZ`jwcoeKB+s)w}WpebNJi0SCg7|h3L=IN~9#-{5ba)nQ~v=ULCvI9Eu zb%I0H`9qU^&|9@J5@lPY%OJR z4gTuEYr)8N{O1_E!w8NJGOQo54Vg^MMPEL{Qv2~5ct3GJYsYE_!jAkBilx@M{qJnauPi?|vmKn5()90v5(?O@REmh7@cs z92&nt<{qgNIsGsqw)O_w&RUp#819)7PJJT1R}A|{lby3L!D4y3Ijk|Sko(I=13fw! zX1(k?Dj=(eCaq7cpDD}A5IEMq^#i))p&(r zZ}D&Wh$;aNWF z4RDCcdJt43c0W=!LO)yP_+rabT6x;^CY8lYgm{Rb00=cL6afwWfLtzVXl5mP6RFCy zqKAzh-^tllIF^2%J}oR>I1=S!;8|Qem**)P^~f>t+;)gO67}WEq_d?lq$WMQc9V^> zwAhfw)=i+<3<@ajI!qTeY=1>OLe68b0dTl1`|$YZ;g_-Z6I_X|72~v02Z*Hp>)a}n zEwRo?7~jv_<;LkGkaFB96p*~Ft8Y7qnnP$_zNV>cjH|%7yPAA(p zYa#VR?&Lk)eUkf6zbn=n7c=*Mf0(Wk@Rx}E+nq>lDf5;pD~G=X_9ky@NB?8|A0X&u z`rI1d_XD5a<*%x|(|mb^M+M;zV*c^tDkFSId^@le%)xm>pkV zPLEoyZzbL3XV=b>ri&K$Lw13L1n=;kbmqJ~+UqiVVQf6)UMiM1^JEVbJQl9kj&rgv z-*Q4iD3mWj_iZ=n$Bkc7$*(XhLkJ#?K=>rH^3G#tpS8+4AzpRoKP*6`uY?8gTU)DzdM zYTJM3CPH)u@)ywN5y;`auuMU8jqqIjiTKMrBE0owNK_JPO!PP&q~x<~gQ*)7QGkXl9yzR6;gui@ zzPFE5EVT36shupT!u;;B^^g=dA-~9_=OQFu0yn~=cZ2LBd|Z`gz|X00!?W)wG?bZR zMj$RelCk?U1$&=K3>SvQ2q3tbWeNKtfauI-UzStnmorL9wp|+h3C2DAKSA)UA29>CuAKu^2 zcY_7`<+2v2uLejvUm}JD0a9mAxi1%7il1k$`u0f0csfsx7mg{ zK+zFh^)K2oTcQd0E=Dbp=*+jqghWSj71<;>fuIUOhwL38F~B2Jw4;=$hsWo_EThA~ zk$=L2gDB#aMK}M!+6_u~d_aVL?~aNqq3OOIokXE*C6HB#Bhd2^JqVDd*QY1sbi${iX=;W0Lww^gwJ36I zGn|&b2w|b1BKx#%og~U{&tn44un>|y)YsFE#55)~PW^&d!y7xKQ zF8xN+6bg+O*Jwt*2d&9|DPr+Yfq$7`Q3;N)^94KrR%XeR(e`JQdmzrN~SSwP@az^PP`x<%#rncDTWZ;p@Kg7PuOR zK+xTImPD6haz|t}UBgYXznCC#?GL6VBlnZPt|F%oXw}N{c6<~m2mf6*xo@b%W2XV@ zMppH-Ro=ba-+ju>%!SHCJ-*?%&OQY%2>muCcmOLh=JR_7on66JOX3<{+uYO7+jzEs z5$AV!BLc4nCEQ^!#=`ff)yCT%5KkI76pFe z^bllp8;?UL+jG2u3rS!;v3_8d&8t+xq3%h4YPioA-8JK%-sx}D{+7?@G!ZxtoUWb2 z0D#mZcNa=IDs$;>zS%5W<&JlsFJ4+*{ZXf{(@~j2zn8CP*O@#pbgjiwowcW(Ob@7= zq;3zo^6$-`rO(@2v-l%_N6FvLhfsZ{L38A3%VbGLtax6Bc2Nk1hJDG{y^PL2{hqS} zGwb0A=D`S=$+Wn9^B96ID;!M1`5Z?{nAx<{U0VDXP+gu7Ts-pzlMTR#}gMQ(y{ z{yNFBMiW+%jzcKW{tK_GjE!^<#?+dZ|J@1AKXZd5nYITOXm!=`1^Ep>*t3{M`6};P zD1k~$fI1*JHTZ&b>fM;;QJ_^%YXP`%sN0k!8jsXeI-HZX^l zP!vcHg_2#rwOJ^Z$m@9xsE+&Yw)3Y`-!p~NY$r#4DhMmaw=iM-63T6Fh`ozja$1YR zS+Rz|Iu8Micd{X(g;J`($d0Gqx1->0H50H57vjqY5@|D~FafWBNLH5w zG<&?p*e7&1g^T3%3!=hQhhi2N6}oHD=rUa8oXn#M*E_D-)CL7cM8W;gUoV7xLHSp| zVtfI9CJ_nrzds?B7t$439uA?^GN5(E)r*=vjYJ|mf4>+hfA=2$7Z8GrjfjcJ(ZmLZ zk1x4v5(bougYEwjVKX|q30ocL|0M+;2-HH(IE`dW34p~w$j>u02*u#LDU*38+RKkd z($DDpqjV{LGu_*PxfRt@|GsT7OQji)np@P&Xk>V6`J)gM#xpFsz`v@BB<8%^!*Xw z4BE_G7Qf~p_cz58Yeiy*y5k4@xXWlHPn}Ka$W7p+T#aVCyDO~fjnfg1+bBwFAC&T> zt(WFL~IGSQ(^K1wwmxWe;rH12U%U0Fa&I8kf^Bn zq98Jkgp_q2Ox!@p9wAP;<{(Gy1UngY_ZSQ$*lF2ybzcc)*%9QPE#;LZgiQsJlmuye>N`ZuaT_Ulga1Qw;18)e%XdW zZ5kdb+ zoqIBF9;vgBwuBz4DqtHbjzRcF*NxSAb9J#yQQLpr=%o0^atH-KfQL#0Isp8F1W8F6 z|E?mb(o>bz2f3$5FN)Y%H9*moC&eT-QEnR;_;qOUkz2&W|mOqIQz5pd1t&oJ)u-2*dU78So=CQ1C0;$zRqbY}) zk?n3~a!4>R1>A-pq|LoL9^~{JFow_11#5IekVq$!XVE@#7J%imKUNm+uKUgX-1fz% zLz!2!;3O7A^n=j?sY-`m0_X+#)W*6uI+fpG1)VGpUqP@pXVk^`%(>l(bCXCR1S<12 zUxc|Drd=tFzh|RG2G1BrP9vrFC>0k?m7aghhvxkR9+bc}Xg<`)mUxxNIaEnc!-_-2 z$@`~o2mLXrt?U3Nt&@Sq-6ql_NmCMGjaK+h{JxDRr()#xI4nd z{VsXJ<&{%s8&vUl-_3;UgO;|V_IMl@|BVwK%7p3CJhhII3rSJ^0|_*$)m7T~F5p6g zHaEG5>090ixwkm*Re-e74s6ZygLmsu7fe_%rpgjDdy{is5-(+*9Zv`d0{#=}Gg%Wq zkM*@@U`7z@KP}6?=dTxS*<8C&oHsBdud+Xq@*Q48pzs;{W4H%Sjd^Gua@VqZ(cAe` zf^KG{q(^aV$?u&@Rv;CN$PGZfatK6|$W#pt%+V{PE5gCBjB6?Q)K5t&#ZxMyU|wh$&ldqXYto$Lhg(G) zfB=oMhEDF0G(gkzMO+zL1;Mup1TSfacy^>>x%lv(->xP>cH9@grW}JlURQIvH3urg z`GfuD6O4ftCIY7o{v4`0wGHy7r9`tL z;c=jbqPZ;Ygh+Rz(^;y?EVGn_UP6yQZkn}bAZYz$Ux0!RxX21@#;u|&0lcHC_om46 z;M=H@_ep_nmRiyegH+ss(wRg=3lW0&>jec_+F-4b z7vtpf#Kf(`17m&vLvPP+pKL5IpnVxFnL%BnOyrbkD?U}XD2>#MFPmhD}{0l3?2)45+-C@@bZ~bxRLqGe&Q0m1)K1kBJ|) zSkhNpzRye+J19gH+6R=bZkK@C?V zNyGa)#be^m`@6=zN?Z9x{u=?h&x{jVABq8$`*JL$5d z4^TeGYa|!pJ@k4<2(oAZ{!nCHWp%zh8_~S3J^t zEkjQqvFP0Uo537#&H;yz7Wq@#PdW-q9%0gch-u;_G8N_D6?C|wluyU;O$ebb@^zMl?=19&t*u%(^`@q%*J=Bg1NrZH>8cNd_g*J958Bn6EiRx7%Mv~ z$Nvb-{;9$HM)`-3O_dAG!v zxDRJp>z*`8UOvDk#P$(%TMz69_`J++uiT+R$J8$4Y=6Zq=TsnfPU@Pu33y~+Y24hU zDs4WW8B^t6)$i_=*2i#v{rbGpibv<1@|Xj}JrJc3ZtAb`y{s@TdrB7ix67-uaqQfC zReacd{=AGi?w)3oFx0el1e&=P|Kpm0Jq5_RR`OL@yi79tzTt=R!<|=?wm|+YwWh*d zXU@CzDhb%LYS|j5HmDp`i0IHbkC{j8frKK3!BF%;a99u@|u zb3uWDpuV^+slPGOBP{M9Bc|p{RNA5g!JxSe|MMGkij$(Di#s0APsRHaea%&nR`);@ z>dm~Zj3`IQ-|S;p=qKe%1zASFk z?BCPNJQ}I43fg7wgp=3FTg1PZasv$LKPtrY)-&=ictz(?UpXv4YQGkp1XC!H)5B`+ zT%ehC8My|?rX&~AU`5xWrOB8QFn%+~pqBdowp&h7t{g;^TyvIILcuVdigh+jw7WBwyd$9v>j*kC6Xw4dN8FEasXTi*fa z@)JTOW7Lh;qGcJYm<)+-kB)}Px}M&}Zk05uAJSf&;K;*?Is`MXp_{s0yS$o=wAijP z{3E~RCIV#w-*ejM7l#e-vc}+A1LtH)%T39lF|E;<`#{a$Y+Q;JG?=wAW$oTd zm0slXT*5PIO0~Bdplx=-on*5%QqLJpRIVjVCrck~Z(N;KEL}B=jzgcC5(9MVDI?Pw zVK7844+puAP`V|Jfz$1m;vRU+kh{6CiwODn9dFO47mEq6BPP72_k9BV3Z!76(2^Pb z;vl$6cd1}`*;51OdIgDI$zlXP&2rbR3<1HzV^7hCIxB*45ncX9I5%xzj~g1|s-wUl zWo$Ua+K%QoNISW{4C5kba@T09*z^OjqU((|OrQOe27F7fyow4$B!*_e+z~8vv`zzIB+vmx6qix2$)=Tm9s1)aZlmeTaP)CX}=wK;m zhkW}A!mw72*@Ys)_k{yAg!$61Yj!zZz`+P(Vsi`78{SlIfdwEnbORhovFa~Ym;!nB zpAm!JPXFfzbcjc@VxkgloHXGkDwysK_WIpkMGoKd(9&UQvhF#ymcp!pzqKCQUmuru z^?hS1#skXQP&71qWB_@Ygy5qxLP#_LfYl$+2u!3T8DnJ7EkoO)C zCDwV73(?+S5d;7$Jy?F|8m3H(pFmye!3v|^GsZyyuw^v6m!^*XKK|LkzEF29YM-;x zLiW(VgQ4L+CyTSx>k_)(>>eIgJy#le7BDs2HCoszP0WUl=C0ua7<~FU+F&e=LC$P8 zT46O>owKGCs)$K39_+_F&9FC!dB{a+8>9`{!74D+Qj`E2?3A><^KDHEo;6kOs8+HU zB3DT3uwQ5UR8{Hbv^$m6pWh%j>ZsJx;)B1!EhqhIJ0hM+<{;`PyfqZ9Df?2vB-d_u z)Y(UGHq3nlJr`BY4iZS*cIfVDaXi9IKN&$)c`Elms4L=>l|eMIzei0D@&g1RY7MI5 z26rW9eDeSV>`Q%qrMe*D^4dc&5~NF3$$*?Dz5t^P5P-~tX88l0QJA?Pv8XwPS;zPd zO%!~YK`f#QEngk@9o?+u`fK@02ezdR2=oo(R<<9!013*>U=jzg7`j)H&fnE(p-Qj@ z_LWADQyc5}z-liKXBd_gh&aiAX(n$pP73 z#`16`Y%+;XBY?=&mn*YHo^Y(+SUGAVo9S3fmL02FZqz{M z!eG~aQXD(4H$KCzzdP!fQpf>TRz@p!`L01F!NRsC z7z}_}%g{lSTafu|iiV?mJCL-zaLPb$1Q427W4C*c%XTz~#MwgH1OXGj3Q5J(qUx&< z8a+&nK`Vk(c5`A#WvC(QHD1uxj{~CWjM=6{2EI$~&xb~em(;Jlrt zY(l@>e1G|euE>DYxhr1+vW)zphMes%SN3zB20YhUVB>GK4-^4hVcWtd^NzOVar$+$5e3} zZYMLV0&Bu&5FQWou^$qfs`!&fHf|qIATg+238~q^A11s2{uIB#1n^dNS9uuy8o^V( zhY)$NpM`NGv^Zd)jzn>rSue$-yMKWAL&8$Y%$n2rl_pt_+?S)Sz=gmnF&GJ z^XQZ?2{@Z!3+bnJ-j}*tw*5jNgfF~l4qHyW5DQESf%E@_JQs;Uoy}HWmO?|i)_6Vd z&QrHw5Bq25KD0Di+m;!6ZP^o+9%At82Y_9Y<9e=?9+(NZ-8e7}QUkHjn2i5a`BgUx zXoTN25JiNwzMO<0rf2*<=r00)+^NWpRwngQQY6)w5QMjueb-Tqw$L-nAKm+5bH~!D z&Kf^hGk7%qiS25iiJV}F+Z7B+3GZrh zl8#1ieugPZl?_SyWJ&u~apJ4@*zc|C&3B^Rwd4NwB6fe8_`yMnz=3AL=l^lgc(coMzdU177=L^MrP-DzDbtOd^td}0?krvre%=-` zW|v)B>qrJptml+R;LqotcV$WWD;7ROFCAa0i&`U515P23k!o^*h|ds@Ss*7fAL-V6 zs60lFkkJu^kLp#4+8h81!1Jf_VTN>VupW(jhc~S((*or)!7YWhX7KrK*hUpcl{l+1 zqqyemSjTdyR}pRnuIPVVB5B?)wSl=hq3_l->ch*HAZ{Fa7hi3|17(Qw?+||OJClm5 z=Z#`(2!X2a*HqydR#U|KV@Kxv3rdR=+diO?=Dq=MY{wMU8nWH;7p5?S;cEhN$*kgb5{U%&=e5dx4o;J}P)DeD| z8ckug_EZ5Id6FFS3_^LDhTTMHlZ(_ooI{)JFn!uifa~S=*LvmEJ?V8eg^PwWbI-#g za?QkgC(XNI+h2pz=m3^+_($3pWBCg1SAFy`VHJN%K*GU&gIoAxut5k~yg>wK6YOJh%O|WdaSZ%b0<#AQdHzp5BHdxb@n>m3{V3c-6 zq+_SjzpOd_3jL<1p$i1ZfYGKMWGBFk0$oHnm&j9;;W@}Q#(%BoTOm&YWxrm*)vy{Z z=;EYU2QENcGiK$q78NHPa+DBGOm75Mdob2Wqghc1wXt{x*jA*I1-|@^I(i45ufQ zZ}*J{J!N|Px6?Vb2O{27TpI|f`Wb)0gI@7&{%83!(f~#WWnpGZSC;$F5-#m}+=l+& z>UWP(H7e4;=y9@7kN$aVMv*$?g^+Wbw#?o;-YZoMxI+XRhsd_#Xf?Z5V?e=t0_|%T z%~W_$h8 zs?Z^4W89#3nr! z4H@b)oXl79v!O*w1tP!D^iI4<^ATQM5$Zhtp>2CK$gT)FK*@kSoWO#4pNGAZFs*l`*ZexFz;bY1T}E^gH9wiLAtwSG1`|65_a59c$3 z?K~a+D(KCc*5%i63@FP9v(0##G{n~8&mh)(@J1)t^<`wrzFx%*G(%H$%GISBa$9DH z-FU^k+;`L=TH#O<1jmJ7&{6wzEO_2zJdrv7mmPb{%T&1Hf7yAT`pUcv+6r6|#H9he zVe!(Cd3U&!fD}%>*1hHQdF1E|Ws5J#g4v0*TFqMzZ=eX(0WdLtN4$gjq#0`^*JpR zg23gKy+m4{z}dw%BtCdDD{aDVO`mx>Fa#Y5!%;$^y`AvnOk2X@PDo;mq6q9fn{77B z!2KsxkcZ?F{t3u#xU3zauLdwFPbb~OdQSVpVFKsJ0{muTvq%4SXPxdDCg-RN^;cAx zhQ@KPBDPMhUG={`?2I^K3gj1phj^26@#<2^4v=WerD5I)&YMK13u1bOY9c<*lcT{> z$E;P0KfD~~WA3d?;9qsXK&hioDjn+aIBLkVqX`kiHz6G;=ehC33a4W6lbcBDn!o8f zNWe790v2N|+Ulx{63Zwg#DHq%SOyN<*$9VN@(Y@P<6BEm(%35S%~oH`j1^j#9Er*&6O5mlZ+r3&fk7`HY~48khDHX>6)#-#*IN zbWou+QH9iaLuCh^{BxCwHWPu?9gBaop>cZV1F+A$!yeat)ud(p(V>A%RU?IoHQK-; zuaz#vlWkEO0<7uKj9Fhu2^WdfG!GJ!KbLe>N2>~+rlcT`m>Wt9=BcSvM59vBR8D}0 zkn*RdX+bHz%l*rNrr|l4HNWXO7!y{;m+ze_5QVPby?u&Xv-YRixT&}jD2@o+RThPC z0pwUNK||$lQ6hgnzP$s(CK*Kfg)+_ID2Z0mP7lw-JV2Ci#VW_EHnJM@5vQ&+=48J< zXE6K2X63XIm5@xj@Az>l^R^Lbo|T~>i&G1PA})0h*L@<1<}#EZyYI4$hO)6MvJ(Gf zQ7qd$`=@32g#+{Rg7hYRH!vsRnG0TP0TSn81P#tsD%5ikh2U#zf=@^i(?U-cOD?28 zncG$id%llJ5(9aK$CDOSl^J1$BWqTJ&}v@=^HGAuOa)DAMt=uOC)uFp9VLZ$4Z#b_ zM-+j+auE6DVu7i6(qavv%>I!A^EmCSuK}Oy^%kc}zGXD~2PGD$M*h++=vWVO0SJfM zns3X+KdSZ}b1r0-KC?Hh0Y{O+dXL!u`HY4ng-l^5 z;E?Ax(}!(=nR%6^Y@pRm%z9RLy!a^=!k{uIvyS|C_lWvp|9WZ!z*o}sq27jfF~7Yv zb_aRHhMx7p`)zXh4LvlJrh5A!b`lb?ftM9rW}YEO{Ydr&@@%vMD&Ix{sy|2eC2!Z^v!d;0JU&G0m=2^$5O6+ zs;^Tcl4e`Xv2CwzePXH8JFMa+>V}W8e8K8ge6LO3so=V5H+qEOyL9D(`#xxX5>XV zU%-dl`VigQD=3<8faAvG0Nwhz&osBe5$fZ&G-A|hcH@p)2;XhiY#K2W0Sj$dp7Opf zy7XI;k1I2p2OmcPp36suGXx|zZZg^mplcS+qu$#Ah`EIu4xC$wecspzw&tPH20Qjh z=D1TyA5`R`Jb5Y3@luLooZ|Aa2YVE@%_t)8U5@${%wk)jp8_u6fboPkkPs!|`-{Q| zGojo0p&`E&4I=+xkzzJ?MUicLjxbU}5bCf)XV!Onx0x1KqQUYiO*mz?u7tVHA{^yC zM5*v^8S|&ZMK?$S9l%2R^#@XBnfvEP{hSl$F{^*~1(da?M2DQMI;PFbJTNBRh36Rw z0TsTEll-e!5C9<$aP2fz`6~52M2feXt}qbX(mz4&A6q=`R%Y9LME0cB-mDlIW&7A= zBC<&F^&>FauOy?hk)?*K{y0WD3`JbYNJ;ichwa}t7X$g{-F;-Jx4i&PI?%t;FR|Z8 zCJP>SL3Ma3r^l-))@;*6fRi`6)mLRT%6?vaFSG{f_{H7e2J-xBFcO% z{XY2AN_P}F1UHL0K%`4+j+`XCA@DvPX}U;UsOP^xqSTW z&23)lo$vJINH%T_HE~c;Ny??Rp$}6R8C* z+jidAw(X>1+cqk;ZL8D&chNmY_r)3G=+{&siq z-?fQe*#k9*Zy#S9o}^y_*tx4p{90FlB%(oTeWOORr23G~=a*IpM@$GxI`dEI;n@(@ z2(YbnXob`RL}%(EG`t^ex&Xqs&&z-!o?{RhKs7>yQueAT<;7|udnXg!0H>|c0r1t$-U-u%Huk19Uq0`2bj)1DdlN4_+Si~;l1hTz}6*D zjKUuQy)SjT0>m+VVfu7PTOAo~$Ba*p2MqKF;|kE2(APDQ@?NeBgOPGIL7}}x+0DEF z9&I1P>ys2u&yH|ZkO%3!qxJ=n$V43V3jg6&olgAm3dG)S{HI`bazbML>!$tT*6aaZ zi7!VOLhuhu%k-r3$@S$7;z8%C1^>i%;zJ3b)!YgUO~o zyv;u-THm{*Qwm?LCU}NJzk(~Jy^23UccpkqAdJT@c8Jf(-_{M-e6W~P%TWZRfW7T? z7jM4xPZL~*)TPpr^K%QmdKP)qF+qsEN9C*YCfokR54@_6Wou=63N*6Bku`A5zGoQlLxQ&ilg$QK8f zwFpA*W zZbLy}_=>5r1KARRK|7U$MAGaS7FaCxsx>%E2D2JX49%{3IY_Qt#VRv8-~672##~=v z*$V|^C^i&69SQ6#2y$wao{0m>s4>YuBOvB>dv*gC6dUNc#3C#tMKVaDsy=D|E#+$Y z3gW@Rcqy}TDjp3T8gP7V`ErJOfPOI+n`1Kq8-qs2UqP9AyFBsopPCrK6pX@C?t`jB zN3C!C(P_A-3Y?1dO@q-3gN42=p`G_hWWWGlq6lO+!GJc$%w6^yR00u8vJS`BYMhhtP;>Z=~s@$5Bm|MG3!r(1~U~8uqXjbhgzUD zNmZ$p7lw=xv)J5xHyuu^vY? zw*OLVQgPjOk7|59Pmk{h5rpDeko|wOLaDu&hH%C)kBXf3thN)RyxZ&eVzZ zl+QKwZ;kE_txk>aT?V)saJT9Yj0HN|8*NNh_BK#{BJ}9HSkbnEZjtANf*CZ)u>>+g zW$t1FFz}J=h#0`4PuVW%UjpnsspkO1j=DI``|8-Ja5|q@xx5mz7bOm*uVD%tiB&Qi z=Bc9@^-A`Tc5|;(gSsxObz8x0|Jehx`{ms4E{oi6-=?=~>n}r}ds~l%l7g0dy(2*8 zx4VG^q8{5=lZb(JK$uaVr4lx5uaHrT%;mUA15p<2I?- zmnDuT5!{ceNPpsf(ipdzQp`K54^>tUMnm;F*ukSo^G)IWd}ylje8}<@i)nhOWWU%J*Mt-qi*AY3D4N4B zG9U0|nU!D7#tQsUE9tVgCil5Rp^sC0t~^aly+58Ppp?sKng--}!%oiE@qtwmc}Q?p z$jX2K&f!R92(3K`S;J2ii}Uy#kh`D)q?N_!rz}nxfRJQqZjN) z*JlmSAn;rh=#&)GD9%-VhO7wuq6RR-81e2PL^;p`I;3$yoZc-wJRZN! zP~xNbFI^inYzUw)&DtEeoIHwJ%3d#a=ZGuU7CpH8KMl(JT&2e`=i z45m#^f_l!x6iHY3Pr1paGzgaoh4BOcI$r_?Ytg_AAfa^!nL4Tx$g2#|N-d)*6uM#@ zBb}1E{ z_7Nvv$F5G5EUb4tl`Omo|2jvkr0^XW*Cg)rEPT@0+B82}X`G~e)eE8PDvcUxOY_P7 z#n*2GrCYy=i2;zq7Z!b4{{TeS-S1XQa$l!hQ}uPk%HJ0N&mJ}SjY^m+HSp((053J- zE}8g0#ZooOMe5Y^m1w8?(u4{WUAc)to~U_rDGiaMP1cNTP%jMp)NRI0C8pysVA@T( z8Bt;+DyCl%o^;yq=SKA#h%uo)V{y`0ldTrx1B;6Yt4re~U=VD^j7_}~C=)94HY z>m2ZsYIgDfE|ifVbtKn6)Cs&XX^Di0M&qnk#%3F<(9OoY++=x5?$)(d^Nv>%yz&;P zH;H6kKLeSgMnbY4d6Q)e$TSI4O!m=+hp|nE2fG%MeFh>NHc@r;sP>xFG5Uo2v97*- zW@^N!XC!M=kOAo09$xBHtHAY}x> z0O@03?+*2hDg>wjBjqZAaJX?bG`0Rxu1$+GSFsy}@^#`;UQhCahjok4nqSerJ^KLD z>xlCIS!f1f=l)SgqJlDWbN$B>z+JUH7{1ljV~)jJv3&M1&dnl{um*z)K;MD%B5Y+% z8gv&MCzI@We=a|>{lm(iT13^Mp&x3juD-0hv{@`zvl7rR*v#Z@kVcUaK6JKw)`I9< z7joT0N5wo%C*V;Q8oY?%%NhBs{@wj{KDC4>2;E>mXi<&H*#f&CCdRi2KoTC>Gwphz ze|KQ9GGqsT%8D-YrkUW`14&Ts=ZHKkonK_*|_%V6G9O=3A=BPKG1dVafO z$~LtVOeG$;r&vuTRv!kXCD7q92`!V4$Q9_cbDNJ?%4%rtxy%nT#QOY51 z0a8+8sFtBi%a7d_f&47h7+Sv!(>B@db}#g|fbffW>TcSk`ovq8{3Ze_pXRqqwSZG} z!|Oy*cqjQ@fY3W8XT)m4a725tV+OlK17_v^r7T^m7CR5^Dn)>Xh*Dy}`_Di@q+GY2 zNF!P6flkU0?l$%T>1MHtD4 zT1$@2WZaEZpdgqbO$!{0Fx)JmlhmjU>oaUA*EhV>uk}E>VnC633EQU*7LD4vN4AJo zEs09!E{NvkRN#_KSq>S$(E9}ub6Hn?X0w11h?nt__6~{UaC^)lDcr17O^hWxu$V!90? zwY6s-y2i$0bt&`n8urMh!-vXsEUka*_~nkx+n?J&A6(YWBN)_S z?Q&4H%SFCHwfpQWgeY&)_DWQkq;xn$$8$9=_G#Y=pkG~WNZ-JaX}FZHMk3|Ao}c|b zBHaaMpCv)2=DCu91#HRy4dw(2Vd)jC3LX1Ewfmg=s?1c&_fliNme~DDTZMp{JaI>W z&F5wO^4F_uU6QHV5naGq=m?_Li@jx6y9PDi;T&8) z`zOIMzzPc43BvvxM)*2jG0I&M5zq%Wv4n9#Xn8tfq)OG3P&_dJX>Pob_=8$ z)CD5b>lZu&RaSTt9UoW;N7G0xO~=W{{_MDy@MfdFnO51waxuDQR%f-BwfW)8g9A&C zMrxgVNNRakFYRn|tZi`O_5B$`cPg@ldZ~jwAXe1u`-T`y5FRG@*haf3>!=!fnzJ6} z$eqXzRx~NTEALv_1lq``ZYPmA)hJ46@z353vsBiME8-1?E8<9)en4NfaT$R;nj|TD z8fJMIoCY95VPgHKoDg&Jz8`OQhLM z0CC_{S_7}R5JA9bg)f}^>2_yP$vfT8yI={iK|yn|TgqNCI|D+{5)C{OKdXEU)$?`- zM6I5ti%4|ArToJ~)j5BWn2V`&?e@*nKlJ_Rq! zgYzN!-EUQ98Lk5K*j1z#8eE*pnJXKA7A2I$3FO_8UU-fqf5%j|TUA<1Q^-XBoSi9Q zaUNSn*{<|wp%LH5SEe$Q<+=TA7mJ1qDeuq453HJEH1n+tQMVwQ(yn|)F&^y>1YM~j z=UP%)oEfU|!UbKNJcx<{x|9*%N@f}?DSmp+J)c=N?#H?6aqII(-t!~tUxG_bW)#hXM8uF+o+G1DP)0?xM#)O4OQCB5;+oKTwbcGvTQ; zVIYxV5l@RguWx9LPOeZe2@>DmF^8+=tk0u%=&uU&qvU8Hj^9Mv1nq4AgYtX#IG~j1 zQpAI{ph45ua8QpG`F@6j*{yuRI7}S6?eRoMH>b8|&)f;!z>US#gwj-L0TW9icjlZ3 zg7yP08Wo8?p#0tgo-A&B^ojwUV+2@qvEnvuC~*4?UF%6=FHE`dLA1Iv0L3~<(KyL$ zJXa!W?T0(sW7Rs@Fn1k5h@>S7%0p**4O#egcb&{1v)Y=t7degF-ME_QVM3)v+Efx! ztyAm#(wpG(2q%L9BK78&CuHO!u$V z#)tKLf6ygs!1UpTLiE#`W@lc zanwv4sGze#G34AxeSa{lEAnVV3}ZF5b>!o;^q?vZ#yn&mcK&qyu!;G}p`+(e@ z7E_D}n-ABFi=dpql`cTVD&SLAcnXSP;?5A6Sr@qcG<<&}XTxh+s#Y^JZ&e)alVXZr z1xc5{+<)U3qS044RICHr{B4K#G)O$dPbte^q66!Z*8aOoA;M3IGdkQ3S@LL_zU)rS zK61;oGkFexbai=~=LCzeZVZL>8_Dvp%63+hv%M`{8_e@nJ>mX3A(YPjvyL$2NU|hA zssCnB6@~n;YJEPGg7~(RcLQ1;(oM&;RPTscm}z!k@WQuT-o20*E-AHBg9p#}_oLCC zbp|&Rn9JO$bH%WD#SE`+NWG>7`p{6UTeYF9;oTl!SPdFx&S#&dAu6rA!Nxkl>u$;#fO~sMF=bmgNNE`4H zQtB|gfbs*8VEJyn94Zz~Me?=*Rd$Ebs9l{P1!^#o4yS-ia?ZY#Iyw%_hz@EF@W!!&aclyiXd2-f0Oy zqb-YzT^`9r4d5hlV7=^rGGFii^F-n%ja(Sa1)rJ|53=8@a#X%D8+ncin~QP-r@Cu_BwKN zD~WYWVg7E*jCFn~6vV|+k2kdtNbw37(Z;OK>HCiA;QnTzF~_Bblmn&*pY0(yMfhxD zOUm5JGHka|m)lJ)Gh`do+kUF7m#n#Ouj9H_tM*)W^3%#+Ujiwfr)Vs?Grx@QAI zt}ZsQPf<0TV_0-ckhxRY(LbVp$SXl=WupVNPCuu-jt0BINj#n0FwhU?N0xvl;2Pru zcqD%B+1oEbtp5gwsK5pOuT$aruTx>-{*So(<3IdK#r!uAQE|~b7zotHK=?0QS2{~Z zZM@>nzzuN`uGpZT*d&3}<9WFh7e0;%vQU!TD?ZFjaCY;homp^8$LG0W5qDZM-o((! zsfF3l$bDSdf`jvYYJ|+_!*il-G$B)TiE!e`lU6R}qxdVy(F5nKy6emP{`uM$FwF^0 z+c?`Q*}i(0HP)F&F9267aZ=P#_`RR+%5UUTwY6I+or7>Fm91ATp5shu*|@23P4iZL zO@jKS5=n@CaaMxgaZWG0q8_b%6fTEWQm)|AL1^x=%%N9y-|e^%Qg^-fUQzmc^~z{7 zcb;yDSTP`Z-7?{Tf<=abJD~XxAXR>#*u=|u*nFx;qkodaBac{y11@ked7 z{ZO9hB#Wwv>)yE&B6tf#E>X2BQ>Ue)n+B58?&RdVn=zK$yw$qu!IgFm?ROM$OKpqx zLfiwgzrTCzGz^^_^`x>-;J zJ1GStY8~ z;>94yHCU+<^ltfnRIG2dl`!a2!j7CWA%6mVl)O%2u3+h$-7I@miMMWy^W=M~HZI#y zEpm9S+P7@r{#|gT4PeTyK<-Ys;#C|OcEDqh3ANH#mRIeL0cZBj)u``leAbI0w>hs8NmBv&YlyOFt7|L zB8u?J-pgx7>KvUcpT8+NQ?*Ej*ioLULUi@E<;`LOLlNj7!*L2reQg6*ew{hN{%yY) zv3^DqYi91dF(rBx1i*Y^$10kT(LcfK#k2y8`&T=_h&o{K{H18CT~hCz+0nV=-_+6p zUrsp|?R_-MQVIMWojD%(Ge*`&a*?(03ZKTDD8GLl@0ILL#322!X)cGhvgUH>C!9zp zGUaNrkM^OysK<^***hBgjGWRsra_!U`8M*buehea5zkWx56Jcwmq+1b$!VYmpSa(! z>myNx+ZTTViEgkFpLQ2;`2Dmr?tl|P%X^+ZyQM^R=6Ta)6*Ys-Ga^*EVbYQE2Te9I zydlgw1HJQRziAzAD(c66NeerrI^IVGyTcFYV$Q=I4x{a63C*Oomi33m%J_Jh8&NEc zcf~p-!7lu81WXmh$83`5yJZ$z%rBq>$}q9Cz)Ymiu1c^>WtT@fHKVJv1DQ-F{+s+R z^fn*Q=AE@g0MY%9d5h82^LQStg~Nm=pm-toc6~YBSn#^GZ^!TDr)WW!6(h$8z%FON zSEK^()#N9PosB2m=tmRkv~xOn1uNBW3Z4CO&o-gj1{C(3ji!=vWa8A;sfQw$Dn{Ts zHS$IVi&4Q(YXwG-<+uPZJBVa z>njIo$M>5gfo~X>OCkSB{3E0wTQT_tV9*(VQjj5696=xzjw-2w;6+$QFcmE;tdt7L{mpW8go84&M| z&k((HYr7&dFOG!ngcP-!y-qSk`!NM`j!oA?`!6E6vFbG3(x^ar(M~3siwNOoip<+e z!MHZygsbQPvs^$ST_C}l%Q(<3{*nmp z1Xy7aB~P$+&^D?+Y3FexXLMsO!*nIkh^iIo|Jx2jUBaXyrNpBLfd(}J`~mc8k2{vm z`h*C4spAiJJ(FxmmWaxhCUj6&gj9hcDQe_~%5yJDkfZtRkWr>1!4c#qM;{|l0cNmM zk6}08Phx+trWFBFx{Q=3T_v?KLqy@n46rYO!88~T+r@_3GewnsOR8XlsoUw#ZhXOT zjBN0OVi2_ic!C%7zk|>*hYbr1<%52OXo;>p6HC|*J&kislOXDILc|}+?YimW|8V=L4kHKp(L)6_MthS z{pxCN?W)iRKFExX)d~#8VN1z{$qjbVi(ES zpF^R>K*b&?Jagj1N#7g?w4$SWmjy)kTOzZ1ALW@-I_-`AoU@7c9_|Y3H^5_Gq0hJ% zxcQ5Z(t<(Z&g8b-6l~n14lSvR{QddX0evM&lRUO(E?kCviNw`pdwFR~v|^eR0gm{O zl=k1^v4P-<{SK&D5IlM)uAV`A(%g}9Z^DT-^pX&dqRE?pKZZ>dDdU9|ZR&sW*jx`r9asyuGh zKhsrtwq2M*Rx&VFGWlq*o0bS$6@CBUX<@qivA25E(NW>cFhDY-gaMgvZ2{0?0`Q!t zCgzNdUHKlslw^-Mhhl7DO(=XbI^*Q#%C!6FPNr?>B6-|mF_~t56nC{7Hz=NUH0d(Z zm78D_^|P?diicx}4~Quah4)DnINsHkP~mTE|Kb{VV7>D`8t}Zcu%R9{v$bw=|H<{j z$u$Y6OI9jAT=*9ntN~!AKJdHjo{F?)IPTJThfkF#3p3Ww&VBD(vy{`DwvA8y zpk`RY6{FsUtXl7I$SAzKC@F^-FmE_=eql4{_A0;>Lzg0xk?;JIM&@~OMq6sI*>vm7 z4R+AtjxPQ0rs?AfS8fSme?p0F7UWQHzsP%4A6ShYRlt1PZ zmE!|>FaRRz6Q+u9Q)F-d_lGDNlC#I2p~P0lfB5T7*b&gwQEN!ZiV^W)#?_zf}Smrr&RwyK(i#taV-Th(p9wiYgyCj$Eu+ zukiOHv;x0&33E*hQyd21QX5|1mO>Ryt$`l}XOvS8S1-06wPup)ZaOkP-_8VUeA_)A zkGdvJxhJBT01cIynklTo_eI!=$hBE zMIj!Wew8NBy2Y~p#GCpOWR8X`w`wA)D>&(!HW%U1LrSLTA1_ld`KZfvd}Z6{j zw-p}?`ro>PPwnYzzC0e!Vxb9@`|f0O2O*~=-|IpS0Wwpv3~4)Sc9G3f3)pO?^M-;` zRY(oLrd6xU)ax`}d@b1sLt|2ABt8X7XddxLg4*=c@vuDbhDIG~RV$dA2uX@`sN+C< zarm~2M5iTA9Ea*B2cZ-=D)c>!`r#kPBv>_(=$R9V%0k}4KH;fKWCc3#T;9^ouzJWE z(gg+?0lr~+9hDGk7`3c3U4_4W4;-{~n@B0qg-brTn3!A=I_Eg|@o*f>sEwdm97I zQI+9ccvq2@4P{3rzc7I}8BwmHSQ`I8F&UcNABvn8X((NWuB7|R{o`{qPrTeIKg^$j zC_%MQc78ucr$#kgc|tViGc1L3MYBuUO=D~u+Zf~{q{yjKp)zgs)M}c0a^=g z42@pWc^wC=+-Je1!BW>J@=@YCWQieQC?QR4YaOpclM5+SrpO!;b~!kmdD7qNVqdXY_P<1LTXT8st(08C z)PH~$=5Xa0B4A2&3_O*z>&BS+y$|%pcx}VPk9s}%LzMJcQCTDM6;qyz0V>8$>hRn^LOs3B9mCx#~Qdc45* znX1aeZ$y=I4@&lhK4NlaqY9JNKCmsb*FQvR54GbNqi8X?4{aCR8KsDy10XSTvpWlN zin&)Da;ji>UYFe&C@juFJDgxhcT$=(xu^)aqGL5mysL&@sL{UqsT&{U&=dt~Fc7)Rk@NT#gX znd?dJ`|i8upl3=5?qSbb`1ko1oxjVP={%jR;Ay8D8tMrDg0Uj~6R#uu{4^5O3Lq@G z|G7s`)H!vJd2tN>?$PJ_r#AP0PG5TleVf0QV|@GOQ@I09$2gUY#Z$^v zuQaw!hxpmM>JBxI_hcWf$4NoQYlftMD-(joo|-izyg|9k0$|-`|M%rJBEf=WuhAQq zyR7CEOIX!(&`6SW`ec{eeQdXdH{DK^2Z5|sjA^z=7Pqj8MiY_ysHX7C#v(ojpXzVU z+;SY!`m=^u07hNG-R7FfW(@|GFf8YVv@b0s2TneiXXTnwyr*sSd-tizZ^T0P80EDXVF!77Tyg|acXC5*HBa@>N z?w%-5^e{C8ImGW)L<83106VW#ALYK##` z4Q?IjzUOPq-xP;eQI++D731GA`Cu7Qvve1obiX+h;onK!3~&)iro{Ick8{E%CPSlU zO?Z8N0nlT{G=!3xZ%enM>OxRpVKY`&*vgzzv8Rg@_&=LE_P)TvTbkHuyj zdR?e^&X83htx|_Dj0*li2kNUuGIf@}YtO#G0*sf_j1hp_wbiaa$f8deZcJ|d(r~VZ z&Fi7}iHGp|9C40`CRR*G>`~n)DoEUO|4MBSDl5p>da&9l=rxM*mzA)TF1VCnHC3moA4i@kt%}xet{k|A(qf{`z z098NFAZA{Ei*$)H0O7oy>@fI%abd+U8ctHYrUZ@-gq!Xn&x#SIe+j#p&g?lbsqJ)F5akyE{XB^xmEXtFk`LQ()50^?wk7t6WL}m&PLZ?DBvY-$~Y?~cp911?rKila6)C;5iG3C(| zF2hrhnXoCpZ<_fe@alh9lJh9M^-4N%F%2pmW5NOA)L~AOX z&awMCIQVkz6UFppqm&r{!R)}^oJ>9oNlu|bW>*Q&%h0|m2u6!uh!vbhIyj+dX$5UV z!Msvl>q36)a9_m_i*FpVXPAf0WR90}Y8h9qZaI^&Fomb3)a$-Wbt@&`hsvah?~itN z-x9XffPA^@x!+!#mc6W!qU1h^W*Aqhlwf)mz;$Fw?$?vt(oly0^_$9)?VGB3hu^o0 zz)Oo=CuJeEw z)KAOY5tXEZewb81UImZdFC;d+FH`wZ_6H)GkVd5Li5h{fTIdb8V`zTcx82tkZ9Ih# zmzP)Fs{*L-6vbWK76nIq{F!>)IXwEhBAp32m6~#}U;QE}v#hGeZ``6{Q?@f3L2yaf z3G`VHt;KtfaZnLVK_OnA?j2x?U>RMnp&{=k;*8%u9A(9TZ9{fLztRv$KMt_z-r~}` zY(XBW{cx2q<>%5so>W;EeYviu%?df@+~-<}+#?muJMHzrD*?q01^Rr(i^q)ml$!F_ z_UjU8Jh=kD@TgWQA=oexB*k(``L~lBEx{h%g7#ROr=PmhcqsLTi;S&KB#$?VSVJU;C!K;RI`#ORgK{ z@5H58pt!AA{#&yz-=A#ukpM}>*&)5;!ESQGBzYHAPZ zHW#Y*(%rPChrh)6(H`^Dv7P;s#dbYbKR25T|Gq_@&LImjQCh%+Om=C+wgglvFidu;GXP*-EaH-`kJT z>X*${A+Dc8}%1og-E@*8dQ-I1`Tht+!V{ zx*SK7Nnjx$vIfdh%TmjhyE0?5#DPgX^Y~_sU-4QAI3s{uTW3^nsAkiD4dqD)V7Dij zZ*rfWuXMF3=2RIX#y3-?U7I2Yi-wG!nJCgr_l3Et|jf{kJGn>cf#%NU&qIL zR2)Fd`0hQ7239{s!eePi%FfNBi+AZ&u}MzB>e)sTv}ciTcFO=j-$EWe5i2r$XuBhN z$uEbAKAr0c6xyic^Zj+U9E=wfQ9tONj8~L(o47``;AzB)P7Sa~qc_x!fTyEyhvP##L!czkH`^+=+G?R2G-M0Dm>X0$oN9*O;mMWcC}6mQW>9 zh}Wxa5N|-1X;m2I2by1ilyw+#b&Bg6gSxQ#W^Z zJS~C+p$$khB<$_A%Nm!YG3hRW=%JAFc*S!Ts~PvD`+y!Lal{9EX|g`+`tgGLZdbQ? zJ^k*6^<+wB0P+*)<(H0Un7T$?JzsAD*qu?r*!_T;F`Is=_hkUN6pqKZE%6M*i?a{!?G@K;98)LgirEO zPWV}q{AC<7*<}gbFs~%dT(#?qZk9GyahjI9Apj&S>aCQXyh&K$BiLw-j+R+lXcLO# zNioQhmEL^f@-yfo_cpNacs!o#Fc|*^>8A>anEDQ!08fq}<4U*d(;*RBG3)$94XI^q|6Iz?b2qxjJa}7mf{tff#6#X;!ElztJ9oC?+3O^o`c-M8Y+O z5FZO(LCS>PLTl88sb%_0n%Fg+S%JnEABbkAhmDix8MYspze~cZc_wnrsXv^DYSu>A z+J=Qg)i=+)(~uE8&7d>@be3^knR684u-_P#xC6Xl9?H-{z71Gy zdVHJB2Omk5|I>b?qVkQ9z+^->%Sw`ks+81GLFKUy#}!YE z?ST7H9Pe)S9nKPzin3L+AX_IskPAST^UAWL01$Y6D@LrR?`Ot12KQo)2(?pfnZ>1Y zv+E-F3k=%ycV|C}G<=G_!aD!lfzJ$#KTGZU1H$R&j`PHTKJH zjvL2efWedHJ05l7aAA^b2+C15v&b2Vg>yf$ZmAI-)Pah8y43APc5jjqygpC^TRiJ* zGXvf`(?^s=vKjR9)$7fQQ7GV6CQ?6jqG_W#!i=KWtly8cr~DxZtjSX{h@6O1)!wY* z=Eyl>nox&8B-CPp^Q$>I0JA2R`rF0f&*PbGNE*CR z?b3=Scz^!@5M01o=i%n1o-a%vu!6y2g^ohh4D@AD))7(b0B6EG zl9NKbM;T!%=PAXuuC7u`praTBhgAcdVFZn61g<}!9zk=nthqirq3Y$Qy$5pWnW+;B z5#+6o{t|V$E+T%j8t}>cPzbZS#5_f5SK#&g;MIyZ&i`C1V82>`Ok{cGlgF8h96xmQ z^8cA)tm*?qFAb6KxZ|JU9xG_J_Ke}Lb^Le6v6`M$a3udyamodVL0%d|v(iKdpqpCP zLdgI5l#JFeVq}2-RwC_skc{p*GE%pxZmb?lLEI zR|h@Jad)A2NAV7R`9w>Jz)*UN0My*{aO`P_DRu#3+mIxd3?Yuym5FUcb&iz*mw^fW{#@@SeXULBmv8M*kUI^Y^RBx?2;KA2SS-Wki2*d6QbQBQU&=VN4CiYlQP9rvzNSV+Ig5 zAQ15;a*PdEVFz={(!666@`qu5J8|NcFIFs)6D^19G#owR7q~Uz*AKhred5kphD3{( z!;~f^9X}2?dYwqCVO})adN$cjhpt^q9t!VPB{%Az>hr}&4w}?rDG1?L*@pRpp*rxM zV2S2S)7&E9AV1O#XI-3B^Vd57)(Idl4(0P|y2TvSBC^Uu=O_QOB*T?OEldoA;Y znqS+40cf?y=TJMc_IPXEQ&JpZt zzKK=U)CW>%aO--v(XMe9Hg#HIA9{;*yxMshh~ll?bA>mF{rb^-+&gsk`GJGxn*E7I zsss8I26U~@o@ThE*(0q>z!{*n+YT8~vk-rPj|Ds)xPf_K^y?em_@jVXKsO^-F(Y>2 zBkNt#J=hvmF#IK!*U-z7#x{5Wc4cf)KPke_4Dryrjw%+1K{{u=i3u!St7NIHubyb2)Cvde2C|JO+Y#J9#er} z(ns+uk=1JSf3bCs&4IPi)~I7!9ox2zj%{>ob?jutw(U+w9ox2T+cwVg*4|a;%dT3# zVO7m>&v}g>by6b;l{`^%$^UTfu%{Tl;J0U-g#M2~D(!z+s{h%*o5cO~A4z=q={MNr z`a4r~069TrV7=C928>g>g;-X zOPQ%4rNPjwIA2cz7||kJRC2=ADyu3M+aJfh*4^AzE}5#u8J9a=j_y7mkqx@Xj^D*e zS@X|1^{x@};cBmtn_6*^xf9N_-V*<1p)11G>f|StwwqCcj zT5@Y>ulvORuoT&qyDrKF&?v&?__o?RrC_L3sr8~y zv7#+*B{E`Xk+7x~ODGM2pq=}Cra9;I{yOA=_uv(kqLi2d7ggUv9SfwAR{0{`@N3RksF!L`a56~+QJnh-6 zE|Vj(-ig2hKqdaLkoI)vDod~OV5%(^%a)DO>WjO0QS7?a`M5$>VrFy?#ran+m4vp- zEME>GxubFhLvbFoGOKJ;O;)4<-tU_{)%ZEKqF$)2ixptiZvT|J7Xzc02i0O0zkkXp8o`t4!M|rF*)0(O z9O+m4W~n0a`kE828XHUBHg^ z58N$R)Gb$6rbz^R>6{@VH-j5~SO(eQtRzfBMN*;Lz(I9WX*Zv{Sg2<9ZO?;mm7{wL zHeis);G1VC&t=-^?IVmC)9Do@H2Vs;D9FOUktdIlN;X9{SD}}6M3evHz=4`5#4w#0 zpG*_Jl$SzRhS^!U;Rr9znj&?is1o6y6|ijjsR}P~g8|R}(r{_1lu^>$|HtsW-T78^ zhd=B^>cDSx6&EZRgT^kcX7qQMrK2QWykx6KpvezKhncudyH=Kl!6%3Y#K~r$goR)T z8^T^Ee;HXxRFp=*2eJoYAMMfzd!rzEa3K1hKt>6HWsS}GSe}DyJl{bD0c?wV=P~&==;mcV65jOo_Z4=sKM%zzeIj3@>9#y?P@ThfSTwkW=YhuI9PUU?f5|e>L z(?7cb;RLwWEn^TS<%>9xg7`)t5K4S(DbMYJ`@(X1D_Q=!`C0~e>AIX4O;{p>OePs} zX~_;>5XR4g%HV^0kyQ*1Znr{)aKyQHq!3b8&#ms}njFd|<#`9^?e%BJMFG<@ftuRP z+{zPQo{#PCgns4WPQ~-NON-tgN~fjGlzn+^+pt|r$mIjuP-ze2n=Aw%RQk+{C_}jP z^(xnfW=1%3XDVp}$_)Lko6S{YJ7L)sVS7~?$rn;mTp5b1Efpwr-Y_BGUt{Le1 z)@HiGJCYRc5ESZy7;M(xc^q6%KO(TeXOw&!B`xTBsrWL*co=Ou)+?!n*$#MHglPl* zo;wx{YG^84D%GN?WP@1}HbA4HrMA){r5Gz*l99@vOBXb#v9Uoc3

V{gL;gzAVmm#&#Tfol#)#|qdN3I0r7Y=n>rJ303>@=> zx&B?u?kV(vU8M85$I^*&!XznuMX0e_>_Hl17D9RuOM;-+geKW&r<9t9O6kVan)-xx${Ri;2pv*_D6xHmUk+z4z3Q-`Ufl4~jGLo{zjibkTT^p=i zYVzKLFG^r(%8Q`Sz2&{^HwStop%#W!YJmireF55tpu)dzJtwHA=L^m>DIW5LZ*R$Y zWS+IcV9yEF`RCg;L6bAK%&E9k!nntk0dR&Uxt42FMY~!|D!;mTgpNAu+>H&RyyXp+ zC`J#Wb4uVqS||M8ye~0ClmHXY270%dNu9r7c&JgK2bAy%de$?}w`ON&_3VY`?E4{< z-gby?d#HR(&sT(Mw_bN7F2nuH^!tU(`hlIi`2IJSfqAPYeTZ~H>XeT`zdv1SsiP(C$ zRtFB1M6Iha41nwJ77#99gfg~0+o7uaGL|E47`Rvd*zqakF9GAbP_okAx2?@Q7isK8 z1*BE4!ttL-RWF@roT0GR%2Ebd|z58#o8-ByU7z**l#u_GqtHV83MR2S020g z{aJZvS_Gfb=xviJyVb3igq5b2Xm#9Z1cgQ814z`-$82y&imSZKUWX>4Gq=lXQ>1bN za4Q^cF0RX7Tv87Y#Hk=?&5H zUcbTHsleD!;Sm?a2F{I{#n_aa)3FObyUvEcEy&OL5F@5R*glJx^traLqV=^WB*d4T zJ$1aAb4MbSO^)g5yQ8zIF%_yut zdE?R$b;a=S<}DNL%?tdB>uh-?F);z~p-{NQqE1i#MbMZ9EV)^}BLVcyX z)5n~C-jeaZUcC9U5eS7gH1>P>6#2AT`cJ1|N+X1U(o2WB3}eJt>-Cl&A}RwE^yiYh z&7sdW^v!J>3j4vhhX7m=Su4}1*HMBWaHL3QM#_HXOy9q5VngGRRbw4qY5o+udI@SmX6j$ZLP>g z9q+FBd`1%|HZPzg6iY^K9geb~Esi$N&K99_FiYdr%q!mIX5~<$nN?S{Yq3uJFdzVrB~f7;(#J-!1K$idO}B+qav7zw((>n0Y4+pJ^bvn zttzUK-s(CyDfPD?td`D?v~;n(0Opa+>oH=-W&8;%3muc+6RB$O1MsN~up%KSUrl`8 zlkWKz{9IU)i9!Dz+%`{OGuw=}fiH!XZ-o;46`(Kg?>DwGv-PIJ#{&V?kbn6ewc161 zYzLW6mISX5_N-}6UB`teecK-*rh8a?UtCP11Dn~2)@n|`C5zE+64cxD>sy6-0;ZW& zLdFzg&*B}e3N|eM^B4>|>vN&?Ih{Je9LFV5!$SIZF8zS@hJ3#89`4Tjr69Y#BTvJe6!#Y2Yk0Cs@Z-)W5zBA{Oo0?4c??&3gmu>MP6OY8;A?QG^AfkURCV7|p5ZBU zS9A{<_(>qB-}FfCcZc|Y5de;4=0r9Q{$lbuWRWK=Q4N?fZ}2K%LysYUQcrM?N`;g( zdPh%`11jv)h=MqTsiaZ26{GwwCGpac;1Vfj0WL1O2Sa-V@o>=Xgh48-J`80Bwoz;? z!5+u^n(DXUn`9DK&R2wR7R|_ne10^Itzu44mMj2Lcb{J3uF>^m=nweFSmUkB)MT~l zD+-%9v|igL9&s{U2MGzt3sXcgCn!}5CQ7=PsauvTCFGn%pbe9+4WZ6Fq;yc&(8QF~ z#Am!7xbN>kuM&p$B6nrnTnH^&xlPao#*{WaS-2Q#@vQ-Y-60gd^R74RvdOP@_a`pc z$y5NpBVIu}INni@vzsv$ch1%9Pugo0@XH?U%tkAB^M(wI8xv28&W}@?6mlnl!XMUC z)IN|$Tn9yu62c&0P&)yk;4vT8RElloU zD)yi02V!pFzWSysKY?;gK6j0RAZ1>#zln1xgsFb10vkT(>HQ|V8R#|37;yfP1&WB*)H}^!jlo6 z{_(nGgZBWB1qbgApm83NhA3kpVG%M&t7LprC@R8o<}eeBz)L|`rKk;Uos2rFn5FeO zGVo?b`IQhdC`T49ly`A1%$0wVe6K;uVRN{__ysNEmZ$0(pp!FScg zNt^h_6IjlZ|7~NYKTsR28}jen1Tn-x^)Dfl6tmu(g@8dKvCmYy@9V1i(yxw*W||uM z^~+n7tfX^pdf2cgPrG(vk_To#$794xyx`gsJj-og0FKBANd?h&TFrn99F`5+21UW# zH-L=#oZDt^j!RqbpncB%O#|r7^Z5k>TjluhCjDNht=edWn`_iup@7?u|s_T=7tud;c!2YR-yuGW%r#vM5`mO{2@u4NW4=o!7 z3t6lGmYBX$NEa4&eK2Rnc$9>z+D!qC8&7Zg^IK_%1{=S1cG0Ka-V5lq=~DmIQUUiJ znOQT)bgv$TvrG-i0_O)+5 z{JoZM9{R{n9Jcp73>-k|MRN5%8iG;|;@ke^ef2y!dtAyxNa&Q^{q00w^eQ!F3(-Tj zew|4MazH(`uS$IKX5Ib#-soug`y(xijksnO`Dy)aijXtYRntS(<7z;5Kt8 zlSP-=4@!I2^mjkD%eJ$=jZ48P`>+6Wo3R+HO<~R;Fnptvfr16)rqSodnpotq?$7-N ztN#(}x9mU>(=N^-QIhPS5RkaJ{(tY0jU%nc6qErV<3j8F&#-UtF3?gZkAi>#O+=v7 zHv9p@>MUjavg2{kvw}lcYfJoo{oJWxL+WkYxHMl8B=6>)@R?Z|rzx>GCknTy6Mtdp zJyTMUieIi%&Nbq~e@59qr!|~qlNPVq zH}PwBH_}z?FDUm*-^*%8_f)ma?C+|7l#!esIeq|3+yvkK~`CnZ9(^lXoAXglUZ44gdY?0@Oc}0?I4-6F>QJ2%yc&xirDoBamuM`2&9z z21#b7z(pZhOwqXPYl47AgE9@eJ@uIZz0fXly+U+s51S+2`XR*SS!?cHyK`SJg4RoMTk&%6DDL z``eLuOxYAv{ZLMCWf+!ur``C(keA`|exbGS|00eYZBS-DR+e zRGoT%_&g5KcMG8F6*~uZcEDTIw2m~=G1e~P)5~I5Th519hixqHE>_g|;H7T=+y2*o z=lZff7`DBXrl~x?4bD6P)-MxV_5n#2HGsgu5A`z(IkXAm_K6gWF8Rk4RGJpTB#XDu zqH)ijalqk~q3Q3IE6Ls&93u}P?uPEhR$z{+2g4+AKQt&xKTrJjbJ5E;todKz^}Ywe zl=W))v5S%&c$ zjDN5*>t<-6k+@eN+ChS5&ID+A;~VOW%8e2 zy8@Awmh7bnuxS?>m1*yHN6rOu&^7>jpHL3H$#Ru``4Dk6X;vZqrXTkb&%G8hX- zuTC6D0Vi4H5-IlkA*c#DR61^yK5UM0L89BK|?u|JERi-%| zg}0WPg+xn-WFHXW4xu`2%vo@?3^@levJ6xlunzwTg?!4qWgYfp{!=g;GBP4$rNG}J zZpyfaJ(34=5$y@5S7K*01t}*JtR7TXGMguyblScF>|Dk&}ihpSAL@{3yxlN!2tZ z$~*se3&h@QwviCdsw|uS$g9As$<*}T5=-_rh0xK5-NDuWe(&0qi*~v=x&*p->- z6o*OnP&+50a62D3Kz7W;d((jv(1~0rw|#79zl)_=ixmX5y2N(+=PcoC2Tksf2s|G9 zo*ljIXX9XWcQq8C5z4yPnC=)4`EwpSIRL6>*^Au8P-F8DH!ATi;E3S52(+=m3JQ>9 zcq(fjKcY7%>I8ieqH#Ry4B0yFiJ?R!d-?D$I+;BUM;nO#6^5hpk8x8@3C6Eu?w2Ob zA&s+c1!kl_79E*dkKAXL@%$r`wQ*a>mLuCyp*mgw!@U=`^`jpi`!#vjt+`K#u>(Ar z90f7A6KOw#-OKL(_0wS6e;pg&qe4yy<)#*Fva@a8J~#1=hRY0p{V^Nclfa3}d zQ5{Md6jKLc-tXyX3(c@-PM=JNFG1v&1^OhcE1f{~X?e#+Q4+AXxvgjL?>8XS)xEVL z5PRgMxAY-w|6|gq_Fr>5by7xR;^SfQZQ{HGBBRbWSA2v2wQTneML;4kFvg3A4nr2FrMUK4LAvu zTwN*S#>4!aDJ=x^7>DbA2EI!6;4!Cl(3iz+{y77s3?V8-kN>DO8fn9KD%<+XyH| z_Fuvq+^nefxbw;DdqT?ESV}|O3?ZI_3l!H=QClvR9`oif(}|UE8N{>@9*>YbjGxO;_}Bhp@deu^Rs4bfi?;~ zfzs*Gt=;QKCqMoY9z&6J_rLLSgKprxGmA84hEkoILf_7X-WIs9sN_;9C--Wfl2>zW zCp@y4>12Si{?t;}wf?NQq_yt+az8 zp^=QGfx8tM-;t5GWKVb#e5~{Xak8mG@1RV^v#LRKJ^SdZK_k_?XMS=8JL9LT;`DA) z;m^kEwk&AtG%3Ja_u@CLVlXRS#?H{Lx;7zSE^vLI>i{NEL2n%({PPjFd6iZAJs>ya z+Mt?C8tqdhrT?^V;wy*qdeAHB2##a*7B1xX1sv59xOFe=m6}u_(T2ux; z$K0%)&c^8u-B1aUM<$)!1)#?hQX-pOxTSGVF5ve25}N^y-d^hW7;CIE_{c3-wO367 zi1z15$;iOj!DQ#fkN30E=Kif(rmRSVYaI)?-{N{Dh^KpPWT4mVRAL9g1P{dg9pstE0E{2G|rrp}kqD zxutnn?#|s7|FnOrnRY`rV(B92qW6#Oyml;I`uwOA-!Zr!C_gzbf5)3N$(Hc@@bV5e z%b1_>qEsKbDKM13_ph`3Sc}m-pr3Jvs+A2Q*5182C3`eK3djvpw0-91WD|NA`Piyo zfj0y`nzXo`GvoN1)m85aEkTYR;?nL9xYSWluvi4^v*CGyYGi7$)sTL&4xiNuVaeYM z=M=cf6pT2NMI-*VhF#fJqREy$NaI%!PxYR$r)R7|%5^bb&Hckq_gQRR0ELv7I`9}K zfhjAi37mf8u@|GPxF(YAvtqQ0b3Z!t-?azO)9S966G&L8cFa7p`Qy=2_=K}rDuLP0^RuUMi0(juIC@k zjJ_cFu>`}029JAs+Uc<8vhA8C+Alnv+a+ZDn#aYE) zofToY^4?)S9xsp8l0T{hTxqDZ&_C;~-wSMzo9j99s3kX9$8^F`o1>qR%s>}PDB{5` z!6kHMJLA0b9QB$F3w!U^8{4%J-8N=VMiQeV#9S3CHrpZgOR$1fWmDt93-XPCtt7Id z5DxK&ngfkw@IJBu(HiU!9k>TG`sJQf8^b8=ue7Cp@~74QP?lN^Ox3_h7Pz-Ih~d)= zcp;-{Wd1o8vi}ZY)?%wOhE>kF+2`AIiO9xTNF&ni#8QN87hM5?B{57|_AxAL`5P;R z%*e`?V}%%&c+p-d32L$WWHtauK$|k$xnj8mw;RPS?;eh&Krc`^J=LoPp+kx7L35Y^ zH}R3kai8muMDCHnLsB?67xpbg!p|%Nw@^_=*oPD-eF_Pc{k_D*7s= z*NfG;_oy5e3@jU~Z(HVH=cdy3Sxj?k`%L13hd>iK=6nLn)7`@`iJ_4d+Hp{0wg12n za^$GDHaX9zUc7#QC$#`=5_7keIN&@=|49+37p;En{XdlKoqh^8FzEgPjnF~O zx9Hlr z5#Y;W8OGU2*tVt@MY^?XWIF!qX&)!~QS#Pf;Q<)rAEyT8&i(2Bxe~hlTLQ+&h4H`b zl+A-a^Jp@p$|`-JyYuZ4?vqA;G$nA8G$%Gda8l#&>TL7fqcJ3nININ2_iQWSN+TVG z9!$61%lYxTLepclSxZ%#f725>Mf)g^9ygXJJCX_Eci42S)+5mgU zYw@ZJ2{>gyk%mlOJo9kc!P2>`RZ(^){<_DCIksMUfjl($B9=GKQ`C)}m`=D}CYU4D z=#DXXQigo3N-Y%@wol-afmc=0xE?E>k@#+Rhj*#d$W~$EaHjHJ$x>kGXn-I zUDzQojGf3&{FjAvbn#f1M5D@04VTHLPKa0FNTtWq)GE-)9!$7qq7Jt1TMT_5-+N++ z1?8I%Zy^2&lV8=_intUWT*LqchR1Lt0<$RzGdeJ-Q2f7F*!rQ1Vj6}#@dA-Fv6&rY zl!a5|n0Afeqg&zW)xSJE0=EvAexOQDZi84rP`)SBB2q~>HzcMA2XtcrFNXmq8N|WF z#Qc#e4_F4&-_ecE&7_gs;=dzZD;oBCiSZg>hjYQF855Npkw)wW<9CCB#k#I-YW`F5 znzlAyJCbBqbojt){MUT-#MFkg47g*?D!k}y%Lax}YgXOmSyS1oz2Y&fc=a!Rrnq$g z{ailvz$MA1C*j@rSm)|zb=l@OS*C5=^k`Ad@fG97$8!G9n6zvcl4JY!M;D8*fql)& zi8zdh7RJoJ&AOJUA{+0HuyT*y-rvq;4#N|^*oK)s@>8YBr(`tS<2OnGpDzMF(Ba{t zYf|+JWjVcVr?{Oqe%(uXMzjI^AlCxcZ>)0#kl)+M-p~hpht6Lkt^AB6G!>cp41+u( zwoROQTHUbPVzLVmhc@7u3*;^Pr7Lf9IbWU?jOTWSFUdKlzTK{_84h-ApR5>)Ru%Q6 z)UQu{fsU)s5P{fkj6_jLgF-k5hnsg1%Eg<%xuJgz&|YveQqxMTn~u8_phyAx0RHW2 zF3+zdGob%JHRq+WVTF;7n^Q zTZ2na3)gKJmP=!ks9m97eS=Ws2s8a3gT;Ty;(tO480-ITdj7AqcwL?TBA()oy@xoE zBBob6{={IW{+hoSkXb-(ZXuNsw|KVwAGCPGfp2B|I~%_QYM^NLrEON&eSiJj9r(;0 zjgiec@^bd=uH|)Au}2u6lS`j`^m9(~8A)$#>->UktCQBGkC6ZAdsP;c(@?Qcw(`+j z@$Y~aX!WD7YT8&e{ZEAVrPlpm9aY^r7%rs4eVY(_?6P#1_kXV-y1>CCpQX!|=xgtF@&1bIlF>Mm+u@nsiX z_71gK{|t6gSzc5dCa&*FydfxqrIt|8NiofVz)@IJevY*Pw<~UV@e;H>ezU$o1){p> zoVkRudU`h_?R-*BVm-18YW@W45@^waybPClnqzP=Ydg}iO>@4YB5V?Wt$+R?9%kU9 zL-1VN^WknG%8V*V=iT9|0`#6Ks?MRa9c$G$qpsyYjeJJ9g($35?M*KNaYGL}_FzbW zB=8f>SceAiO zrU5-|<+Pr5ts6guWYItes9*e5qj3>xtow(58JF0f%1g?W{VhOUr=Wxf5B>dgz>~E< zB|!dFgu$bvXj^l<3kkb`CK}GDg8Y61Dm$CYjQV{5Xt`*4ZXClB*SXZi42k~CKTg%x z>@}7$vA-P7S;uqkg#%BY)&CYZqscM$)E?3{I#fxh&)Bf7$i=Y5FZw)hKDHZd7x331 zt~=PM>~oF7|!5C$431L(@tB-GQS+*jqR3;AGk3`+X70}~>v zCp=^A_0-N;ZKWl~wYh&e@OSTkg2kVXX{^F$9Qc^TU$n^q7+SI>(DaaiIvIf$;_V?j ztL!6K`KM>dfmP`6;h|P9NDb3mZ^YCko)*iC4`QV-JU!_20h|_7g<-9b_A~tj92;~) zxPPJYgvzjk;ypX=L*BSGv_;Yaz30>LT5-0f$N5zarEFWKj-Up|lAtPZx&P98GSe@* zMR5KUQMJEv4nt4Hkyu<*AA;BJV(j}Q3_yzj#ZbW!ObhzaT;oWPO7&g`x&WW;CRv5YS)@d@`4f^& zdiEd;T)j#rg^^#^%FXNoI#6SoHpG?3LqZj5C8RvyER z9&dhR?hJe53KCnQ`l!suJ$R;F*W8l1PVgZsa7t1L@%vwI2#}6sC}4YcqadhVIR#Uy zO6vw^Ua?%4vR|eVWs+`pD{T+^1jkrAoi$d!w~LjwJ6wjDfjH?qC2^tfN$Y2s)i$k6~3lycqC%m$+aDqkJ=QW8=&BdA$?rx>vmm7iBzu z&)WHYrcFaI73Gn18t6(52ur(&xm*=feAkP>YRRV(G#Addeb<%MRUhm`Qi}bRpfjfp z3v-5vXa3am70-hRE@9=3W4W5yb%NuD=Osu-dBOZROHc)3L<_&muS5%kiE9=@N(d&x zM3Cr@YvRya}pqP)Xld{SV!!03Y zhKXg7x)D5$j?7^MJMg?oLq zIgE@^K-=3+Wp6oNd=LiT=JwjsmI@6ckWmrCXAd4z@wtQ#UPWq)YZ;k*Lda@%QbeW1uMF6& z4rWyRS`DoVV#z`9w(c{+79bHin{od&Tl|-iO3w`PMdOUUŁ^PZ3n|aMrF8Q#O?YuqL0UI;7WRVPLkipX z6d9VLb4%2}qC{;ay!&@$*jE}PLPo%uL<<#-RhAEdu#HfGOvy7hgzj%s5B>!Xw9Mcg;seB~ee-;^zcs{1Tv_UV8VmR+J> z!f(Sf{r+S#%9J%*?v}WT^korD1kO4>JQZV*lq36oL|g<%ZR=xm1|tr6LPj-PMt>UZ zn~py<@a$M=oD`HszcQ39fx^>Oc7tIRJMy7G38nbI^9#XptLfk!+C_;@f2eF``>&Ym z$xB@OCC+V{M4{(b+|p0+6ls7$!y_I{lR-2{$Jin^o4iBf?u)t~qwAw>Op0MsC1^^< zKfuT=dgz-1LkQ7q1C>DUfvs6U@``Q$-o> zck9)AjvVoq@#h0<85HPMM=vSpdW&6#40NT7Iev|PX8yGNEcscw-GmC*Z>!KpYgP}U zG-i^%PU_s`@MO@2mZ>Y%qPbz+YD%vwOF4?eiJ16<3o(od&BACqaIAVn zAAkJ)hk*AZ>v@a;HW-5GnZw zpH?r^>rKzKl7z;fg5-TgHn1TtXGr6MQvpSmARgH!fg~7U$lWi(V@5Hos0pxM&#u`q zPSPW1ChAwBte^m1=9VN$OCdI>Byy%PbOld@*s80aMpyvAEJ!qo%{5?$4`mYD4+LEsr$1pYvPrgRYO%IxG*#Ctja zL#$&#itE;L=dn&=?B4ea9C~+4;WyrtJ*se7zw<<6vjX6CC)%LR20qccdd`bOq$UFT ztWHGhYiPX2O_hw-YX!v5*Y&NBAb%)&GB z=1Fbs#$QcG!1E$<@vF9i3mQ9b5Enu79qbaozCD#OA}mDC)AvD7+}T@ zLFJCO3%+IZp9>NKZs*gHU-J9MOkL3`mqRAc*@Io}xO5~Z{Ob-qB_gx37Ex4{r?yQf zSR`*|LhR3A_N!ua^B=v`0}b_#e_cv4TrBfC@`Hh)u#yKF$l;$9!3y#Q%HGmc;=Wr; zO&qv#Wx}mlZ&ynAx^G@jI281+rZLF4?<&9ziyx6jD(%1rJguT4#R>%{TU0Re9NDCj zQ_Y|jV}FC-Y&ayd8!gco?K@oloeSPKIr#yKZXW)CpwL_%AZVO)TzzsMI=U`0GJeBa z>7bJsb>I_>GA1vgeJ}Zj01fl}x0A_3L|(TfPzNQ73KN+MlgK&jA%m+IOrdQ?EJS*c zSyeUg5((7g#g@iQeY!158;vEpBT534RUSNdAaqz(^5S>C(Eq+Ukn>VPgr@hewPp z?2SIGF$Bx)0{4^_70rp7)ps$Hf}XR$J99D8{x zeGD&M)La5Hu0=3B(`8z^%mTguQN^F^Vs<<)N=J3~HM&W@ipF)Ue|F=NssWPg^o4J} zx@m3m#DITcV!M#g#wTY0M+rIPhJAo5>mRj5x$uw)>H^0zLnqZANoD9fa*_i9G;D<} z*L`3ou!(IX^6@bDAS{a`_r{;hQl77jvaRqgwWsM=}>#%z>y z)EGz{IoL=XLK*FuI+YG9WFezZfzQatDWemGL=fTwi^~POW=AsIW69fR)(#0K7h}eM z1razLa!$)E1;;l&^sYL?D%ya>EBfHYGZBr64u;ZWCsQ#qLFNcJSdp#|o{8?Kl_EXy zq=IB(Nib?Cw7w|nq}HQ8E@F=f5+O1dyaN=_o8*O&-)KTQ=}WB7N(W6~#ANoO35`6a zlOw+z_)$V$#H@Evl2j-z-HE5mAfmQ*<~wMvL@kc=+BuF?hTcY!DvaltR;Oqip9TJ*O`d z>#mJMRWmS*bPm(zH;D@RgcQCJGKRtzCB?s4^-xF*QKnE?o*5eCy;!a>7RW1GUkTdr zad4l_^iQWa`zXDTKO4`%NB>>Uy8(||oQG9|zJyt;>8Wpylr5DN^0NfQ-}>*Vg-!;Y zLM~lNvs%|VV;yD4i@0R;+M+{bMR_(50RY0}$IV)# zBo*pl>-59D%=x3-QVGqHK}+10ZY_*?<5ZStGYB%b-NQ9SvQ!(98c2X$Y@{Hz9Z%(n zMi%I;C30Wpn{S!>Q|tOt*yMldrfFYXpa@e@D?4sd^v~^vCy8xvy6USMH^r=ypX!SL zFxzO)muOAhV22Hm>Y)EIJpt-lmQ?vwp|@OkVRTVv)~wpA*Pg^|vPCKNJ_|9^3hKL& z!tQtcJ% zogB+p>JId11t#4-r9aE`{ zmMq|}*`pOs`KnJ#xr6cs`$ck{rRYp6jeFXQyHfHKTdSmmmG|I-nUA>aBW?9ELaGnzsK ziJv7u08%xnSb)HKm#Iu~04=G;al7V0UzMB{ z#ePqFapw8;1Bjo1%Rr^n#9&!27&2Uz9i-ajbS}hL5)o!M!U28e8y=(frxFm$VU2(W zHFS$cmtvvxNkLHQ$?#v*dQzL>DS_Pu_e;~pTB#QpX4_3i6}Ii{&(;F|#Kq&ml z=83Qxh2QaMXW80AowUAjya~%fwtf@6z}U2;6`eBM6XVKR({CV72&V0Y-27ObcZc|5Bqh33hRR zd!wQx4E+98OSeD2Vy6lvos@oe@ner$2z?l5cNxS@0-Gyw$TA0J@6H|U)O4T~WnemC zl0HN&%LFBCbN;si(V&h~4L4lt#Bg0|)yV-YMH&1cAexsL>bLNeX2M*2Oi*C8ebOYr zer2VGzYgWRz?d-0o=oO*S_-Y|tg9lSso$nq1h}W7&dP7)B+4^rgE9@7Lh`GeWqM=V z5%BCAyOa*~&6OczLTkQ4aH{i0ybP+u@xpMs6I&sH8 z0IkQhFH2I>5=k zR_)1F@7&C|L}^y0o3?r<4RX_B1rl&n?8>{+e-}C zk~wGkHxE-_-{$v6olH?~yp09xZ?4fbPc}p?)Yjc6#OIxo>w&6TCUM{cI>c=#R5yI! zX#{9z$OzDBx#v1tOTO}5MOVUW1GwAxhmCnYbHy@08R9|mlQ;WD(gQRYpP9XOosn+Pl~ zUcc*kE6J(BvENRfEE><2r>u{Pe<{ZYoRTX>K$WL8n-P_RA zdKMabwLmb{m;bb{9!5uY&LhzN_-;|j_$u_L-rLtu>?~IVDkKk7%qW+^8URP#;cKJc z&YygYmA;Ov@iLaQ1H1nk(5tmBI}{|`ZRKJSZ!VcO%dW*elEQkCXokMJctzB-Q4WB~ zrk9>S@zk3|Q29>iT=Rx}IKSWX{{5OglSQ7#mkRkJ`>Ut{JRCBD)xL;{2#4sm5N?S` z8RFK95ot>I5XUGA85#|*LV9$teL@9)^jiOWh%Ic)sxd&>@lSg`AnmXN_LtASY@i!f zaK`4`t5#TdiB!}mYD26Sr4%#=m$d0MfsPH)1+OzU4H5GJ3(1?J8jcmnAar81L)+d- zAqyFxV%c(aV|ivwe(MAUt(J>R)gKRC3fINqT}4rZV2k(bAG`m&3tBgJ%G?tciv4UX zGgb)re1h}M8B2*6kPz#a-+V@^5nH+k;jL7 zeTcr)3SC|N0Py*0M%HA3t?Ib9Qs8QE*IdC*4g>#)bj&yC3 zsr{r2Y`LE9x=HolP^WfxohfV`Hs#4o><)MFHt17POS>@$ zHc8a@#YSH#c2oel2uk@WJ?3k@cVmy{ggZ)(kcOWz>Rnu#kDj2nl@(j1?Vn!8A9W*q zCmVjC?xzl$KngbqM565?>M-Ts3S&cUKZbxH6E6r6EZK-$@LkF1eUi^Mpf$#C^ z`dHjyoJ3P1qiP&Ikx7wYN`cnS3y8RM$o|R#(AKs69NqCb4=buUi8l^Bm1l0d#493B zDG*7X-k*E`AV<`{zk2xCUqlZFzd(yw?Q*x8Eh}svEUz`bH@6PDw*Jvxwc7E&@;c|h zZk~4WJEUr_!>3wRZ{FV!)qPjbO70C2UJ&O>&o>wA%Y8aSW_502!5L5{i`4U!#_J+p zUJxs$UV2ETff$5}b?C%{Owp3t;M&lA1(987kco%^QNQJcjKY$sz0#rwneIW1bok~_ zN=&(pg280&3~gk6juT)NzJ#^peKz>upD6lZZy(;Fxp7nrLwz;~T2$41Fj>pgM7G$S z@a(h-Uol_mI6(2U&u8FxngX}m-4Z?Kx}GDJT^;4>tyYYa%#%7R-@j>XN9bW4_^h*0 zms%MC6jk?yI=fU+xXCPqC(M8*8bh%fql-|pPUE(kN?A1xQ1z{+!zk>~?dK@{gQ-CRiK>bh&M)K6Z&qQ1!B z)plvT^;$fZqR$Pq>pvu?PzV5Gp;&1Q>q-)>Vl*NyNxRrC#f8|Tj(n$0<@@W^3(+eL zs7CdupRE35R`YD-{)GxXQvh1Fj34<_&$7(vcJY<}tP>mB?o_Mg)fnR+)TUT1*lMcg z&-7%+<3%06Ti7UH(~gE3V20-u4&xgrr&N&_M&nRP{f+OX-B`N06>0HQu@;QP6`47+ zva4TLng+=N?!2L>XQoevgi~Lj2TPL=K)N}EuRDJ#9ZCVe`F%vZ{nb9omH#{J z%pDQYhLHZ<0`r**ig{Rm zzs+d1VrfBWDd&$*gK0BMr@|qP2)5|=uR+1tfj+E)Rt4j^O_|fiM7Wk)u-)ac8fCJ z##^_u^0SqJT<}$^_V1mqN(EjKz-7hP9P!%LxqpN&EnQt1C$?p<~ zA+3Mvu@|fKXvu+FtXZFOczB?v7uT834KPgIXbS z&NRze1%}2uMf~ojB9l=E3}k|(l;nDy%?I%0Zs_O6L^JP^L*UAPgXL7a4S`c*>$;CJ z%C3U^bJA0eh(P)M-0GY~04pW$&oT9wMf1w2GTY(dzH%Khi&XjP3g)|lh|J(;{JB!N zJxv87KLtS(U`%_(YD~;@*Q11{GN%Ia8;O3bsS2d@Qc|{ z2SnC(KgB7-oh+ynCH({4g0Fhk5HFmi!(Q#E$eu9{T0vp@@NR|zN?U_IlE6k?KeQ`D zE-Iyh;^M>kAw5tJ6~u5yL%NqE;I7wDA;hW0#j+hjN-s$*=_m5EEL|f|d~CVi2}fS`H%8B285#8r{3iJXX;)lv9IEv>TTarwm8# z?uXYkmQ)jcZ=zCFTb(n2`NYgbW47)$I=NUM3r;HB90SYWs(YH=wz(R7vM zMBowMuX~+xCnnsx036Xu=SoC-^#v0FMS1jI^{he~8gE(-;5~VJ=~Vc#?TwTkQ306* z=GrtiqNlQ}=y9{l;-VhKSKTJam2uWng&Lua{M4(Syh%QIfR--WT?qCxsz7<2b!YtB z*-r?s&hu7d52iAi^q75C`H8K4S6|;=_#+rD7B>+Y{gX zwr$pHS`t@rGw#;9#6^)o7qxWa6L`v)H~)hhzfN8BvE)A%^zHLNQB>4S2Bj zZFc0}nPW?3wQ0+(n4w7A45#K;v8<@)g>7sq`A=KvG zokrrT#^=QV&IP)w6YG58P*E0sK8ZP~u>7bPO?epwA}Gtfua4_|B~vUf-wxEIIE3{& zeV0j%4XAx9l%ard0hq8_D#)=?lD(q!BbhtsHEZngv3W}-~v9lC+Z}OFD_Pl@vqG zRvi}HRK9EJmuf+mNOiJk6BK8Cp;$zl5w_dR{8_ZkP&*NOceO%BsnE{~vhB<2Z@pIl z6K%JmyX{~J(e_pdXodiYjMvrZLjJ~3fcYmw7@3eSFbjsU_tUxd(aZ0Y1FZc@7kB8W z;NjIzy?9C?7}2|+dWN?OWoOxgsPGI3*t#a5%u%jBS1h%*WLOISrL!B1xj!62ZC~Uy zS18OhC4(Cr{%9b`4kG1~DjhVT+2zgv9?+J!iJ-L-qU2*z>*t3QxMpWL)IQ-thPueI zK3h!^XRdJ@?~J*lZSSjTI2}3p`J)`5w3%y^!pUHfm;SYCz5XfNlTxgm^#Fhjx?8dK z$SDEhV!1WPw`s`RU8{#j>Egxu_sBjhkGpFU%QuhPF{N3A)w3Qt5IY)$jcpUI)F*>+ z{a79IFpTLe{Pf|~U!5K^gkb=rfReD*fAU3ga6%4NF2etkDNKaOD~EC`?MXr&Y$q5^20#YCxR9ti$e&3JrT|0$2q zTUX5(X80E005~?AM!kuN{w(%BtXj{Tx@cIbWj^D@oU!mXH?M!Zu}xGIR(Dw1pP##O zL})sfZ1p>j`j}jRQ2e?I?){WE`G-Cj)0br#XoSnr4@9~SncERY5+%EY88Fq`Tc+OP z+Dv3I$4*l*tE{2x$?|Se1toSD#$v6(gJ6sc z>F0Lp0$^S!mB2`vC+tkB^uQ~>Q7dyET{57!@T8Wts|RReX=RpNBh4sk`IK!cDT0Xm z85>BiEyM^W=rUME<4l~lPjtZS)Lq}NUWpIZ&)Xd7@^FtsC!cvR@!+=8o5?d$Xv}&{f?1ZOhmQ57d zroENycggX4KSs5#u?{m(a-7h}q;Emt=lmc-S=(elfB7C-*mKR@4*EgN2A2Y>x?*OK z3*IuUo{AH0J3|E2wC)bPXBp$6$yanHq_j9!5FWKL-2FCr?R z%P!vwyqVQB|39OsRC+KlR8T@@rc`;Ee}gD>X}b*xl%5kcs5Dq`(Q4m@%=WdIY)MmI z)FFJZ)yqC}Wt(uT2o(wHmIi=tWrrjmK=1j_^w>^ zOZJeuDVCaXjBnkL-83FYUR`CcDoW1ORU;I>?G(~1lDaa}vDyBrLZFg^T$P_PmxG8i4_)CqV2e9yk#+q`2lxq{|EB$73wf3 z@&|g%5y@DVC$2l<73!4O(ZwAOYH%0HU>a$!bZ#j~iQTUz9$)8R{>ba}*Bft#pnTGm zcnioO!aO*-M(11rEDO_3o$4mQ=Y;Pr!B$rx4HaGiUx3*n(j8^7@DI|=okUuFd|R>uFO`j zsv2oZBdvbAq3Y|3DoH>P!CuGPONVfj(Lp~v+*dxEuEDv~txtt?Xf9_X=T&>72PKv; zqd#ZH?pM&zJ2D)1lF1MXo=CVokD2n<%gRV z+ahc0MLN#J1ueU%()KLi;-N~T%1%;~zI26N$D2Qn#ZQkoY<-kL9~G2b`-zsZ8r+WM zrt78uS~+#LL4QQIzTv)K^Z0|_zN}|X0V6y$nd}A@ZB2@YJwW6wUZEY+Anc}CjFm$N z&N>nqc&fPl8auUVB%8N`9Y}7{d)YnIaDG&_vF@P(M0{YF(-H%KkdqRag8iG&tb3|~ zub-oO3iv}srfvQM&d~2}`Jv`LV58u8{2UfSiGt4y+XmiOZzDy+DM$*`M6+wiE=RW~ zQP5sZLtPtFLm5$XI@;|$X9*Dz5v<*BYSM0Ti8+_Q&AP|@9J&WLkO?kjX8B@bX|dRf z@Or>FTlRt$?#l`g>yJ!K{_A{(ju99!&%T~ zmN(@@K1v|Yxnez1(5Mf!={=X2kmzjgQsRcs^BYt;ZR?!A+_m+3($aBzml5eIUG6v! zK_KOg6ec9#9wMp)dcO0%k>yu|(!hSt{GFaR&rU-+%|*Fs1h!BzmQ*Z6S<%h)SQlOF zrNpuV?~+>k+e>@k`DsGX&+OID@M>7ugtpeWWKEn~UD5g#`}}O2*m)J{6>WF1Ar?m8JgX1*<%Xk~X5% zLN>Up*|;$p>?g_~ zrLQ5tV=$TZC*%{ScN-mX;?%dM_^z?Nr82ALu4Hm!$}mMj^w9~sXH%aITWR7;-C$XL zZ_5Fr+lg#*!x9-NxTY1(MHQSZb@&*R;zD){E|s|Nujm!!(VLR-OHJl7Mjn2JS4)Y> z%YEkUcCK&mhb>{7-L9qGeM8zmyBvj+DgtQ$!Sb5}?Oo8&xFRiCC%=io#_Nv)eMHCQ z#B5~v%if+R>Nfr1WL_K8;ZZPrd;n=uBR^GD1&Ii+Mx>4R)@EfTVyHH5FW~6hYjwp2CM3+Ya9Dpp;2~ zi>Zlfhi(gjR49CY-|}a0$fdMb1-1f1J<*@Jv=YPRqF6I^W`rfp6pH36>StUgGD^H6X-~5}e$@ zO#Qn1FME&3UVlRlgT0!nfj%Kz3|$PsVRF7c*h>6Iu20Zk#Z!SR%LR-DnMB{uj~n!` zGV_n^+inmu)6IwT%q7Dr2tq*$S1$C{k%#*Z4H}ExvmWjZ+xZC@q78m}1*lrlT zEdc}$a&@3yMu~u`(b9M0Zk?2-9JZ?Q|p~nN?cSnlA2M-zNf{ymF=gkJy2YEp_h#9Opma8bmIx{|l~RXJ-A+ zJ`6Qr!}ebm;fT)tGA^fo7jFHjCJfnOhg2Xpf(rM@jC1hHets8WOa!hsVTiLUrIe zH8H^p#${!Ms~9oCJPsv1Dm_}5XoAL#Fwk$<7U@Vqc_GP-b+nOw2a^lTW$3Q&+@Q!# z4m#zohCpnDmRJwthOVV3PCR@?ouGONZ|oNuh>BgRzKxowmIZwwrI6xpN}R_%VSol` zRE@!YF#b&;HA;0N!Hti{fEVSc@h>v=#0)f^IdMsqw%>cAzdhQL&K0yG*5gr(onX`5uNhrcCxy&9Y68Qk{{JSCuCxcgV9cgae zCK%s4+!vW3bjX}REl53FD4#usfd_!8iqL>Zq{$G!NO(j#F}OiyU$J4XFxdl(+i}ie zz}Mi$B&kZ)PXjo#(zsBD+RfN+x8IkPa1d{benKvQ$BRQsh8p#s%2w6XoOq8|!~`o? zoMQ zTtoB2lJ&Fc<3+98L~&kYprR0a|1-OB?1e`m0-~w|?TFoSU`+iHhTt-0!>`oZ+&&+D zg9}(Nu=;{)XxxFeXAmdMSxmswp~+g=N`?FPp*ni)gnab-=en92CK-NI=~3Cg#OkO^ zW1w9^eS2|?>%v8A-KUUO9AqI1#NlF8uw5d7q=M_2CiQ|8|8xdCWe=~a7pDco1= z=A^@~{adI|8oz`5S}BKV|n+)0=p;s{YR277vLnfJF9?$o22_g0w1cwcZkp z*XKi#rIe3i3}TWn~p!mAd}kiQa5>x4_hf#*?GA&<3qyxDsk<%p1o<%q8# zU9E%t#?8jn)%IOvsR;*MzgBSkmn73`cgVq{i?*2t>yA}wIdyW4dvx5z*SwZY{) zf!d(_VhGhvZp0cj+w@H8b+|So$V52v+k|AKRISmetrFuQS;@>oQw@3uBP23C@-s$u zLWiD5xC2RyJGuZa_t@F53w^Nc%X@oAd;H9gyXrvuUaUY8O*euY)bq0%>@8W8w($>J z<^gyV_rMqQe@evtCs5L|q!;3#bX(+sr>IV(fjQ*fRpeghEmtr`m;dLf)7s6ws$lsfZW;3&sb<*Q5?3@#0u z0`_vWW<#M~E0WdvX>fhEB|KPb%IN|n!@&jPu||M#5{eH79ylmyM9kO6Pcdn(DhTWk z+KStpM>LW!QO9hGk7#B?2$vr-F8ivwd(ZK9sE#5+<-(=|&Y#ZJ-y>DT%@IKcm_%I7 z9{O^c#j9l`^$1E12)_wYTG^FjBrd&mq7YdsA%u-aQ0M(hlK2y|f(5NEH&W-2g5URW zZOER32sNZt$u-%IQjmsA#}y4DWCFYMl`^5&pw7M#9|6x52ToOFKTd??B3JuzRk8dA)diL0o!Y z;i&D*sl^%HVsm?N;t+5HJn(oDZtjeVoc?A*WuyLuo*+W1nnT*8@X<_43SFfWXKiHc z;OxHIlgDW(&l!s0@#rI_U8qtRVUFIwB7D+Ak39b;-Yx%i&ywQnyV zbs-pgD5C$&Z6uFdm}A$w9)8wt7s^$g(YU1b*Z8C^Z+xw{Lf{7%z>s0cj8iK&$!CvZ z_2znN2-KNan>dzo-_1nE_{p2Zo!j4liTPAza_N;9e2{<^$A21BF^npKX6cEf6lchR zwtk{Ez2>gTFmd-;#6>gDwS&iEa!7UA1?uly2Nrw3p;-^LdPkpP@8MB?veYoY_-^Fj zz)wRzY3aF4i#YNCSPXn{?9!&2FmcdjkF<2GtBNpjsmoBCc0_DGDa-cG8Hd9lB8ZQk zY5&@cUVmcH8eqE(yz}VJ;DB^gSc@v|Soa{?4U*&ED=d3Rc(3+Om%bVhyawb2$DO25 zIn>#3jZCc*+Soe}__}FHI%%*avTS+N%3<1Ug`76H3jj#~%v_%Bl>;-_6h2I#g&g$a z5c{BHht;AJ)G=$ zb6B7DEpO(0s&yhoDgA>TvV9T+8ZYtHd(2;qTr`&_i4!P_oM$^hO)i4UwUPv{#)UBX zXdi4#Jl*C1zM9L6!>{{Q8Cf!x`W43qCA=ECbeZ>`r91KNzsx_td_9;ePZpmoZ#WI% zE4a+J$1sK7CQ<(U{tnfSCo5d}X#-J=?;Q=R^^DUK+3ysoK6};op>2kg3$jJsc;H+q z@vY^nlAbxkEzP&*zn>DtaRjWUx#ESDgk=~5M<5R1NDJL#w*JOiSeXa64>Di zUiYgZ-SyQ9X*Co{aqT+Y|M0K&+rNKZ4OV2V4w;xD6r(}79aeO)AvmxDKIF?-ruL>hHqaXQlK|V_^zf6k#F5h4v zzjcS@@^2mXcAUfDdzpOO{I0E5n;8ep_Jn;Q7St*dry?tWp<%KSG7{PuTEg)1{-2bS ziIIu(e-;I<)MTChVTrpx)J~yhMB(_M897$!H{0%5Q7h9W6LIySQ#eZ`;3dcB4`tpm&zN(QTbA!R4fvl5}Z z;FlE}N4P6B{;7r_1}sw6Y{9`3tlODEgrHabMG8YLDu6XG5j6Y2ikFLsi+(IWvS6t^MskEHcSgB zsL4;Qi**JdAC?D1`=o8m(4Ex4#35QhvE{5pev{(kAWhZ4GHQXynM8S;Q?Lgt(-zN- zM8H}ritZeI<)PbihEQlCQw!NxUy9VPh zR$@pI)ZJNBm`z11lIJ{MNX886$VOv427j!2oX{VWjYg0_*JJazSzcwMgkYGeL@VFh zU+ZIj&Zef`4eVx7`eddCpoYMVj14gvrppAY1!r?j9N>QSWEgZ)jw%1j(PIMCd#b*b z7$$hvnDuz?a>vFY3;#MPfz=XIDSO5^F7%>Zr*q$u(W}5%pwP@2Ze1`cHNktolhriT(G zrt>kgyms1y(SPVM1!TAJBBgr9N}H@Io+RY{=i`GoQ_|^gI~oN&;t<)+fzsi9nG=<~ zHh##YO}Nd0ynGG7pZz#OUm@Ze~u z%*>2z|NDkuCS>B^V&X_e<^(|p<6>rJO>{t@07Sik+81vuL%@XMZRpn9Y@BkQt^UI= zF4f!c;BB*;T_(<#(Y}=fzk1*QZrSqtcP! zfno}(|B=X!2kz_ZlNs&n1Cy1iu)a1n`6S?CEw88#ENriaUlE`U!i##!<~JdJm&*-l z0JN|JQJK*Ik+As1M@PnINBRTz4fXZC5r}9(())$=M7ARfrXUcSSQ%YH$x>Teom}hN zS{^^9p9sVP!H7r!kx)?ZO!saA2P}^u9EZHK18MkBuozv;Muoip0V2~9aWbNK`GFSd zH#$Bv9ub87q{5T{>{P0ZLZ|k zkluc<14E{TN}=WhY1CKRH?cXlI&!x-yf!kn3VfT6mq$tk`f6!r{m@!JwFANG2jGD0 zlNf#7vHyAgrip8x?#+6FhqtM|dbHV`wvhoQKmIe~S8K@ZEN3gn3gm-R*bDbm4ZyV# z_m!=0}F-k11M`?pLOxsCJ7kFwf}NQm9tX)au5bg7(%rT?+Lc zJN0)Jx^Lp&;mnKxGqyltbz*1C1AdYP*S2O}^`u66hjMYd_^zz4fXH)Mqq?VMqXc^M z`0$=|qJZTPW=6JiepEgg0!)p;u+nk3f#ITLr)~0nM1Rn5GC!jQW_S8G;q%6CxqPF5 zLVEdsd=|d57)i8nXkG-4f4B`j9Zay1h0xCd%HOq05@XBoyONU=5P2qs023fa=7xHp zRRMyoAC8!=p10nM*U;Lc=x{o}hZ{$MkH_2uoo_x+v>#n0slK0)gvPHdZ6l!JT%i?1 zeG|sd&%xIpkIkQ>`yacBpNRV(?$e)EVkR@1O28S_H~Z_){DoGgR{PJ!zLR5iHh-(& z^0O1B^>=M~#@$XOjj@#p;1S@GAorfzNoa0l`Lx5H!4r|*iH$R!$%CEo#YYdARQ=Xu zrE$VB^3W20=&iv3q9Xwv{F(Q$P0c?#dD?sBO8im62GGy`l%O>;HL<;0O{Ve7tMBv+ z?clvX#0enN^d;Uo;YCMneX|V%d2-`umC9rGQE=J$g;#?<>QPJpMqu(VKcycz3_<5$ zzl1J?kM5Dh`*q(6nGfIP&`S)sj3+ZFZ@yTHL z^%r|x(+7V6Kneh4qj%2>?3zJF{j36x-@IhLvAk2P?;*c~r+!vhe!z9Uk#`xos~ZOe zJ_TfDet-ouGQKbyyc<}ZT3J}W&HQtj9{_#wFn@mhazCqn`etDRzhfCL%#5u0M{fw; z|eoZd=~-;ke|A(H~T6htck+?moBfdnR> z5Vs%5PtuFK&`UE?M5EAN<*!-GU)(&L-aY?pe>{AzuK>5b+aV((wj&{PG?6VKoBkLs z{#UVVfB?>#CdkAtry@v8s-&hI8U(zV*;}OWq$O-%Ed<1XaFXt@3$FsS7m!LYyBsq* zcqF3gI~W@V-P(@&2o^}2xyi-TKxJ^VfG1FQg|?;%kWgK_XWfeLlsvjV9i<|!=Na7F zdk@Okny-D^Cr}fsgZ@ZJn9wEb1;$#F#wJB-K)mMn@Iz5ML^^Dms9u)&9btJ~?H1DU z4Z(3-V<|sWkzsj$_iSMrEFW7-dO(*Ro#0LUsM#2Aa7WyuM!^h@?Ub}z++?3=R|yg z014?K+5O5eaVcjOhiRYO?XbI~{lEUvWjvm@owE$89c5knzWR<#zwu->4+L%tE?rIE z>$>@U@)=fgkyC-?S%KF{b(23L_<8b^F6b&a_pz1~cFVbLi`_X?~6n{Wp6O5gMvx z8cE%9mkpP<+x@lBbC0r8k6?Jl+bdRlf3CaG=FnnxdgwhP^`&xRc}ZkaROVtvNO%0p zH9vd1w_T$45ZM{aic6$qLYrn)9Pm&!A_+qeVUWx3aNa6%YMYRl9TCpz5P@3Rg3b@! z_OCU^$+j52@9B}`W^tHa>SQ*)G~k;|o_FFtLfjFOB}AKyq-}DeeRx7bJv%WwWX~=C z%i*XbgA1zJF!(G088r}9X#-#ir!+v}O#notUtq~Q`o=7fABsBOUyQ$a4geSxE5*Ri z<5H%(jnr8Z6peqT4m9u=<^64b)iM6} z_ogY!ah=FM`W;hYls6G*JOHVd?@FUax9a6?idm2%=QQHJ(GV~#{T(lP`q#O;|7p3e zL92=!7GgxNreJj_fM-1{mvbZ{EaR#Rw{`{X@HX^hkq>2Q@%TuLc^M84COTn&pI2E? zYg-x|+ap|-EG0!ZyG2-Z*R96rbt^hWmz{FV7aAy1;y*hn23oPFH6yY4z9~WRttc>AqFok zk?4|cd|a#?L|gMLt;KhX;QTJ{;GC1LzM0Nw!DVoG=+j#_#7b30w4?f3o-7aAF9h!)mu&aA3xlWM@P_ zkC*XpnWf(i{$bry7?ux&W7%1fE@qWK(QuOHVH2_p509l@EL4{ghNn z?#Qf2%H5DtB73|%6u?dN?A_E@Xa)DWN9#qJI2N7%(u&Pw4tPsxEa|IwnYn|R-*-Dj zCK*>(q^A7kC$^IRyypk26Pu_7OR7orS2e5He3qlK>zvrG5Q$sUh$^k{J>P3DO%!T} zST{iFjPLO`GAC@Nr6jSN$`caqs!M#XZmjWDd%n+0iudSo`c*g0Ntj?6r7c^$83f%- z_a~=VKTEU2AOI-iFU=Chs7&nj&pPT~{kVUw`?EbA%GZ#e9%DDXe8SWgBgey-A`{f ziYLsQh=QR%Nc?ZGy_Ox(@@=YXk1!jk94IuItqVlk=>ipW^FPc2dG9j})veqK$s4h4 z_aP5^K86!~Yv@{`3djr!bI9YZl!{ks^G?tA&Z-@zHiKLUU~wFCSV(eafKHytsnbYf8^SNDOuHuccU^N z--WEkkl0z6l_y%UDk#L&Z7-qlPFI8Y$QK;=xieQ}UhDO>!#%n&G97)t)M9ZAd(*6i zUW%!)F#M*Na0v)5P75cW^HP&RXiRRUO7%j0N)fsXY~CmFN`10gABzmCJ5o0z!h)yS z8&LI~ph)R&l8zwzQfC`xs%m;2A@ zX4X+ zD%WZ%OVAcMCH@X^-qr-?DEz`I78+Zv&5kGv=^I(L3Dx-J=f2}rDYa0ZUb=?*hLL1g zFc3X_kB_XH8eDukTyVsG%~i+G{uybZ1?6vXpK^7~jY~w81H*3V)~TUxV6nkH>`m@> z_T6Se)!9?|?4`>DuU~4w(|kZv0yuUy-z=)Z05oMRV$Iqk@wrK(S(D7?6WbO){kBte zcNVo2>@b6CA-(I zpYv3e&t~%S(XBRxIwQ7${-TCCJq{>U*_>JWvhN4MDzpfKI7SusS5}^hV?@Q15|nuI z<%szP2NSzX(Fu<-8|4lJYIbNghEL+{N}n*3Iz%SPv-@TE->jgfHYadt{QhRWhll>V zi)#lNMse+}t!`2UCqDT=Re<-LM^(qj(~b#X&%d+}#O0kxhr5QZnbwZvbf)R0SBC!f zA64#=BD8aeDkw^w(72bxAaICJ&7>he-W2=Y9|aTcjdi4tG&I(S4=fav4I&*r5}s&9 zPtj1OGo2X$8234%pL3AwJPp+#CkvvTqitl4l-2jeAEk#r>fxUuJs@h)suv zn^~L41{=JzF9JD*iTbU3%J5Q^^)=O>`G`!IO&CE@#hy>E@M1hhBb%)x$~>iaE#cP8TdfA1NO$51f9!){=IZV z3UYk&lDg<1Wi!uC13DN;mq9Jv#?vQVyi8%dR_4BzN2HU^fsei1`s@inVYe zfh(V^d>|g12!PSZ{VX!c4H27Fk}~S>ge`ezBg|klwu+tILhqPk7XyT$ZB4jVXn@cJ zwz-F!Z)^rG7QuNnB4}jLV5BIFj&8)fTBRSnn{i6Y{ArmN0>fqk?T@-L3P@};9n2aS zdW|fbKq8_)?n}ey|Hpcbs5~9LG7@{5;L@^cUspnt0Wd~@K%#Am@gdTdXQHPI$T2yYgi$HuME-?XTUY-1oN{)uFt?zz#f_6uYZgYHURMP3qo<#=96E?Y9`21(Q8A@f}@ zb*iloqo80QlpWhSh2WLvylm)_$8NmDiXmBKk6r~{3==S$&`wupM@|jsh(3j<7xQMN zs>~&n0cb=xrN{2D4~_esULE$lBoLGCSKF(#@C*|S08=;tiyN-vVPgeHLp)ebDCQfmwwc`l&yh9cC7U^YR>A+}5|M|N_1ymx%kb1p$mFUKmn zdHIrm-&uytr0hNstSpikpLvu7NN|>3F&>G)~$hFAIDIVjJ zhcs9Z@DJ9qpn$%tx1>-svl`?{qLks7PWH%9!zU*myWHKjU8me?-c!f~)O2e>0aV7k z_B8qPJ{k@qyK^CVJeA9PpXj79HPA}8f2~`5ycap%I>TNLKNd0mOtqSG=}*8x6Uu@e z8>eP=k>A~h&!1gEL+&-EoF&F@9DH8kyZ+e;ME6F32Ak6>_+%E#yO*L89u=sEY8qS1 z(XbgPc{wp`h%7;UCUVXHeNxy|Mu|f4K-%pQ0Cr|5=ao= z_>F>%7v}UKJPyp|wvC7_-;uWIg;ba~&0@D9V9SiR*Jz$FW0gBUA4I*Rr%NPUR=?a% zNEg7uY_Uj!bb0mA1DMOmhDKI+3z#`|HU4IsY5`bHEx zHx)_FcH}iV!qbnSl?uqMEm+|GZB+!nCCYIlh3vclYO-dmd-+UM1G{ghK6y5)LAp_4 zz~b1RJ$dtIxzYMrMl+$mXJb6R`a%#@=LB3dALM;1>1&RQvCr{xRO#{wO#gu=>arLz zaseJ+rC>8nOTG{_O~SLK2oUp1NfPmCTy%YXyJqVV?YH?a-o}>cg|&ag*uGRU5gya_5fNY;)rHCkV}n zCS6i3g5iM}_DW;DiKwsl<;YH!a(q@tS7V@b!b`MR#fO58tFsEW9Uvq;i)XltCkRy- zHA^wmj zyyD^>4usChT#Hh33&5LpLL#~L@7}8VwpwTg#fFghz4rp#aB`D_Rw{V_#+?N@C`6|@ zX4r4tpM>v7XsQu}j8+@n(G7nPpw!u^Db9+9hhQ<1gy}}D{2o;KouK+0p-cuu8_QKu zGHf4U@ROMl=}d&Se5+ZU+3`-u6jo$|Xtq8{?(MGtEKXX44TvM%o+?%mU*=pW@?aU5O@`r_7=xB$GH##M6|A_ zqk2oIAN?NH5}=I$?B)hu%yObwR2f9&68l1Xk%(^ETHML#WHC@CC4Lfi##tElj;;$S zv#06uzW|s(XTSbitM>1St_sSGmkJzt!-vX8`3TNQIySS z;C}diOV4H4VTp}a%?3M;*Elurp1@~ZlAaBEWB?_*_l0@bI^ev2l-R0oo2JE}e4M4f zrzZf2>kbnpgx|UHm(X0dZQu!3xe;0t0Ve{2&(ct7{HD>pU~;kc!KcY!EI@S}h?M<5 zlnW=I1`L6^kvB?G6qQ=0q(>*X&MaB-Z&BBkAd|dTxS4s9)=ozoc}|l7N-8=alMz2` z?d}j8K1_&M1q361pz;oX8Q7zq0&C+wbgC^Qb*r# zw<=>$j^uk1v1GJ+wW3(by(XT{&#y1lr>cyw^X{&5yjJ;t(PWx$?X#VxSEs=gdAu_n z>J_*ejIZ(~HUiLjR8o_f>tU@J1Ar(7l_`~z(LRwBehQGfkzXbw;Q zweBr{DFJcmG;GvuFhf|N?L9JH)^3tV^G6iJ6o1K^@entNhVtp%59**&Ma?|RN7I3+ z;;0W)wC^*27zz5|L0v>;_V7Bj28-7UZVmNEctgl?C-l#|31Ud*s>)Tfh9MWPw3 zgyr)Sj&p~$N`z!5&$2d&haqdQ9c3KYDdh?}G=HCe4Jt)CaK@{Hv+mh2mYebe&Q1jp zVB`h}3B8=7U3zO!YLV?1oCa;Iz`)HwjE|s*fihZ1A4p74PJ>n@;{v*ql8W=cA zS*TwZFXFh0_%%anl5hk>ir?6;i`CxS)@Ol#=1vy}YtF*1Qui3B1t#kklsDv*hxqR> zA`8|o{q@_V%H7<3S~#$Vo$VU)yx>~-S+8oaK1ehv9pB`PcruBjtEab5RLW)NDLAI# z@KX&$yA;kOkPp5fI??r-upMEaFXr~CppGxY4rNmv|{C8fM9#{ixaQa&c96C0xWg}}CV zC~*clabz`c`YWpW+Mr}fKS!3Lic*O?I@9SMwM`UZd^~B@-R4b%?$D2PvK=IK9{V{0 z?;me(P9yR{4aX6wT`@y?3+#mtz=Z>Uv}qt=CUQk|jx^G91%$`Hxa^%d4sB^0l19ci zmcr&Djkq!P5aCuf)0;4Vef@=KFN!UBHN!yUs{D-8iw56CI}BC^Yhst=YsEw5h&Vnd z)ewMn(VmylX@b2#WoQro)f;Cy$fxfovNm;-zO=j<2aSu72vHSgYW6#O3R2jAK(}?m zA&3OJ@&S8f6p9a52)WYu8dt7DUIG33-av+mjUuaxcaBP~6;m0J3`}{1ftZW6Ht6@U z-vo@`8f#Z|(W71yXRs4*@))m5orA#{P(1`8?e37CiXmANx>HkLFlu>29A|*|8C+a2 zL-{sBsXQ#cbO|0YBPQ?{2dE@}Qh6I>_#H3Pjk#~~((1reN}m{hkDO%vZX$KHJ&?5u zmMi|EK;)rO(|eT#%?7@;!`HM|?Hu7iZBVrmUK8u2Wz(4 zI$j4@7e{~+&V!zY=oa7)3JNGzR@2&L219}%Z)bFi(vXuz%i2H);~q?Zp0_C>6x52z z#(TSYW9oKjr%#euD;uIpy;WEyab!C64G5VF2Zev-Hj~PBFZCA9xuCt5_2q5l6O7`N z0=jnmS(TjF#4I$pH{LD%!E07oPpfIz(7-djk^KaVDlxC)l;)MS(VAld#xF8c&Gez_ zDMI`M?j!Q&68ZQ1878)W2d)=!e<*Rqit+wzEvmOp!9uL4L|vtZppyczlKnAYQI6JT zsifYOcI77c<;L_bC|Gx0?R}sOP1o?7jOW0@nBW#1L}9PXc@k>PinUrjzXW?vdStM+ z6N+s$p-BV})0otkf)CY*j;HvMtlvG*D|n3(*q&3#n`gMBVD-Bno&NGD`pNWD~rvPCm&FiKuBCa>xQwm=LeDCVStv0L-oIEv&I`A2Za)V zTpl4FejpaG@j{91j0Q3fBTwGpp;#e;&|R2fAKz#+xc!jud#PZA5?XF^l%<6NQ`_=8 zc-qA0j!62pI63A1H~;Gr;g`U?1;x& za1})QeZ?Gfa9Mox;q>a*d3D!SG-ePamT<8eVHEmW1FqR*lyCTz`Z)uiL9<*5;_F#m zGR}1Td`mU_muupLG!zQdfab#!^3m0n*V~Qk^GpfwR47n?2*TrWZ6*;nAkdJT)mjs9 zKfif;#1{2;1JeX|`cOnSK{l;c7=R&5=4N%{C=F(1Q93LOb?f9uu;_IsKB>T1kdHX# zFCH%^_!8`bv06FJ~nk+`xSIk>;$FRTd} z6lN-tvgGoAQDEjBc%ix|aEB!}J6Uz#ks5n0mnNMsk9@u)2$SyVW_PSdfrtcD^U~zY zeQFxQc}OnzuOV*hb8FT$7BId*{`E2ft~^r$}`*BRiqeiqa6m(UHv7 zW0ZKxL5?0|eGf%jz?RgCz|e`%oyQ+Hil+;`^>UuI<~;W=gN!N~)U7TNxT9#O-a?nQ z=T$14s=YsToM21FqI5wQOdTvC25*9BNk?E72C{nDf#YNfG`YUqZDVt~z9r{?q@aqm zV+UD(nzl^Wr!zsjh9u^EPI_iGg*h%|wc@&W$#?KJUG}SPnlcaIRqB=hiNz|uS#vuz z%7m~da~}USwMP#BW$9M4t~DF%wMdv&zy(4+fd&N))UM&{{gqa$F>;5iF02Zi!KSck zYA{#VGl`}>!-AI87etzna4wsbIQwrs_EjN&ZAAO7b5I>er7~V>{18Z2P?s9!prjan z5k;y5G=sO%kWq3A#^#gRyw?Pa;EK1_x5B2%b_6NJE50pWvW5A$#c;`htvAZY;K3zG zjLq-lm3?5PNt`bDvr-fjMpigkz$m%hxb^w`h`KZ0jO$G@^MN1U%RqA7q*~z!S28?* zmAyx91F=}{;{CB^yIdx4V!)RcdV}3O7l#}DAqQ(8DKqD>E*&{Cf+X!)AN)nd1bt$; zUzt3MTR0vOoPKsPFtvp~2g2UEf2ERo7{i`5A6{s4IQ26wSEx%6{(@oaQR}!w?F}Ru zNuR>v9$V5r!Y&KD+zU5ff*$8I7MTTqq@JKz@FiXvm>8;;o1HUc3u`u`c_7jUO+|}~ zHmvWf&DJjd8;@g;V&7bMvXPd+Po}(kTV_` z@QB})&IK#d}NTA{^Meqyppfxy|9a~er8a7ZGi{%$b zCxQbYeTczVW@f;W0VSwBRLpbOarVeCw~Go|5?v< zc)^a7y1!0D`Cy9V9J1t@Sb}Jp&~`n}b#KxIq_3Q&v475~#qxHgw@>gf1#F%m27wG% z;=LPEsCBQkYL~r}-)g6dn0^?{S-RZLMv@uiS&jsoENg+_md2;#qNX!{qjCl%cU?hH zOL8UUo2p}K&X-ZyF{56b(`n7=X=J_FD}2bu5@ai?)YEbtr^}`m$N~8CqGPXt_sF1h(|&QO5aRNa{LDGh$j3K-sEE7s$E-Z< zcLFvUdM5$*yPX$(0D2!P&eU4irSffFdBjN6U6tPbXp$N zx3J_Ca4iE?UyTw}6D{2o?Qi1=iN?X+`!s-v9|_|)MB^&$J{l#MpXB?JQpcRJZtwk6 z9&(>e;p8Oi^b*u5#?ao$-r^<{d-|Vyg)bOx&C>SB$%|56O8ptP*&Y>nq>vJty?`-z zXo9Xl452avM`SgBw3A-o66nLN1SuZ0`&$HHaKN~rD34qRE`pYS%G1yaM(h!LvY6K9 znZ~vma|f%*JE>!gQXH?56Ut5w44ZMQguff>1fM}PxEt!kx{3KUh6$UB7zTzrbdGMd z-ZbAdf@O5M%N09~&Yl;j<1B=)S=1`89%XE4M44zb`Ao@wf@he|S6h`{%X)G#!Hq@| z9+A{5VZe#at8Cd1wf|1$wO&+xMGK@gm;JT4b-&KBPv(zvY@rGx+3JA1$m^!=48?3A zo>MClS0kWQ6#S9;(}PPv;?{E{H22Afb<2PW%O7XZCG7rg&k77w-BYr!BR8XDpZD3H zn*nd$m_uHFS;$#oHE?zMhv|9zyfMUtuCV9bH*OpmYldH*LHBPW(d5uL7dq_N6_GAN zs}NVwQ~vPO%)pPq{oeQiqNuYPoE3R9)sQ&`jf1g)Nv}CLxw7l81tZ&yL#CKCb8oSCQ2=$G)EkvZF)eb`+>m#SYsMREeAOklqYA!LAeAiR=8)*h9O) zV)6Zd{=I{3(a1%4bcN_55UAs$7w#EkojGk#d%gdP@}PQc78q?SGMW?Y_c3Pgo~)oB ztA;-?cS&SF5czT%L}3fFjX%&ALZj)Lqx-GNJ?;+IFMKUROQ|gMmtyJ~JGWj?uku*_ zuu_OK;ZF9wv?S+U*03kQ`nm`i3SS*O?yaAHqf+~D2<2o@9Ea_{D2Y+J_O1&hMqXEm zenc*{s0UBI)!F0zh8oj?{gK*{ByLYC$U=@6C?nWW1QpnIaQU6U(u*!%v#5FH@360z?TNT^XwOiP|bs2c|TC zl9oBs;t4Yj7Q{pOyOs16CEBl>LFTEC?d3#G05S8Mt8!I+U#A2gFh)5! z>}n*wW2p8tgIUMh2%DWtFSRqTVOvXoa7UJFuk6v_43d-g&bX5}qamsiJ6w!5;%Cei z2LWXWEhLs8aBY)BcO&5cIGZP9@(gW{SosCY;-T|XIUSr50bk-R#j%-sqWrQ%Qe_RN za;G=v;C^W-cqfR1MYImo6--bm(jGLrN;E0Fka=B2k}{@XP_?;9f~cvm)5O_-OO^3K zjuEvxOmv&ajW1jF;bI$RQQsz~0KHri)vT3rEML8_zaQmxR>PA6Hhjflc8G^dVP;gH z1r%4LfedM&Nx5rTs(gL)K)1%TJGD`?Qw5)X`aU6q-c1>@M!Fgzdl^DD747V`hS^J8 zRwIbEo)sIi29j$}LVK@Kdd*jV!s@2Th$S>2D1fc$TA?p(jE&qdtU|DxVR)6jPbUD!buJzn5DAjG7cf1l%eUm-8f)8Ol%WI|w%9frm%PfRGT#?xDCaD9i1CGgxN~S_rm}L3 zZ~hB+lvFSE=MtfXx@jY$E#OBZ<6}^{GM4T>Z*{cMY8ltbdog?e|>4809A!GiveWyyMf2~BYlFchmr!x1ILHu$}*JR3Z-p;{=7XwRC$)@}CC8a8o- z@bAY2OFpc8syh0z{T@wNYC^h<}AO)T>H)vo?k z@?LnLEVDHr$o84`jniKwoXHIbRUL(jt86Uj?vyQzm%2l$tN^nlo8s`&A!P_`*eu+l z3Pex1VJ!(7kiF-B^PIM1aS2PEH#WMNv%>yL`M4}TI;EP~G(0*4)0Ej;t?5`0)80P*3t@*2$171 z@pV=6D>aU@jh*%k;G|GkfP-wE#mk>uf{+GajbCqGsmA0DEx({zef1A0V~C>OaS^Mi zyhMrB(kl4i7I?L7XvdhLI*sjCseh*Pl_b5Him}*#rx`=jgda;`E#@!O@DTZyR936N z@jyT%W;!AFWAKME+w%bk<7nY%WT!N>KXkWdwLW~kqk&p6d6WC2{aTqv;qEzsZrT_O z)e(aA+e=LsU3|j=HMa&5vh4mWr9N$xiP!iSW{2Zi=azYyWDuQ!pd~cm3Q1{JxacOu6QE(c6McCv0zO|D9QbgFugA!0$OUf( zSg#@z@Czvik0rntF zyLM9OLF&-v`faL*)&0kEuO?bU8Et%-v@+L!o)DhCl7eMVfOiA6)J|(GJAii6N(YV5p z>M$P0n}j1TODk!CZhNUChy#oS<@NQ`179aex(?PMl77Kk0(!{z1ni>Z4l)%{i4A+% zo~WAe;ezk%MweT7YvLOzGIS7|c-d5c!OP!qvY@(G{kmNe*J@0^`4`&e#PLfi{eE4F z7Y0g8^eDEA`Q`x+{1MRkBy_>|`5UwLD2|$f`xfX5wuX;#T%>l6*0M~?4d9%vztaa+ z><$&G?lN*IL|Mdv-yeh(_q0w&gw_KFL9Og9&_VThMA;4cG^4d3P>k~tgK{B%_GFQq zA5q43`r-G}=i);hr=b^_po^DHZ%yhV%y9kXO)QuX_xKuH)?gVqalv}pXg-LnHNDgd zX0u2!7F`p8`!U_SQS5v=n@G5yFi!n?uImV5kb=#^_1a#(W?&r{A%Pl;#$l7W$reg^ zC3h|L-g|O zW6-sAGo!1uQ@LxhOeYZ&bm;I%T}$g}nQ``#Iul_#a~c8K!b<@D^fAAGwlgyD>Co0$ z7uAx@2D+QzZeA1<2C3kj`7_!}c{ZD3?o>&moY2$wXG1c zDIWAF>0l>o=c=hL`+AXo4Z-X2y`D#WqZfjKHmn#<8QiUEq8s> zZm2J5&~;8IlpG0~hx$fAr?<%$kn4-|Nw^vLvIt)6D0nTXLg*an$3wtj<1Sc!$rxtJ zgBWxUI}+U2)yQ+_cmat0V9TWgg0V;u;=7-i176wl|%v0 z8{;FGS$`I)Ry6FoI##6fmgtMD^6L zBsktEXiTEhe2FGbj+zf;oIg3N`Bh_8H>TDGZ1@f5r>rDrno0$|__RLa%?(GBHrHf9 z2}ft7UF}P#=0cT+D)6-i33)fd{|0hM ziRVdCG+4DliS{JL0|Vun*41)vKMl>i$9SPT=?udWn> z6A&%R5#L^a3yu2j5C=sm;HMHY2pch-dLas6%_g8`_O%`+TFZhD;C6GRNJAa#E9{^z z);J+VpBAr3*J=>;Pv3Ba2*@OfZW^un&vR2@oMGj2_rpiAj8|a%vx);yrdUSpsC<&T z4Ne=LqI~$M`}?biwHS#T2nnoUW7ABn(Z6jRUz)sshPlxq4+X2p)Bzg|b;2r$Eg|;b zIGK0anDeg(g{Ew(LGCet+etJn+G;vQG^D|-#V$8t4m%xZT4zx?{2(YxK>8N4w#oxJ zs~2JV+avXd6{X!gl6|rTHyh#_I2!cq~z7HVhN20woF=bX+wV6z&)&orR=JdmAV(@;S742Q zg>UBVjhhX&9B=nm6)?AFLX!3)dv0R3D`w$m_R0)4rB01+p+0DRCmWEK2h8L$IS(&a zn^8xnnP^>H9BkAo8lX0^%|Xe!fm0$L^a)iQutTLqxa%EZ+AnfPFvKB4OH8Ym-oF(o{HNT zVAw~Y_9DitfsB)%3l9*qw*-sHPN_Qnd0Whz^O5RPweJ+ zQ#8g2glX^dGk5*t4NBGV@5DoVt1pJmgOw)!pu%3XS1@gkX1v+`8t$a>QeZhCd*w)6 ztA`LC9~O}UJP|X-I9eb}-5D)+)SZDFBTsT#LV*UruP)~JlEn%0>3P?~hAvzL?Maee zk;Ij@TBhvrC4uHhmgX)G1SH<+R>ng9yqRzcb4-|av|SNR zZnS>0JJl7l7g=*sjP(G2sGvVG#Pz;($G-jghDwntc0tNixL9vpl7V&B)9p8xp|AWw zZv_x;J+I8c-iY7%Zw3Q-SWWyzRYpMPpx4_$1RH}$>P|xZ!EjG9V_J8~D%h*-kO6B> zCqS@m+36`Di#>Wdw)$b-=$@@qO@Y$z)z$WQ2-K529VKOczy-X2-E<%-ju#C>I!*P( z5Jjj@{v>7;socC_1%&G;I6XS z4TV-;@nMDpO$RO7(SBbJM<5J*NRnyy8hl-3wCU>VfP%dg^MbWf@@_p}TgIw+4|rW0 z@1AE=Wd0dpQwbA)Ryde7AR9rpIOQxIEWwC#o5NuzM3-kc5Hh*g$R z+0W8p+_Gub_|(GhiB}!g?Iy#IuTYhBV6jxuJ0Mef>ZWnha0Psw?6Rl}ZJj00CUF^b zs5%|*{50+KYC6i?O>_AK{?nD14hy2Axjc$n*8K41#cAz-d(%A(mgu`Sv(9Zu>-wl3 zUtD1p-$jYOTA!j8n)(Wx0Q!N1*%upGiTK!1k&FYi$WTenzAG@ahN|rL={DCxZ@Xb&;+dBlF zW*fY*HvYAL9(>k%71Z-x)O6&>h|W`E5X9!UaJGKWd|3Fe3|UIyPPIPnvas)ZTxxC1 zzPteOOdp$~;ODBe+gb+Jn{KLo;G`*qT7BZI%Q8(BG*A0uqKDrBeOP5)4}x9yqO*6E z^aTOBQzGAG*nMr)r9x#f^fH-3n2Wf;E1;Ovt$4nFEDjo^Ko1y&lohd?ng`VgxDaXErJW$;dhAk?8LA07mw--d{&et2r!Ft5K8@8&l9BSwlv!oI_A zATI`g4%`~J&r^^Vim8#~w-mkGe*X1$q^Z=$+lt~PU5|9HTtgI6YjzlEX$-!|*CK3b zkF`+=nkua;0k#%XkM-6MJtOVYTEpoZJqNAp?qsSiux<_zSi4r`@Ur{FpI?uX-qI{{ zZV`8*ZhU}TFbK4-M{r2DexXi-P=K(O-%!PWyK|})lBUv_nK7+m<@Apq=&4LAW>W;s zO>ajd6PQagQEBk?MD%SXfq2l4BFcJ<9`XdQMBo*1$31NmP=gX;n{b^)-4Fff;?Lyn z{bq%s_+hAf2}xt%UBr6uow|eSyBu;6-Zu6dhl=Dn2?Q|9u)ytLJC>~vm&_M9L&+I` zzU`C5Fk_JGdV$Sv`iE!tFQEgDI|U*5Ah;ZsefH#4x@3NJ+Qs;{PpvU!HnTrlzS87V z*T?43gkt^B$7h5e^#1i!fo!{5AZe)^jSY+B-@4kmD!*9iAPJ+{b(vyNidneW2{S%Q@jyk)^F_9Qpdv977LRkR?09_!bnSK;kHbnEXI5}J73Fk(;?9FhZ#0`thNd;Osc4|rzll2!;RC2mFnpqH)Z ze2uE}5L1u6xiuI0uDO;biM{fiN*eMxOG@JTO`V;as?{5yz=jfFgODbwD)pUtMVHU8 z+lz&a=(jCVOX-S$e^o)@)-Jk#&nn@)WgEja24eD`4W2xLEbX@tH~={GBOYXmz>K=D{aK4_8!iKHv-C+NZcfUrVe*JH82ZF zGumWr&h9X9qunM>_BoJP@T=FV&?5g0N z0@(b&GD<}_mE?}JSq=0@+@P=97v4_E@LlhqqSi_MIG5uX#CDJtK*ih*4VwGhT*?>| zktpbio)hN^ofwQu$z8&KqO?@*(i0!}2*13FK1g_?5>@H@s?hK;(PE}Djf-9CnQ;t9 z1YxxGhqMmGAom6lnb`6^kzEOLly|?oM#+IY!RWkfNb4rkcZ$QT8FlkI_thmNI z>kuqT_}_CSY+PZkJiKVct0%)X zS#0Q0ujc_cU|a$b85QcieA1~~G=dD3e;}RncL6Kw!?$1I)`Kq4V) z09iL|7=b8jae&a_4e+tdrAZdXkL_wkL6?<%o3P>;B!N9)6^Zj2^csr&lGK`MNlEa-Otg>Unur^J{&x@5yECoa2VN0H18fS9 z>kTLizCsU=D(zNTS}GE_4w5>eJZmcQ7}-HE!YSz;a$4uH?v%S8*(SnpC8*3&WfR3L zDQTBz9RQ-x`F7&cy%YhXo!oeH+xz({cr{ z+n2ADVkB^XZyWO5NBCxGZD|DMLoznZnq&*H!>|vflt{4)H|eoB65igM0dW{+8r0eX zil4h9{IIO=eY@|V{d~A^T#^$x*|AEl8|I^njGVkl|V?t9RG-fW>SsDSxdZ z;Kv#BLbfywgVx5^p3w&}-ffJ-Hu2Q40MSakU#n*!F}3(P2WYxG8;1Z5!5y zFAYRl)WPR(J`N5_Qds$FU!UI77V-x1NM1RArx;&CTl)V5iV1c0ol|58p69{x_+rf3+Yzj8J3bL4pWZ2#LQY(;7bupkj8;;P!C&}) z&0ddql`T&nih{8Qhy5&b@JMf+?KP($>%Rb{ZM)1lbf5=We86XO0PWC-KeDiClROQc z=^;j6Qh zl`FcIXAyiHnEHM;QoQ>BkZ|{3oC~(%;S95lhS|$&C`*!Z?OA(=Fhc4~z7|v>dQ2I(1| ztY(H74-q$Ku8O&gbc?M)9W)0c4rSEQAyYCxiB2h_t!U-)5P{`@wQFEO8KRw6kRXEd z@WNG%SrXBkOx@`VOh=pC$*D-iVPP*^Q$$3qKk=!{316?wE_gq=z-30Y)m{}*PSiKN z3J~#^_QSl8#s(4~ zZaY^LE^eKz`S$Cqwzm!nMQGSS_+DS+#^aT3`!2foMh4M_d)oX>OnHkl84P-kQU2Gk z(R8mK`&Y_!^@ZRTi-G6NCFj1>%5l$jF8{N~Vj9390EutMYSa^QbttfZ;>3cQPvM!E z>FBi@y)t#^9OQ))8F=bX2|-dikZ%nHbXf3x3d|w9uVXr=r%raR)H}c-B5KdhOr7?3 zz)buU&Q`CBxyH6is0bD=w6BPhLbefOe91Y-w649S(a%KbYzNlJ53q)UAW)59(G0LlRmU-7?dglHUp-y{_sHMFzSj*xv;&Dw!^7UT*aJjR8FI*;Oj5S_Mhuh&) zr3AVTVMRBGP*D4XH*ZmDThCywiTLMZ>o_y>gj^kB{586{*K&Ww>4!saob1P}{x~~h zfnD~y^e%jnd_y~kPLW8f28=-qQj}@6quNX!XDpJf^~yTQ9`hc^9FHzrF3Qq&el3)p z^ZuOJ-_c%V6OOch=%=gT6)-7Us;5Hnej_QS%!7ZgJN^-CF^KUM4 zSuGXmPE+Q9Rm?WymbeFD`U76;dJUpI?Vnp-Rj@th2KtcS$ED5bNsz$C)Dbbz7rgS< zC9*7XWWr&8ktny1IavkwaAl2*^2%X$*2*=R-t?3@o)V$NBT)JXh2eG1Tyz^+Qkb+} ztf?)4f{^w_COedX2;IgXz!Is3j~R5xD5Lm`tOr^Xr4T7 zqm-Q)xFq@n4Z?|#bHCadRs{RvH;%3SS@VUiM;$Tf1LK53a|;<@nY36HJxc|nZm}y} zpvW+H7|LAID;dId-Q!_fHL*JH)pqPZq$-g|C_>#;xuS2l2M`m09j&IQp;z1Otr^aL z$Oxb>!o_3|DhMT_63nTSx)YtK{~nVDV1nC6Ry} zqvS>Q{BGG6VEZu)r&ftGD`)U&APswRJhF;la*R}u6^9kv4n6H+>%r_xp%;mo9mS#{ z=_!PmC#9iW1bRO!OYIRdC`vL<=7iOMPWx`PBE`GRet178=MH||{^|BC;HMSG25H@Xxrez@} zIWN-zO^Ta$!?cS^CzZvAM9V{eW>B{t`C6x{w5|l#d_;~l8M8m@*^wGsEUE_Ewi2?? z0`$Im650F})jPttkSY5$J9rI(ip4u51sk%ThRt{dc|vHSz;C%(A!nxB9aRe+LB#db zf;=47r~zUi&;JcZ3gV^y!@Zf;epse6h~Vxw$R@Ztx)f@Z0Zr47EAKCVvBdN}pyWea zTjp23OjBizUh@Ng-R5f2TH}s-;?(bFaCR8dR;d#bJzL??i zPT3|n zm3(yS;3co%mckNLY1vXO{DGtxBk;i>nzec#O@0Kt!%#&1kcs5};UU{DMj3-XLZE@7 zeJD4mCi~?=y_XT|0TTi@GM5q90}~T6GC4O2FHB`_XLM*XATc&HGB%eHI06*}H#avl zlW`6we~kGBP+eQr1q$PC!3hu!?(QDk-95;`-QC>@Zo%E%CAho0y9L+qxP7}jx4-|d zdatO0J*JPj=3M)nf|O8RiB`bK#sDa4W9>-GNXNhh5Rws8XJi5}Ffh|GFfhT9k}8`y zS_1zgha*)5+B=xpSabcuLdYJd@Ax4T)_43cf0VJY21q(t0vMSAjBH$t>|6{C044?o z&i@$N*mD7d^_|U(05Ws{NgHdR101Q4jjfx#nTe_6N1p#Y0w@eA0gRlS>@@#!2MAaJ z?ad7JtpPInj;27XkBo-;mH;IiLo=YG+y8{1;4yV{wB@3wcX4r{)3NS!I1)#P0bwsRw&sRJG$uG0|6fbOEW{DwZn&t zleH1h9`KPJpd=v;kh29^|7|S&w*d{{-^~Fq(lP!w+`qm53S?&eFK2y2LmMkweQP%} zYZHL6nI#Y)Cn`jOju6ae}k4FAo~ z!O-5!*3p5^!OZe6j`V+p`Dn9aZU!|a+jVr)|mX#Sm%f!kEe_&)}<^-^_G61~(H;%l%*}v;x_~R>KZEOSJ{JY$b zKK-X;=YP)t#lIJX67avVWNkhs7YLyEGw9k3tPF-9zZm~NkNdw|{{Kz+Us3*F2mSw6 zBNKw2TZ4|3~++U4|AP z*N4N$O#Vv+{8*m^ABPM&`bP5ANi#JppSeqf6zxh*+1wbpWJ^D$45T-Kj%UHp-sm6j zqXWSI!jFTY|9fcu7<`m${0DxR8~+3Tr8N8F&iog2{ztsO^fpfR{|NVCV)768QK0Fc zaz99$y4jk3T;+c(K4fP9fFEov{{cVfTK%KC4|0EeSwH$@{V|*W(0`O~^C#Vhv(5jg zKgzZJqy7kH`|;MXf3^e~|7i#dGos z%;8V1e<7grKbW(Am^*x2t^dvN!N$Q--@)`BAwH7+DdFSFqIWd42mYh|9}FB_Z2sZ! z5yR;p@S~Z||9~I;aQVmCet5h71Ac^e`v?5!mHVIKJ|ejTf9?NH^*?KG=w$!VEXRLc z%pZ5cfAGKFv_POM&=78U!N!m~(7ZOV{jpjA*M)X}f_Ij5UoC}_)??Ye!|53bI+3y} z!++EMULbL}2W4$ngyQb&3c;JlX-hqHNNc=8+l%L`UYz3eejD7<6z0HW{;5D+KRzrT zt@76c&o?_ye^oyV@D|W6Nz!aPCk`a}T(n1*J~7w2{?gU4;DvpKgDN&D_}9`I+9;Js zZNH*9(j0@#d2AvmM_POsD%2}icYB;a6DCPnW%`K+rr+N4Fa%Com zZX6OEO>BJdJJhjhG7rI{BuT7AkK)1@$>4}WV|?9(eTWPLl98p5t+p3>3D?NRJw zJwKsR7nn6c-{%d{`kvl za#GA1f98kQt+K{BpYjw4-Y~KL2%{-s7B|$l^B-zM1C^-n7JQ(%B~jC0Qs!edo047b zNbkL}KTZt;_*Zm!4xYXufNd?>DepT4E*X_-0jHzW%(*0gT0@LVy@V4pDdkpcC7kwW z3L2pDkCn@S`r8E7vR4)B>*pth<&uAH4l%hce|nI|=bEUWE}031KQ^ioH2Us2Em1mk z5hSkb5-NjSSvCnI78br_%q(M8i_hy0qZ^yL>5`&ex=A{`1~6cesH%Mdi0k)%&kqxYv4;*uCDV9qny3SvsKt3e_3y ze@oee1H9~xo@VAxNRV>^{MVLxC=NeMWP;_J9!lXmquq>^+={msx(v2HjrV@zbi%id z9=Mm^8H%lzb+TWel;(9ZEs37@pBWOKSk7tvDL)sXTjYh^)Jy=`-8~1lM_WAMu0l1w z`h~gt(EEN@yubx3zRehK=q$DS>nE{}90pLzZXbJ%^7wGB#VYh+!(32ILBx_Ab_vyazcU~lWxgp>Vqg!^n925p=-e`9Hc zbbE-U1&G9UKe@hlZ>G0VB_f0~FfG#euC8Xt@x5%QIbRuOzltXz_$oMEGkroOO|k0A6;@Yp;@wwOAeM zQ+Hqxwkot%>Im#-D60nAPO8n_f9@@oLUfYl1XW>8+Nz|Vm8o-TD^f|e4OIvixy_9^ z-pWo71y>7lr*(`Napi16CI`2mNJk;iK@UH#BBysgxurK+M>h6l|3%+;ef zgB%w9@TO;akmpdAZ5W3F)-bV~`f2+O{!RC?-Ghj8U0hc=MOvvO<5@;re^X|L7z?T9 zZ$d9JOncwPSnVsNV{W+eu=ncnhn}}8I>)`Yej8?^F3Nm^E#3-4BQ)mJE7%rCv zUIQ&3p6xLEePXk8>r4IMlID*=A@90D%e$w$@^I8Pqg2NHaV~nlXMhPI4f-Hl$C_7E z4wAwI^%XQHv#JN6Gf^SRa^Y00vY~MYksXAPn*a>d&5nBepzIgojAVVHkH9G;6zqZX zgE_tZ)ci_DfF`~?e+nf_webSAoUOWEsG~Q4HAyQ*QImwnG+SuHC8dMl*9(ih09t~J zsX>>I_!G04h*zM0gBEgu)tUQ4q9Vp43I6OWxRyvZiw9azpRKzhz1q_;5-n_-U$MTP z1mrW0spLnf2?$Wl}2D1)`gacnx&3p zqkwOwB|n9ixDxnPib@TvT_mi^5kha6RC!TDYiBurjO56 z_Piu_!*(~u0lYA?MNHavS+2m8??^oAAs}t&S_ektv&thXAr65AQ~$vsd~UvOI`T!6wWMRk){v zz+&>5vD5(dZ3QEtUqw_=ypr`(e*dmFag>kVC#ql_{2vY4W>_4PBXW_vw9uC{C_k!0s+~fce9@p2g`JUO%-zdNI&OU!QiZ5L$ zM77Un+8f`B73scev$BRH67McMV`v3wOx9Ck9AZlCDHZ7A)q7jFq*lm$R)3-4Aj@Od zM;tIB`JKF;2(Rl%uZHTkc(S6I zZo8cL*({J2i2POlyY#z3jA!{hu`MJKTbEQ6k~D$5`sk*+0a9U>X0YMRgV(#?IVCBU z^pcdZ924?-rQgmLfI@bzUM04QwjTK2VegX_dF_OtSk~eescd11$=6E0RV#izi?G2t z?N6IP`G3^);#33I?L>`kS#NZ=$I@`z>|SCh?GO@=`KT-jrNsqV?mY4NHRvFcUoA}b zF+v7|sui(X7SinULfZJoSagoQh#x)=WGul3WnxTEf1EIT4RJ^C#8KzY-Cw%{D;=_Y zBSDcq)t)8)^ym~*=D9cta~>ppQPjm}=n}|E9)GQK?NhJWEkFLnb_g_jaj~(`zKVZH zK2|?)7s1oGMVjp!zN~|g&o?&5Qpqbs;+d0GNOQ>9faWr$2|<)%m2q}*$r_5r z%QpPM^y%vgLq>Ut_1NtPI?HT@IZ*RqQBw1)V)=SF#)~$01E%518a3Yy8EPx3rofhg zL1P-CHF{?6yuK>#m-{64TzdAO6}+Q1w10<+q`u(?Th>W-JzNH&9FeYi$%O}jonyx+yhyqk9)LKkNtEa9G!#)^VrsRq8U zgo^D9IXC%3@qbg|+B)Tu1llSNj5Q7;KlklRcjzbV#Lw?+&Qmw(VM z(f($zy*p2GZ_nFFInEzTU-Yjky^=1QwPY7tuyI#W0+3o)z^PA! ztxAZtONQ_IiP7Ys=(OA}#Uhb6Dflds7NE)49voHGzAmnHS(&ycst?|(mZnoVCu=f-wnDo^LG|(X{**cRJj( zH>a3TVqQulU-Uf@9=2@|7JnNpoX9U-(ox>3lHL43L{CxzH*9 z2?|Z}x$&pT=?#NIwzDLozH;p())W)agJE4TPg;c?hI&b0;yliKimLx&b9*|cQvIdRm`Z=N5cCV%U7%yjs{ff{up z*C+gWK(E0e{l|b(Emr0cK8?O(v6~ra&9CV(``<03_1B`zIIkus1z80f5oEbCUQ4UR zL(Eyi7DJ}rqO`N@os9T4e{nyUwFuzqbzX#Fz}blEO{W@K+{vcTMLZH%f6IM#Uc{KE zWJ*h1P5r({LVS+M_J1_(@%s|ywd`=GvQb;q`A+3b4IjSC*YX06)D=?8q<#+NJjk5Q zy8u-Pehy=e==*nF3rnHeOE=`!HB!9a1e8;x){ScOq8W1ZAm}nEscscM!{~E|-Zz?d z9p@!01ZEPsL4G8KSwf@A=~S)(rTscDrH4tBw*+QcprDQ{nt$m@svvVZR{LRos|I-=v3#CQ)46Y# z%q+DoIZX=E1)CoIs+x!C()jS@Fn!o`+R2#tVV#oK%Le z;*C0Q_jG9wI{|GF#Tio)$_OrZStUv7bvHb7-5-4kgMZ)g8$e?R@V-#aC{KA$Noj%$ zU_8q+K*sn(Ny=k-Q}B6n?vV8sY&iei(S0X^34rXR>neffffrTtj4{JxSH;g^Txivo1_7Tq2^@h}ePk_IApE_l#bBP=E8tBSH7wn`P3J2@he#TOs^sjKT#UeTCdo&kbv z}hXw zaQC1G+JkKPPFctdH4HR0!#4YvDYWCDFsw*^pB_~jBVSN$67IrsM?7W4Zc=m^j-SG3 zKFw3oSq>T=VZ!yqEbxy3!XEl1+UDF%B!AWgC`Kb$%t%7q@tHm@};_=u#wtwJpt5=5?{xRH^neAHL6n80WBIUb5u^D9bQiOC2j>nYc z1+gf`S9kMsH|&W}(U#NJX)-SR>O2|np2LV;k2%d(8!p&P#BC#7o}*LkY#TX?EaFeq z1#=emzq};^K}4bptZwIir8!rGReu@K^k}8Imiqf`520uTeQiqFvd5FgYU(C`CSV@r z`c@#oE)?UfPOW#4(y2%+wkM$4=cp4dykUgcSx*SNz~H+><>#~sx$1svu!mLcpHhu` zT4t{?eO_2A8(y8&NP07kV*&$mJ@i>coy>GRlr45iuJiEbd23E>f~iJ#1%LZ778J={ ztm^y~U?!VAGg0>T=4RZXr}R#=%=bcP^6mb!Ae-1B+}qHpVB(k8AtUvR*aq~w=oWPm zFOZsy^Pr#upc-nM-cgpNr9ufB+Z&XbO>v;#cTt|Y*w4&!sjr&gzt?wUNijDRpmbd( zu-5}3dOgy~L@FY=axHiP$bVtSxWCfy1dD5$Bs>ce;j+BvSJJDDrAo{!Tnhj(7w$i; z8kzy{v&_%Sb>3Fz7I2Drv;{s*yY_A3HKz_qD`6|InnnBNrF0NFzkljrJk0UB>bZAmmoM$;kMH-BAhHc=_(RdY+- zM=hU4dN@GD=Cx2}(2$Jli`>5Yva4%lBcMcpLLVEUs*$s`NeUFdh}}ujU&51k3*ko- z*6(;_BkuY_$Vk<}3p8nR-Dl%;{zQz6v++V7s}xnp+2D#$io}d>k~dX?#+*1uoQO4{$;bqDoWb`MG($(@1p5MF)QBJ(2ndLssz; zyxgD+n*bt>E6Z6Y=FLm3KhdF|L;t)O+(uCk_YT(uJ~I1m&sl2PJUMiLzmsR(F+&P3 z<;}A;>YB3S+8g$NMt%kGOgU{R84Ggcdt9TGCebHFJeY5chY!8Y=pI>U!*o{x8i8hcCBrH zVt$eKRuiW7bQm#G6Jx8abz_7!C_{%>24Az)cp} zYG-u3#6%aua@K)kj*ywZqSj@5Sekq={n6h^Sg+(Gu_dkCT!`iW%;e@zYYKw~T{>4q zR|gTQV^HaA&)u=j8g^T=)9M}*i`#lEx0lh-VujK^b$`m7Wk*3RhtC9Gd>a{^gp6O3Y8I}f3Sj{?`wj=`Ge{f+sQkrGf{Kd#dd1CM+m2638 zs|!X_Yv_0Ny4I2J*TF6_Vo?sWU07Yt^hTceNYFr+X=osI4sDTTQ-@%VQAWBm+9ltf zV1Eg8ER*f_7cC+z%o}X;Mg4)Ql-iX^po2xgZx#k9vj;pGCRmi4O!O%A~%ccB$-BpkFXZ|_3gB>Y1O++Qa*T>F;g%jGmNcV$I1u$-Pu z(4hogp(3{&lXdXs4-p~oHMrN@w=gM%BBT|fOUzcldw+C z)3J(KufL>rtW!R||GYBW(OSt9Z#hKrCsR3!z%6}D72yV>W)Rmev>(-Kd$PWJ93O=%Ac9{`3^!j>V zYc%K}TyQDN-pUu`#jz`QGEKwixy1eWqz!C=HHySS2zCT)Un3(}TKJxk2DNut@U7eq zMFa|tfjl#EHxaCrFmy?va0L-7udPLwDFNSEAo%2VG2V2bJ(Q*W%l9W{F@Fs|vwfVU zYYET+6>{lRlq$tGyGMbgX8ItL8a|gYSppy0PYKvBMm@9{Ldl*++Pfy>q|an<{&4QR z8;Ure?YE&>Y~n3q59)otF|HMlX`wagE$7in$`Ei}=?TiEn)n8bsAZZjC=k5wA@o``^P)Ndi?qgk6#Ij^ zn#VwBsoS^Y`RA`k#bqx|`}p~O`g}eYX#Yt&-Ral<%=T@{Qu@oIOWorvL3~jn%3Ig_ z@V3~4EAl|s9E=pk7hKa0hPgNb4eIYF$KrRLddkpq3u`h#hovkKk$;9W)P{xWJ)gb+ z)q{u7ML0+_w;#K8SC~C}B3`{w9E?w6&-rYL-#-f_K#syL6!!j(-&16LD!oE{q60o(7(0PlA&=gK#CLS(~l z`(lZ+VOR#S06Tj0YO$(fu3u+@O^)(rsM(LMnht;**{XaUMWyQNsn=}C(-nd+mDRxf zWZJfI$u7dmj-6i!fk_Dsg3bGW(YYORcAvk7?;A93SJ55d^MBgxz$MUBu>b)gz`E8{ z=_qyn>?4WZh}5E}l?;i)taOlRy6+U0ze}+d#v!f6|0ChOsq?ZQambkrXF>UX^^M92 zga-0?u?$j2m%%B4_o}F^D%SH{L@#5_)vEbRb1y;<6JU4u202pd5v|!gjzQ|LtnU;Wenw!oU3A*G7m3viVjM8Fh zA#InT6!w=sJQ_Yval5*RuHnst1ym#z+sssG?w2p?n9s%A8urS*Cw2VzicEB=CvY_T zVWNI8)h;sDqu)u1B7nRKX!KT6y8ix_4oDAYU%AI$GJi|m4CIMp7!`W8$)%)4zQGg7 zji8l~>qM^bq^mBr!dqLZw@G|KwPAHRa^HwwSV7k)&pk6U4Ex^lO9YNQ1L^3e>b^ft zibuUyltB+bWzZ{Nl|^*#qqP;uswDlZRFI`G)w3P2c?7yad8@Sr%t~Ih?{84BXAc_>NO!9B zWo^0Jt8zMGx3Eh?l*Cv#?*Sz95^YDsg=|&fX@BY!4OQdStrj)1$Hc}UBCOlQ&pZy0 zJzLNW^kWz|kHkqk?KVI!tVwp`nlalhvqq6^obY61@fW9Y`_^eJa$8R+b)wlX_7^7Q z;a7JV?S?zJNil_@j8*wmeH@{mqd+SUd2+f;-+JAKi31L2A(JB04rx`+Yq|4Gh*j#@ zMt^k#wa;lGF0^qTNbgiKXe0=$>^?qkW2s|Y7lK&CtmL!1&eykK3)-R=)FQ}|A>KrI zI%JD#GWyL3-t=sL(nsu2V>>8Ap%c4|@(|=Rp;Np=Ku%La(E!@b}uAntL_ulh0P0IQe ztPUF=4-#ibl(jM#-gJ@-874~odaViXSf48MR-O(M0O}_UCoQ&W%|Tv~&_^o9XKpfI za>MJ51NZLxEeZ$X4l@fQfh^WcxyVrEE1{KrtMm?4>1!AAdn=JECvmbI1f#*@H-EyU zvUNLyT3RZ$EK$6dyMCkyuGvk~ILZoct$dF!gwe0Rsz#649jh+eec#w=)2)#PdUI8k z=wB1OAyDvu5L3U|J!+`nw*)R{(>Z_BW;+Yv!QRK1>Z0N*uJ<5$b2-)W(cj%bC=?BC zIJNrTc9jl&+I=6r01(ENCv?i`lz#;EFh3y=<+&+zh3pd{%2&OO50F@YHoGh`2-s6M zyG4#F%t)G34$jwCnJ0y;1uh|d zuFW;Xl24y$Q;FQ0O&wu=^2Se`D#d6%Y*eKd7XyOR2w*q051^qabUxUlo+g4SW_%-( zac2+J4gG~@of`ZT$|S4eW`E~rOVxEFUMWDckpP z`j?tW_wr*Q2#cogdKJ;Dx12^X^>c;aB>PH5SG9ndK2$$G!yDf~x_`_SCulQdrr+i~ ztSlV>epvtD&#MCiBn3tgim?-LSdofTLm%3o=Qa<$`7%n2#mm!A)%^y!vnqP)SiW+I zNd-$5W3$#G7>7-Rl-hWF4$tPPTY?8`;sF39*{gR^q_KrGfk)cxG2WJ(@HoX}Z%d=D zh3>z-nEDq$dCIQB<$vDHV7*oL5->cT*;pVu5cYmeFQ82zv=%fTxx$z?! zVt(#0NbF{Ri+t-t5EI>Wq5QdpFn(V&_4Tm3vRgkk$PxEOXZYD41YC&(zDsdL<56eX zvU|W>DCy|L!)i69Am6Plej~Uq-i-k?8>*l%ESGjYS02w;MW75pFF-dtiNZP=vJbQf zgLWPpc5?_jw|_oHp6dEsRZFz+^Yetu<75kpvlTn12QIUHpYHb^*pd_!n${xIx{SDX z{G2o<8*nmq*GY|yx#7tw;iRX1P~Irk(-A6u%F8a)*9D|@D{3`&>-64 zz3I$-6@OdJp!xV^aDxu?f|?>(0U(lBmH z`QC>1+w2MnC%bmA#D5d@6^cfDd4IaL^%@=jr25mRI#{e@IjYp%JHhus_*Ms$%Qhb5 zbNinQ>z|V9U)u?9175^#-UTu5F|vK>BBigSTa-+503_XRTgkJ<{qA*jmcqysnxa({lS_&0l7}%*)RMGG(;sTyzL3ShP{%VI zMg}{b6QyA>_kWtYK+w~=7kkt97~ZdwaevVha;=i`NWDZ~iYj6Yv7v9_(pq<6b_=oM z{BjMVaJY`65O}@!xUov3Wj++;PQ``<61^rSZ&cZmHqw1F5-{EM}G=C|` z0P%eUh2wX=1#wbos!Pa5&EDF|9`cRT+8VrAduyD$S3l&BGsf@eNM$+)l3*{dTXo%O zxl^(!-(MRa5`dx$;_KzVqaD#!2IW#f7@a4J7hqsl@7#md=*~pNw06FiAfD=XTvZ(H z=Zdq0e06;U>`qQ}C;zNsIJ1g?IDdypB%K(S*Xcb7^g|+Lrf?M7I{oRoJ#RMhB4Oo- zzJ-+#E!Ozm)Ek3s@mnMP;$7jeBKz04IKtwLLyhVy7N~ zhci_5+w=Sf;h0=0Q7vVu>k_an@(K1=*ZRggq`6?;VN|fszCA65xu=0&0e|kKeof$s z;5It8ok8Gu0@P6|#g&37idUyG;*DP#EdaeFkkAn}fi%C`cNoM%0#_S`qnBaJttk`X zH7}6z_iGVh^zl$5eB1ejZ0?te>MW+{jM8TpZ-Y+^iZ=@~>hr!#)+$>UO3SKyc7-cA ztTo#sf1)F<*?Be$xYfwu*nfY0?xmR=4yE zcjBeIog5&DaVOPm0oz%Z(VFoj(zW>Rdf*lgb+@0X9Ja+(9}H90x_>;(k)+gx_;5ql zcJY|LnH3ccn=wsPuK1)KQH2BE*5T})#@EV4X|H&5U~k9CxT@p$P9y}HM@@zPE!Xtq zhID!uzzBZG;zr1+2PHs4@hUvV=>o6PHi(%(%E$Y5k?i`NK#~O9=xKXD-(}X2(cx=m zzEg2e8W#VlxX8~NuYbEmj*0-4S;{ygGPxdsg8Da$ZR50; z%6gwqOMVe}x9KE(F)PoNQln00KdwC4WRU>~3A$EYvB_Dx#D|%R_Rdwh?&v9UC-s{d zyw?r9+`E3zDnY8)6)LX&z<49*7H@lfwv{UaS7k-A7g`!-t?~mb zkV1e4op!3B+h~FWZ~W{8PVBftwQN;O0s;b zE>&%d3wfz>s(;3EK*`%B)6ox-C?+WcW#8}n2&*;V%mEz~&@#Z-`TXo9Z`M0stM%y= zpOWXQByW#uhf`8i?Ot_H*vV=|MyrS9QLA6b^g~5649{D5W-vAvc^-F^(Cu=d=!Kee}8JDkLN_*MOXBeBIjXds2|3! zuWliLWT&7<%@~`+omDO&cJ6^4*euA~pB; z>bma4TYr`$PRCj%wC8!@v%Y|DPOCA8j$x~evKWmU9D1rB`F$et-BZv&ViK=a{$gMQ1as{2q33 zuh&?^a)EU5@YI(ru}?XA$C+&?!(wRNoh1}dejLBe42$ISbCJfXIp}8_qGgDK zeScf*GZ8Wzn+GgLhSM*W;|Vl8!~nLfSoN2Pvx5x=RqWbU#^&Y01sa-G`$7Gl#3MI7 zodGx*P>fx%jsj=N5Iv=s3v+Qe)bk4DE3D{oHU&n|i&&aA0*gM9B&Ae^AGj13m_sIy zvDLIw5pV>VYC+F=r$-nlmjQhYXi3?{2Y-bv96N9i54cMOT!h&jJh9-HSERO>J0!-Y zhodHOBk2e44i&La9fwahb%9U)Gy3@vGs%J8^oRuqqQ{52yLPmweQTS!J3rDVkU3$( zS?5AzV~p<4&X{R{2VTgT1@0Dw+OVs+BgfABfvDYvf^y|~);iMt+dQz1{m2}3hJW_W z)JxZ%bbb z%pge`;*eDxQUXW3@6a>F(MI2?{%PoOJ(D6O120DnfxNQ2g=+o~x;y*Za zM-y6-Ww}B_%X5VkcTqx`^H36|2c^p*q@#_RVZvuATqO!7&BV&0m6 zgs5Nt_$J>)CV9Qr{niJLY=70Q%nEB#WgF}^byLhX;O-}?+1C%I4~^^Qu|F{fjvG!2 zl0EoCqoR26Y~tjF*T2-7y?bQ@H&R%_-}>|Rp)*vpQt+7p<~@0PYFAODXqsM3qHR_L zvbFhR@3#1i9QXM7G(ED?XIHR97MNK>Ju=+*j`4`>E`#qI`5E@V-hVDee=roZOWHp} zighPJZNgPYise>vEg%MLCP>nSrSTYZ+t$)Jpv+k-mD|}j+vx7YJ5RSp3r?a86WSgx zXPtctWH}?&Uc@iw{oPaw?~!f!8a!}Gf5wZFSbO_UPZmIOG!WumWb0mm8R2{YzDIH;(fC&6<@Of~{*m~@AjxvpZsuS#{8 z9tK^`!xJNyP^upU^Fksq!sL**uFEfI^Y>EtqKcm)_8gQCWq)tUDdXMf{2#%65`CTr zxXoM9FXrZFq(fUiUw&uyGlsw&$$zbi9RdS>%1p6Mi%Tv_m(1pu=%uLodXGM4KIw$A zP?mf<=sB=s$iT&Q*UwcK6Pq}+)osB%8?5P`Y03z@98m?HKgZ=;r_qY6Ga~I35lrmZP0Cj%T0~NP-mBQ;h!F$TPh@#YJHcCIhn_#PUSAoU@PxYSE zjP1pSR)5QbFJ2(KpZ;dHT$VKA9np34GWq){PmMSiF)hK9F0XO-6i@fColbz3HzB;xAUb{rNEm1vf+SMc3>a3uNT7NTfrnY44 zNnU^`Jc5lrp(Q$et)m=t{yHW+t(55ZmrTOX_%W_o;lJr&6{LU ze5s;Xm3uit1l@4Z@ha+Y+iUNwg>tq3<@ttl?Mou|6Gyp+4X1klJNpb)S=smjs^SA^ zNV>k%h-6LYu|$sr0^Vjbnmr-Sy6Gg8sd8RrObggkqgH=#_HEiB#Bd>{~1f(C_FmDv3lCl?u;*B5rH2cqx1pO@`pK0 zC&Q}*?Uh~8De0q}LV`>AVd%+AcW^HHH}QvMd#%EyhhA`u3qFf*{}*+N$_D)XUnwAk z8Y`OXR}!7=mM1uYXSJsaG{%EHbWA`=r@*0BiDhVQTVxRUPovT* zMkp71$#a4Pih|PK$-nv$c$vv&qi`5`zfM$z-%nhzG^v3X%5ek*0P0pE_TRi@E1tXMOIlGDQVL6m^>@GuSp`ETk5vv&?aOyu2{RT1%56 zK9oBW2bPb56ROI55qB;Q{iK(l`aNvdKkC9OYsr?NC+o^U#&hb|u$APSww(z1)zeY> zF%(0;78?I4QXuZOens``tn)YZePP(=Mw|P~ghlueC=XodZ#1trfHVGTDI%kQ^@8W^ZggO;x zqPSl^593$gt?p6XSbuUdkPuI)&24)gH?23?i z9jqQD2a4B(?B$1ktDmD*XMk z5iq6SjJ5jvp`G){v$Fy|0U?G8U*IqeSk1^L{C2<_((GU|K zpF_~xC7_R}nR=4}ZHa2gkM~yv=;R!u?#fITv0STD+m;6IO0RMY z3Qg&1$dRe+uI~t&mAic<;k7+{LD~w-=s|j$U7yYgO@F_9Wkr9Ps9938D9+G!=n_jc zYBR_P#=}68v;q1D&M}*^ zz`Of_7j)Mg8ioMm0}!VZXV{xh>kZD$qOHHfIhA_Qza<=$fKSMA*X)+wRXAbgS7k*$ z0A|Ls0e|*5lK3s*r!Y7$JU{$*NtOMT+O^0@fRO8+yW$u3#sclaHMq$A+TT6!j+( zXs!Xy8n{9=IUr>Pz8cQ!3erI!7Og7qce7h`6CNq{7C+YZhXkcxd!+<6id3v$z!CbX z)PEAybNq^JcqlP^YHy{4Bx=vZ?s56O6A`CR?U6~^1p%-9RV_n9ADLYor>Z&)ZVOOH zRo6J=tcRxAOhh7!`Y96bWmb-89RM_T4+pC zMZbE4^Ja(uf%j|Y9P^K+xsennLo*417g-{I^{u34tRZGUxaUG$WH7Sx9sB7=?ulVb zisF9b&!k|3Ng7Jdv!5(yBFuPR4W|yiGpF5zC`4Y-`eG?_CYcH4d5${>n=cukTz}`& z_X>4+eM@(K;OB{IeK*2`rR)GF$Qijt6&Wh*KAHtl_q^z?mazC%1P}5P#MEm*MIa zwgzo5Mz1}5m|ZE+sV7Z4FY@caM+>>|OyeJF7#&YWMT9VQ^sS zOV9q|BXIl{PbGdv`F7mUF2XX`(%1Foarn&;8zJK{|B+6erGDV1JAZ!_d$Pp<0Zcw~ zyS)XSCfEb@n5UkKR*tpqRO?DQ4avTEz`Hwb7u>X_3H>fxhdjNY>WCq(ENN0$^Ca2^}!Se zMZ{1Pb4MjOEeflO@{K?sD;GPjXORK#!$_(>jXhh}6F+CebbsHU6P@r(Z|)HkQ{XtM zFPN34%Fdw-a2s|M2hxX5;~i-E^aQ5C5wBzU-t`R!nA4iy#ViYVNJ-*Y{0`F9jaE?$ zybn({BlDU6;yU3(Ps{UQT*au95-Y#v6c=`yc?KZnNp#5X-g^+xNe`3SAx99FGy6D>ba z-5F%(uo{zNnyY|^k5B$?7$7SuIlj^S5@N+$mb`G~tkr+u01@fJ2$svJ?J7*;4*UMAy0jZrOKlD{{+wjFZ_2iEjDmEQj$Z17Wo^$%#{R- z<#uf1zHv2iROv-mO1;2?{}t^!DNTcD608BKpzB$|m5dT<_)={BqA*IW6BkqG8|Pbv zkx^4@@R<&zmpcDQw z!9DEGwQ)hIrc|XVq2Cf;jQ(OcFUhN9lb>U62wP9%>TT#H#C+3Ym>*K#ido2}n=FRj^PlBTdUe{@O^k)x$);&tnQ@l;*l!;-~6%tLl zVuxi6W%g&281}GSmbNce8uo-aw4NBY&1fZqG!oywPBvy}#`-Gt@0${;Z3{+cgMW-5 zp_v@$aN{{due%MjMdWV)-UZ4N^sKrVW)=&!L05vcz&gcl?sCdU&0KKS^Rz)u65|3U z`H&T5;_!uK*8sD<|JHtmShbqKU@s5*y@5}D)~M#5*}n!nJxe8`ThVQ~hl6gL-QwgP zteN;%i)I|VStB`^a?X%ybh_7!BY75-O%M3bXUH`qb~$F);uu9={=C-#9rA0!TfgqR@ z(?K5s1aeW4{HcBxhZ}jW%K7$sIsD;bb`g-O^#yk_k&gwluu@49HQzZi?*${tOI}HO znKMf`->=xuY8dqg@E^v#f~NLRe>8CjsfP9@im_?*{0e1mWOHIzsJShS= zGM5q90~8WDHZck>Ol59obZ9alF*7(ZHJ1@M0u=-`Ffuonq0$5>f42otTwB*Iio3hh zxVu}>;O+@74Kyx|JHcIoy99T43GRX5kl^lt;Bqmuz_!4@%}6xbKxY?_gT3It z0wkS*Cg3-llnMAPe@@B49w6^(3*g`aaPSIp@CmZB131~)1^y?{!C4R>W#R@h2Pm-u z;Xz9U@M^A+lpo; zwg3$WGY}B$`CldIg{{C~M?p3=cXxMI6FV1H2WQK749oy`e-PLTpbm5aI=cbQ0e>_M zP&Tmx{?!>P5)DAp3gq&aUBkfw>~7)=1iTq+L1sXEm$wX8dvl;O;B9e$hMXcm#Sv)# zSFqw=0nC8E_Xfbh%JH9ae`o(u2xR|fvWc0QgPo&^y(h@t5?}$c1p-v06xu~`Da03LRJJ}!Pv0MH2l^f0qx`=h+3f2SkxPbbG8=C=-fy&WAK0Typf z0DVCgz_%|XZx<6cAOP&_3iS2#WBRM(|M(;%96SKtEF1t9P9Amu z2L~Sqe}M1p!S}zbsG5NOX2JeXs+_%r1Av45FSc*n^goQ<{uTiJ-^0NG`0rxM4sWUj z0_gt{xjs7&yV=_xj{j$=|C#dtr|>_j{NF_WzX?gZ+S>lHz;5S|y-4$kpzDd*#3;e{X{zZg2S}W)==^R(9^c>>w9ukO$CQ z6$Cc3`b#o@*|q){HCvE9P}RW&^vB)umc`EgzkF}=WoGksf4IEq@-LT(%iFMl|2)P& zFz{`h{+q{pdou^~Kjw~;hZkVt>}=wR^mg=bhzH=!@iw65K#xC_4PaxncL2Yo0N#4` ze+5`LI3xXW%)ER6HpxFse<6MVo78_0A2)za{vX5xU{m-H;%5i2ss4jF0c`63Ag(uo z{)67CX#RuVs%ZU#cmZtM|3Lz8TulChcmx1!Z`X?5KbAlCi_QEW_*U2)Xbb*#00)2# z_z!$r3+VWEmpIsS{43^-tHralB=K z{|R{G2{v*4m-{W_-|)@v_AmI>hx$v0Ee`pb&s-y(_PNb#VhZf2J%Kv?i&_z=>to0)A)tg8_2mN?^_be1@u;k ze4P{tGQkq(K?qgSD2!f2QFF^de+?RRAG-Sfr6hM+oKk5%`H)WK?%vwcEJZvL0qv75 zb#R;Mh~_TOH341jmR;PZ?P&doROJjx1>x>{q(t``jE&*3ku}T#(!QubdAFe53+hlX z=6j(L5-D!@8tt_Lw5Qw>x8n>fZ&Mj;30VfcS%#$2_}$DwonsjPu$nQuf4!JJ*FvGM z0oKRmPg&wWf*VPB(H*ml)h32^&l>8k0@viP$zR6^pabDL0Z1g|p?7s0Mhatb5VDhe=)1K;5n19wQ_lxSc zO!`qfd;cXe)$;h`i>5ige`upGBSD13lg;7T&+Aq1wFZfw2aIO${VaZvXCE^@Sl{AQ-6x>t zMfe%F)7vDth#k-)WW)elK%~EakZnFFYYOl7J}i6J>oT`gT9hl$@bh*$Rez1{GtJi` z!)WB`vZe^SDy&^-ryNaO#5u*^5(zXRweaDfOC4L>^DZIgp&~`$0aYUa-kb<}Bw0=9 zb;nmVmRWoxj%d1bkN`lqIKZ>d%nF92j= z0qRe)0z{PG$`)P91;0A!i-HQr1rYY2pBPMayeM6sK3)mbjPS+N-m1Yj;}X$Az3ff9 zk=#A886|N-c|VeHtpt>vj{j(h2*qTj>o-nx;18Qb{dC&%s?Q*Nxqpcj=~K@2OA1Di zdrSMVw%?t4)hSyw*Tt;m>)~N`SV=C;`_c+a5*42_FHYwlq-qO0-zECZ9xT&lMRF2f z3B|Vcv0^O^0k2ae@42raWCRHII5Sot*D1umuiP{O@GitVqV0w2YP4i5|-? zt>bOlbj;>L@R@S34Sf}OBs&yX5 zJeAG4H)Z5g0NWy>gc{(Nq*ZZvW$TsTW9(!;>b?r7xj~sby?^ZUN$Qnxk7VWO7*H0N zCUHb&nJGU-%008uu$<+PtV2A$Lu+Wuq#eI$?rhJ}n@oCyRxG)LZu~Gg+Dp-cuE^Sr z_I?v+R3Mo%;%s&$N4Y}9<7gX7jn=u-7e=M?)Q=Z-{CvGQSY4pah)tAb$nsIv${_y! zIb5mVe44h_-G9R2(@xXJ1|yI3W|e}b?{_i|+DV%f^4;R|ni z>uFX6^$*d%d!BHqTtm;2+rDmpE>5*qpPFCz96q23Z1y<)8;#B^M zyw+-m_X_ad`t*U*`DnsXTBEndq67u%wqTAPt)!-u$A6SNM2NH9m->S@6ct_@KT4B(?zpsnY*<3k>Drx7K z@;JG+zqe1ngw`D{w2r_Otu>Qat=!B@``vyHO>n`j>>f+dxyc9SX7Tu}qTs_y^i^Iq zm1Z)Xmw(mzHbfQ#Q~rFB|IXI(jP_;Oy|(x~JY>!%lt)sBn4us#HRwy=!>{nkMc#Bb z-)o#=Zcd5tcW6+9rLz-PPL(v5e%r!TRUVVv#$)0R{Zsk2H9g7dOUiJI+4zJ9P5rXZ zOn7}XEX7HosU0`k*|W}QQDyl$jOH-*W#Fv&s(;NrA_6Jv5RMH}=*+HT=NE$2QW1O9 zx~g>hZ>*SQO6{GH2+1|nvGN+}W%0^Z1)EPbs6*zPiHzT@|%n@wV*m30K7d8Z4 zDANMcJW~TS#NxZX8$mzAdi?oH+DA9$TIw9pcE$2HE5g99$V_vwC9x3|emz%c+lJhz z9e>RDX;YNJRB84UO)Ejl^h8!2i)wTBOOzxS0)}bj~`H;T6oJY@5FJ|Ral`+ zn_D9!D9n{``@0kr7NPSg8r2u>^$RdqZhr)h@iK)-L&_kB)sWEL+k(OsX{>96H!YxN z?Z8CLX^TQ67ZO3LB4foe6LZ|+>_0Ihxa2;jYhgpr--({cteNAxL9fvFl9 zG#bWWM+)4v0)v!J7{aMuHsY$VzV6KZI%2A@bJ-It-wTFf&(PAshwd5syk-FTzr z$%awXP{UND6)F+0VC%~PCh?b!7k?XO2L1vp^6$fAvnczG?naU=u!PESg0p)c{32+~ z0T6T&H|RGQp)0#t*c=U?c+an@?*t~)Yrl(Toy@yAxgz8Eh_@`Zd9@EK?@86-@Zb^~ z;*>t#Ov<$dLCNH0?5_Yv2@v`lH$EAs)GVe=6J!s8UL%79zmQ&ct$Oi7M}PA4eBO&L zLzpc8)*^fbWrLc#sE$5zA$Z!6bYLQHEz%M)mAxd1X*WY`o;e|_iZIt~XZERB`}SFF z`!Yxf1X&KUVjghD0B3cst_y4OGaOE)R6y3;xV+1oO6t2Q^)n-h+Bs(bc(O#*VVWNG z;8^EOXvr09O{SbmMi+=9+7{>}^pu_t5AsZh)?TPkb#y!?#N&cuN+T@nwSX zvEL@l&0|{D&v!m~jn0mj+lS!K=5lqu`H$+yDPJiqRii{jszE_Ic zfv9tRRZDc#4#ab$<zTE$dzkUM*RYSK=DiBsYg1M+hguI#X87O1+2gf@ zXIo#I6n1xU#GJQFJb%?d)mog3sAPRp!7Vrv zOQ`CJYU&`~@qff5_2xL09;}#vPwD@}5NRl_5E$Sq&wBSwjC73K3w?csqx$pSx2eg$FVeGLgoLa3wa4>ji|$*-Ww^pPbS11AYTa@sGSaKfvf zb3W_0sA}ry`_i@ZpbZ^i0ESm2bG@?TfWqhWZ9i~(VSh(3(tB7ZB2VI>w3iZPukQ(F|z7ix2l7@jIsHZ8rIXf zmO$DZHh(JFRA&pg-Y@~d(Avec|VV zztMDos@I^}gw5_cj1%0P5`#9FAJA>Mk9Ty7TCZ=b5SJSRRTTv0qcYezE-1(HP)-)t zmVZ*U28XFNiPy$qYA*B7nOuZtOd+6_OAx$YXbagjGOLDFkHyI3bW_F}vX%assYOoL zy5s4yH})Q)@CJLCi};DO?t`>Lp7B=$M;D|>)QDu7&g;=#uT?43ZeGZ+qVJWXX(t<> zKSK5Dd)K!gOR+erj0(rjw1|=mH-!~xJ!ZHhU%!h;{JNUs7DYx98JcsjsbQ{ z0~3pXq;u>eRav9B6+_*TFj2Ms0)7um4Y5M1+EL^d9bm7}zkd$? znTT5;hPrD$23HnAYLxwhrxgSJ*uK!Eo={3@T3hYR(;Vi$C-eJ_%lnOa?Z?4yBl7+c zXp^^tSMU!zDlBVEAX-~EFc}CON4-=(^%8Z1b56>^cLFuk5!s}IKQ5|-w*BGK0mkt*Nbh-2 zrEB{jNeCpYZ8I@_qyiTogn!Fj8@m-&h|dX6C`Fzi`T3bxx$vJm+6|X5S&zBD-QpW( z5$=7K^h)%biP(Z8ik!QvT;=)-?M*$3t<~=LSeg#nooD5ynhZT3o@%BQA+n1{oYt(r zU1f&dzlfd@nfzK>k%1+djb~V}WsUl{w;{b{S%2B;{bB6hwh6f4#((C%?l>6g{rh6- z*m%0bw<9x+o2!Xjy05;Ui+&D<+3YHbSdMb4LNvEf#N;pT$}%eESGlky6qfjb%z)D?)tL!OSTJRu@M3PVe4A(T{t&C7QX0~|@oLTW zoLJmXCXi`S1Cdillz)YdCs?ui#MDK%4n3be#HdIX_i}_OmMoqCCB3u-eV7JUG3uw! z1DTVp`jpS{|Q!FDiQ1#P1!K$@n9rKT;R9KD!tv_46JP zM-cP6{MTP);VKX6jg?n1Enhk-*^4p13H~BMBlsnV)}041E;@v>hScWT&Tsx;cS+?+ z)fTB}yw;)uS$`s4{_Ywmh(tOmZu6=<#*Kg4T&6sUcR|o@W2WMC7fl%%#7|s8%OJOM zlqi;1nHT*9$&Oy6RF9k6sm0&vBbn>iF1xA`Tf%b5vFHk=Yf{^3NOM<_kXUphpk``* zX)iZ2C4$nFmtHyc)z@5`7IZ_rNkqd)!&8A%$jrLC?|&avIDG~ZQR z-+xix=~bm*=_YwgaU6niFGLlp-JSt;V!ceTT%39KCOG#mu)8PXH;mK?4%IS(sY_@G!+iK${RZiWyIEzU2 z=b7%;Gn0lo$L<497v*YF1_YV?eq#K7^nafzUp~%0Yh~l|^kpbeLeBC?X}(+`fl||4 ziJU1yZKav5FNACSbqUlgJS4X}lXV4=ud-;q+Xf_$b~uf)LjQh%z~)Qmm3lKYJWpsW*q;C^cpP%hc#4P9E56lK`S6GHcMJF#?}(v7KcYU4n@Gi{oiEij z&Bcm&Ex}|u&2fHPy042)>3^9^74X)+wdvzDX1N(_jw0qk(UGM1ak{X$&WXxXED?+A zuKrZpV$Bb+Kr*sN0F^ z{k;Jq!9bPe)TXUHTNE=VD@Wt(G;rFHG9aXzOBN0uSwk7MO-;=;w}19tU(he(&IHxn zU-9{Dn5v#2PF_fyuGdoh;&&H@s#yWVWJTI{DsfxervPc)*t2Ma93fJN;1};hzV=8N z;oD{b=O}Kj7}@W3oO-him8bl=q_tPEM%4FCsIvqT>zv8MXSB|KbOOtO+g-3q#N^Lw zJu#ah%d|l}HtFV$&wmJlQSpmwe4p}Umz=14FNpApXAoPYw^FK*T{0)KPv8gSx~}C> zKG&eTXV47{Qhdu%6^7VPi;+=OmZu7tL~isl|IT4N0M)^0Ikrz@_B;B0gXI`p@6r8$ z&Ljbuz;ulam^RpDSzyoTP^)s>|`S;PFdH_ zy2Gm{znWfZ+%(0F7o zfwVbKIxNkRjJFaMHR76;407)b5_4ytp;t_^sP2Ie)e3QQvMerlD{Rw?8lZ^_*+X zE}W!-U3xX^!W#1{${Lrt`*YU}`8hbxq%i2ZDNmlxIgMwZD=7L3BO!IMj^=QhpAh-8 z2Hvn_jHE@Yw|N_MmRihwW~QPzqKXA1DkVXE&f*h50n2jWvBYw< zi(jCn!-PI1Q;Yrr8c!jWh!5^*ha$l%7G^K5pns*s4>iPoIfj^;8VT0e9DI+MnT+{e zd{mD+~ATJ@Ejt#0E)%p1{%dpi9Uo4a&VEZffd9wUG5EqjIBym&hn5{xWcB?#X} z2g4h{ry0$&PxST%#n9%s0%<&!6|zP#~k$rMGH3P-)8ejLiiA2As=vg2;O}X zX@ASF_yQO=mBa6nrQHL66!-U>@Gq&bPsvr5zazfvxv({FH=-# zF&UXQrdm{$p$;<=`&8+MM_u%O`}pNBpMPKZdDc$-69iPXW4HgA32t?odohhAg>Oz2 zOkW#9A{AG4mOKSv;%FSF<6IP@M*(u$_YKS{xK7_NmOZ;8BC~)1Iuc@2_(cyUecunc z1dr&hrq&#;cyOYt$EKlSg5V4-!WPz1@<83}SiysZxw>0dn83;4UB*uApcq``b$^k} z)cqPV(V?vtGaiE~j%oDey@E*X@O(!Nf)4jQ^y`o_`0rKt-L~-ad>OkvqQ)&P_(hKu z&x}%b;Uc?2Asfxpgm?88bQ)G{9qmI=+^niXxChsq@JX>7i|#}<{Stl0fos9+`5vT; z?CoZe4^mx2sbbZ3aOiakMEdb*)_?uFJ2y(-e}=#PmTEeh??%r?tj+`%GT1Q1E_#Mcg<< zKvLF;jvYqZUvGdjqUz2`YW)38ybh2Cn`a=?y4UO8z4Ien$Sq<|XLvdQSAUp| zy~#}lvBqLmy~s1xsz%|ORRhe?Ji=5O3UD3O`-Ol2-AkUU+Q`fi=3SY1_bjI26d9!B z4b#DhA_CSawrq}AASCM|9e+%CViJpXoyKVx;4-bR)p*ZI^>Qra%h8zFyENKb&rYzsb@x~ zP%!nPf2CxL={_j=)k)10euGz~JN9iqJS*BVx;PCbwE6DA`Vz`^l9Xo+Gu(m=>l)Vg zfOs3EdZ37J)L3tM9rONFaC1@Cj~cFu-BaF(Cd18LQ1BCj5Pw5N@_A{&`K+cq153OH zA$W-TjIbYf5>#@hwAOoh_FDi+`J|sx>aN_an28T@2GZ+mUr2s&ZtxbIF4`d2J#Vg{|KzEQfbTjMujZ z1ogwegOAuB%jmeJ!cAX}mJ%GJ@&;5WYi1d??zW$VqzHM~W=A6DT)y|g1hIRp$<=C) zZn@^vRK^AD?`opkT=y^Au2tc*z*R4hh})jhY%?|$B!A&Me!%z1jOaAA-|@5q zlI`^1yP^J~M#SslAg&PRk)(cjOo2^?b8G zjk!yWJ%1I8;+3ly_IqA7ZjmX12c6XP-ka+(d71zz@f++>N~E_B>Dn<$$or)vrIn6j z*Gj6fkd&m*hF<}nr73hgopj4dLZHn=E;d|7@AS^?>oOc@TdkOcoVFcYuw&!pvmX)1rp*(=KbW!Fp$Ju!=*Y z^s|Frc`X~oHiPU=A2|HW)`R5CoCTd$7blyITxSFFIeXF|NAvxzh0;jYeDO!F-FeO6FUh!aJ1<<`4)4Rtz^|B$ zB2@Q~xea1cztCYNw7022vQ)I^3r-ewqOiJ@jFZsau~Ne)_hJuPGmM|v|U z7b86CODd=8WS&Aq!lMF_{er5PU7ZrqW`8e>fp<=RQMKw>Dr}c21+;=*>>KeMYWdgE zO^hfn$BI7ChEPyO+3$3Kj)|K~_U{Ie#siO$C%;GbNQGwLu%reVddo>IrnB%Br7pvk z%oikoZ$%K=;nQtbwLRzkc>t3GACfb@#>?KL!g>^(27RKRwDjlNR6|4x5AlzDKVV&RLDY9W*=^OK5^#x*fdX~tBw8>| z$9xb8+OvJ5H!Vn^_7e7lJ%9$C*8S-cf&q0z9SuGyrD)kW}{Rj>z zpi;UgsbT!xsH0Zu8W=F*x0wuMdKSh?h&qBkzn9}dlXGg>p9VkjWPkHraU-j1Pt z_|RMt4tuZ+Emc45nA+5^br?o z$Z%tIJwJT?Oe0>+=|N7J-M*||c{#|@LDZll!=?LHWPE6dTQr_p>HWB0WUe4j{te_r zgqbY#`mrSCA#{CrP?bno0J{hyFXJ4UmeJsckj)yNcQr>^)=riczn4%(I^eB8RtGk5 znu?=1e590mV*7+O-2@|-$=+#cLID06xxlc_OkY=Hjj6r-W zK*GlW2`gcHOn$pXJcMzrm86MCS zO1B&$=V)&cW@xKOcF5%8ln>&nN>A!u99ejP$d2o98slbbo6@I^)p>U>21&S@jj|rX z9`maHiAy3Yrt#FoAI%L47dL1=t@fCyW7f2_0}mU+3xDZxD)EA zW2*d7MWUk3as1^Ep_H||8t~h955~vV`j*Euv#8dkhS;?jv>c)S=AZJmQSDgW^wa6} z-sAnI``JR{MJOM59Jk)#)U+W`A@x{OTIRay_@%R=$9gE1O@JnPlGxN5ncTS=zAQ`z zkE+0cXqmY8KcPPPhZ-!mWgsQfFd66Cia_EjB0sH3{9xg((wwlqSb>_^Ga zam7sX<*!8Pun}`A58_}vsvq|17g26)sxcPHM1Ph9c}X^%sl#vAKj;Q={OShKrp6Ig zeS3Vw{ha)D_FHxCwWAOC{jnd41oHS=+2ymjvBCH+u3YRS^qpYX*YVc9IFhG4EIQYG^2v5{a$$N_tropCwNxs+u@GJHzcu>(ObS}A;L|{^`O1ZhCL1%w~M3FF} zWq%3A@;Bm9^*iIPsWtad`14z*N9qaaXl@PlSWy+fANl<1{V|b{G^2E*hfY1pAGt*j z)>fPfWl^#ZBw!wD)kVn5%zgc|X{0;)!lrP3DSv^(p2{Xf+QI->Or_)%cqb6GM3Lx_ zm-0Y+0yuSX4v6$CnZBDh{rFe}`QW-e{(m_{oqJ&&YquDkS^tNh{sM`dWU7u4Q@>6- z6!6&Ab!Q;K=E695*#CQS#(Ol~dBXEt1MJZz-O&o8SF$U@*z*O?ilfpZk|V?N{aF6N^=C9(VI4EwL=qUxGHw;bJj#;UxnGx)j3%7Y(%vz6yKNo$=KLh7T`hS-c zFkG+zXot4qK7@ahRXr>dHvdSHT+X5(BEb>19%kijZjPl=_PRXXQpf!0RKD@(p)Er4 z87AP>x+~oq{E0c5BgjDgI~=5WqsWJa`0{XtP;KM+V_w zNs4%jNzo^8pt#@Z%od|7hy#}$0W92Am(r^pbWpJ0TQ=%=MSAzbjEHe?uQqfU$%p~4E*mOL`A zE|dH&^D)}>Iz)m7NrH0z=beLFb+r69*TP{Gbb2TY2Y>R?HhV6ZCr6^g?k{C z|2-}oo%HmFB*>h*PfTpr42|#THM8@ia4Ek{zkgbmrV=lDj&7&Vj$03Dmtl!ntM6Rd z=iI5Ug8q&nNBKTQaH%If`RqtJ0cWD53SF!2q3T`k!;%&>%TSoU&VLrmDm&FdfY1-r z@Or8J&IxBhA2I1eqitK8*@L*js7-=R@?QmMMfNwpjfga#Vr^6gfqVVK5RGX&B(A*p zejSmj-SgZ6R^4Q{;!ND*?NpSZlE?`eZs$uXBc>t-@|8m|MP@!a%X8 z)5{F>ZcFgNZ^c!BxFj}kde5gJsivdCx7i{^2WHWa-3K;&k#T} z%0Tbyn!*KEdi1kH*eD5e)N<_nPQ7@3V5$Vk`bY#&6VcI^$(z={ovf>bhuWW`# zDSh-etG-m@lN?J;W2CqD1wPXlE}1Y*$pb7*G@LTwsGSMC(+Y~@s87pbHjTo%CGRPG z6KieHtjqL(F@F^|4>_Cd*d_L4pE?FS{{C}dCBH<8ZKd%vDbAeJVmY)E0^$!{18uPM zR?htJd{Mrq-ezU5$$YRuT$25o97E!QzD-$#)`%g~LyLT0O#)}X)GARH=EJk|R4{hk z8qy#YEZ>WO?{Hj4(kg4ydR&nX3Ec9xA|-Ph1UNq>i+|Z}+Enr};>O-DTrk0n&i2jF zRDI{`fPP$enX=%AMmOnH_=TIfa>Q@$Kfj&-^h3WtO%bsgRcnl$^x&fP!C|44u_MB(6pG^W`xoq@S*(}{6FyMF9ImlS7F zyOYQ~e1GJe*Zh%ZoK$TJyr0gar_g00P*v`!k-K?U@QK+C%y66fj&#yM=6asb*WHHC z4g!P3K9rspf1WO@90{d?yE1~|?AH#@_78oMP_O9Uw5Lc-r+C{ohVLZGf1WO2fcj*i zp~W+xkcxAE*N6w~99wH^PO`3b79v=n|72CSh=0Q8|55t8O{LkWzA#YSBNvMv8=fb; zwEHL2$BJhp#4q%q!(Yf3Sa9OFlFg>Tyd8TxCrLJR&kt1oNza}b(mi3%&6Io4B`SOs zWDQ%NK?eBO`Vpu6Rp@&Rze~JPq*gW>yh$KmO@o`9G*kF9=O{uYl4_;|{4r_jnpn;I zvwvH@&xp97T%yomSjA)`4DgyeC@{uD;GdwJ=Gms&;9IcDQ|uf&Jc$`B_b-2{%;o%H-t~&5=5cY3X!BwYgIHo_|x+ zPZZv}Th_yJ5BTh+QTItHZU!Pk$SPb~M7oMcswYoe*U5NX1brgA2dhEPXbE;yG=KZI zAtRQ5?hl+Nkab0ac*GGL;SNL=aiHBj3@al4g@MGk--?qD^626I?CBO{qzzG3l2$ii6*JSeEJhU(QMW@;mr~Fdf63HaAt!mowC+X$^y*A2&30fo%aa|x0PvCiM zyPY^i99ia?T%|{cg{k=&5oSSLpNnNcaUG@0G^_YxUi?ag9nFjKi~Pw>8OzV(n^8*T)$31G69LgljpMci{L|P&&G}lGg|Z5oRALdX zYA8ZdvR@KSxqdK+={8r?_{Sm5qbk}L%2+mW;ANPpgF6KE-?2+4_}Ldmy+ml)5YOF8 z>hJ+#oQO&}JaAgizB(ZC$O%iyaFqyfAxlm`__)ZpOlB6oR8gYMS%1da`{D-$3Tur6 z16SkDPPBcTgI}xDo(1#Dix5fh6#ehXl=wL8p5R&R^#w~t4?2%bKWMUTT#^e4czDYq z@qDm)??jN$;Gu@Jp`;Q=F<%s%SX=7s?mZqH7_WDIR@rCqadFNOWPg`KyJAdBb$l7= zC*_q$SaDoRi5HTy4u8Akya@VC1E0(L6b7@&!osz5d@UVf=8_q#(suG&p%g3G^;*lc zpFp}D)1~rbr{D!y^J7lW+uJ zlYUIYBd@6a+%k}O=Q0)s%Oh6XXGBS|G4jFU;r98qW2zq1ynmberrZjl&3%Z060bZt zsBg;n@$Ip}s-EFw+1J1%l3M&d0d~hV12iZA2WKk18k1%(g8;&3E?N@Pk!TKtB(!hG*q{xHDVJS%?Gt)%N9NgJZI?Y=A z&7#%ReGZeL(|bD~^bCS-o&!lWgb%0toJS*fJb zwJm@4{V;X!vCi|-9Zf{B6$~DZ=;3Wss0s2W?j^IVAcnb@)6wM-w=TS3I1F5V< zOeQ%I($Y%pO45h{W9l%E>eO+dw5PXCiKXyy!wCHg@P9_$awSD_JUYE<)HKG0S02EK zx|)bvbbw%3Jk0%Lr~|$Qzj(iT6qC&}xeIrO7C_#39PL?93tfr7Yz*>ajh~!0d18ox zSnG`VP25mb!HMV;G9wWy<`kULTtDv7LhjC{Q?vCGTiJSZdqS-kr-?EL{z`YNZn=|W z!&ZJM4}W6DII(<%8`tF^FysfH^%TZ^1r@kt-2J537r2GokR&wE)POL9)CA}kBKQpyF0-@C2@JIce$ z!Vcd-_vfVa&)z3~i;KcKnc*p^8%i7g{DOlOhWbuhcOx%)6o+Fta*H9;mvZ1Z1Ao8W zY`1Cd6C2odFT%gmy1-L~??$2c6wX*PYjYOAtQ-$A!vL*f@O(Wpi%_4An(8~Uejp86 z+pA+JvO8rf@D|-E!%e|?VjYdeBUH>Ykj$;W(cYiuuxA8|+5=}uGN{f}v2>?Dmm%V7 z?v%{E3Ng9h4?_m9tWrvt`BWs7p??_#cG;Q_L23zJ!3yRD-rGO(6hAl^@V+ahKmfOr z7eiD|)w*C(y6tCV3u|@A5Mgg{7kYK@4_jDOD1yCuwlv=t2>7#fo9s|Dj4SE%*^@X?EifAb(Lgf5}G( zXi)V&ju%W20H+P2j}F!BxaXu#k`(_yyrA^^9@>h78QpLLj8#%RD&>N+j&)U``ii-i zzKzVd<;c!B;45LEU0GGA8T9(|bt)p-*jQdIhl2kZZ43I$0HQriqFVHsZhy(yQ120) zFem`@0sHZD+a6Cyh5wl6EhaU!h2RgdJay=JzKtT6rxwLtj=M|Wr)4wgDcrQzGK>EM z8?iOsml5j$69G7v5ZD71x4BaTJs$x$mm%;16caKyFf$4-Ol59obZ9alGBh$aIhPSQ z0u%)@H8?UflW`6we~k78P+SSu1&ZQ90t9zx+}+*X-JQnW-3bIISb*Rf2oMPFZo%E% zoj`E8otgQD%>Q21y+u{iYwOx}PLmTWsnQFZIhX(?9PC}`nHiXP0HX3L%uE0#CRPR} zCKh;day2VgTi`!pcybM(vx}93JHcyD2-^XjtxS#W0rJMKmOwjDMpI*3fU1M370}h|KOw02EL~k4c^DZzJUkeT?OYff zoGk>X=>Q&9f3B7Q6`%{y*&S#G_+2nS!PpM?cV!Il&f<07zhK zWeT)+0eQIDn*p5xpyU8mX*qzRBhdbDW4XT#=m7up2Efd~{BO8_ynhF>vj5B3*woa) z&e7Q3%gWvYU~Xj#1Sm?#F}QlV(gBR^&3+pi+qyV_fBcQzjje2rO+W^JF*gQC2rC1O zK?VL(o{Ooom7}W*gNv2z?-Ch*hXHk2+}=#o!Ojk7@9F~oo1d7KGtd;&b}z=iCu?Kx z;9>9c4=}f~H#7fTgqfQoqq@D7lN(T4>>m@52>w-O0dxhhGchr7aO;f55+#%)iB;3jBN=9UKAXpdx^NR^~v^KX@M(V|O6H)!7Z`=kurHzX+b08DM5* z>IyIcT3Fe`zeWd%f#!c>(D0qDJOR2)pxt8zF#Z1f_nSUwz04f!ZM|O2|C%qOn3A@z zsyyxA75}Rf5pnPY_|UU40q9xSnE=ecmy8qif5q>=VU&!m{-N=Que80n1AzN)wxBls zkFond3qbYHaZm&P8%x0fw6#D0)$5Y$F|jk5f{{Nb40{=c*d7znR|T!#8}ul0LISF#$NECA%hS*z=s)hi)KL2zm^!l$YAf_3UUE} z%JT!5J2=Dto+t-9fKm9j=x@XUU=(>pf1ChD(O1L;+OU5SGY9}}U5#JW+yF-Le-S4W zfKlQVfvhE85etA(>J_m97^Pnk8-P*f6@kdfz9JAgxmN@tC;y5-PMYRS*|N zJD|lYS1yo5=@o&1rPV70(NlRvAbP5=2t-fqUj#B#vjqOp11=C>^;ZPqtMQ6Je|$Ax z5h$tFD+2M={ugnB*y+3?kl$+tZjhhJD+2Y^#M#)?1_*j}nY+HqS^t&)eSZHcK#5HM zMeLwprVh5C)%%}>jqSI@&d&Ic=7HFl{Q*HKfv*ujB?AAGftdxA8?>dyE|#yW@!QAA z4RqW8ld%3a@-($IwtF>V`k%-QfAmoPBO$2E=C2SG%KQ(=_8VILksX9zAv^1D=>E!= z`M2Pe2K#Sw2RG+GvVjaN{(zwPuXV72#%t;2XbJq29!T~_ekM>utp9+Z;o1BFK@GS4 z1A?aU+5i?189QTB=Rd~5{Cjm@Av-9VJ?N?MhaS`phgW`}cn<$jgF-sKf2u*j96>L8 z`~U0;8}mQX|85E!s1Qfcm_eO?<-!hfask>|{db?)f7<}v{}>oMD2NN_ z&H8Uqpq{$e{<*Ep%%IX=f760qS&Xih&cHvG9@Ixy4~IV-Kr!6@fS@V6{{cbFJpR~F zkhkX_5ES0)4+v_P_bWM2ByXVe->Lrd*f(`^293=1uNO1u+Wv?C`k4g;dIC-17iJwy zc|)zMLtAdY3FCRt?~L+Kk?&}JqNev*aBg+GM|zV?UHLh9&G}k5e|fO$-SU<=)i0q% zq9>oD#+oO0v(6HGH{-qXRgJ}^1BVPp2b%!$7wYf?g^$R7 ziVW7APf6i&-@IodUm;O8B3lA?ke};g*N8xoMb>KC0-xec4F0+ zdUQi)5=D&4X2U2n*D6*UAi;i{xyVY(wMM78bt?WM_vH5%f50@Nw&hV^L#NL}jnm5D zP#^ux`_!h}!TO=CPCw0J!Cpap3lC-*aZBCEh{I*Aa*gO`tUTJGw>pWUfbO z<1jv-;0uv^T;|OJCMF#&=x*>~{8RQE--}qk^4fESw)JV0Ia?1@{g9Us4uuz!_SEz9 z0vt4H^&$3G3m$HrwC4E-Mo;z&LQwxH~WR zh!7c!-B9BU&Hd1(5}4iLqL?Nr90gHyvo+HVXF__Se76Nb zPZZa{U*V!xy^8*eFRYATuR|N0Y)wosLj4eKeD{$fIeXGmGFREYzYH%u5@*}0l6*EP zi+FAVUXBF}t4cR39p!4PFo2pk+B{4v7}j(jeRJ(5`CaLF6BZ6O^H=JmpGK3 zrwWA@iL0> z%Mg;poP`I81bb4P$AxMHnQ!Gwkb^Sc=-y~50>Xrme;r>YAv4n#U)Z!4zUBkFvzq$5 zfBDa=gO=y3IiYLi2Z6A)wcoyF2oB;H30`uh9AP3D4(CAYCbwO3c`EU-G0zZO^1F`R zN`WmRBl2>jH8%J;%epZius)=#i-JL0rDN7ext3Q?O!-}VVH3_i`#aGR1?n|5 z?XoGdxfAPV7~V)X<$XK*Uipa8w`&@Of6KH+Q1(+^=1x9ao9XLtoVyRl8g|mG-fcGk z!a3V%Fr9=IhyMmLDN}7yTb5y27W;6Jx|0q|a!A(4I6_oML^7)to{+$6i3%xFmhyc! ziz3sMMrs9zv=SMa?Zd(S*9Q7TtaaTE?4xPm$Y9iMKQ1he?C=}~3%Ny-Nu_uAe~rvA zP8yw?gTMS&mL6>HRkx36IpNbBH0jMWMTos!h-DKm-0hE!Mh}Sa3sqg+pAa*Bf9%xGb@09;JGmRb=?^6DDQ}+`#PHZy-C)soDD7SY zR2V)9N?ZOwcH7Stu{)K3!Q!c9MuMGBF@yaw;Kgwh+_AU{Ado;T3B{JPXIK5{LGgwD zXzE*KmZbM>3HJawK*qlzHva(S$8D&6)S**ahWw%O>PZ3!k8A?v2uq-t^=qt|c;>|LV@PZ6#L{XUXLu z)DWgt6_I1yELfj~vtG_M71F9GwB1U3rn6IdvhkIKBm zN0iPUH7u%aL(Ovt6XE9oSziZv1b;)c*{M`bl(lF4gjPhaZTbBdj=-{`O%Z&*Jq_x3sAbiGB`X}d+_Rw7;xiRg%m&QD)@F&Ae#p{RrGHF@{Z=`s zi9pX=s3L4b-BB%#2o$XT%PZxaN<=lKmtXE7Id|~DA-a!_&x^Pr&H2P( z(MGhkKDe+qK;@g+ctas`EDly&sWl~I_X%$t^$`riZ`mX0eL7{#gfykw{V}MOaq_hN zCXRvcd3{z&hv9O5CdDnml|;XwwLawWYGPsOZdGG?^@qSs`xNFP%x5`JuP*bZ5+_%#8JI z*dI{Fz3HS;*ibxN2>9q?U~`h^ViucWkK~=u3Hzozf3JXN7GEyQ8-GVX7UjIu86mPT zuQbG6L98uGUXqiWOj^$BnIchm-U4sK-j>4)JX{7YPC~KvC!Z|b&XLkcfnuz%F!qr9 z`^13NN!vV%z1mytow*vyg;6lg#qpgGijF*{AX&gO4n{ho6`a+=q#K+`7H*d)JXe2@ zx3E;W)i$lNV}fzEn#pL z;r>8|Vc(!FS}w|b-{V?pCPaEu!UZ;NqYyqFCHoCLXNot!<8V6BHb~;03I<_5TH!LX z2%L9)qtNX6Yk$|n3HZnIcaLi{Es=bEMY+jay=b9mrI0QiMcjO~l5vQl;znT_2YHt3 zt%E(}7|MyG5`_**tv#C)C?Nr4rSYvK6RfN)H%i=d+{ZdGF5KbZltx?Sgoww^i<);l z3Q2{>11?j)`jhI3gka1=-hMV9&|C?lU}5t>{bK8luzyQ7&7ygRR_(D8)_1JPZSs=8 zL!wxejW#r**-ayXs=vZmWaL#Ety~2cF_@&MoZN*cK~uVHrG|MCvu~gPxHdD)mp2M2 zc&|#X_FbV#mNTvrmR2Qg_E^`sFynDR`&Td8iMA8aucc}p|7~H^&AfKF()|_us06sW zc;4~lbAR;tlx#@H46;--Wp%9pxQ?>WD6;gzx+{79_Djm=4&4%J&K`=k#~jO1`^>jh zI0xF4(@Vx(b!y!glv>UK(`#vr_J;P!kTP<)m5B)JujN~fw^A_>6Fu z3CkW~-NZ4>!bRzm85#YA-gV{ZbOwbSpJO`|Y6G$@+FRd7|BM>0{dq44bYS1f|=(=D(t5Qmp7zvjZbwZM(@iMeoQ3hdxhmcp?uJQj%G zz{B2h?nuCC3wf#P`(K1*L!_18**b{K9(+xNBTC71CuX|auaA^S3Vyq?c7OUse9c%l zBG~*^$&)QmDl7-X_wbG8V-4?;B;hRjJAZ975>}Bb_JzyG-P;W*J(8(1U6@g_$T|zEt1q4y%5+Gs0=gBOTqB8+F1-ywJVYvF-1;2o z6cP7!UKP|{1_UZ1#E1}kQPk)!t z&m!NT#Wt5C*Wv|~JTO`pgst~38YP_`iBV|c2M&~O&njy*lEFx=74IPryGj?7 zx4;Dq%rGoy<6j8P+hdeDr@S+~I<{X9>VidVQ+(WV6;^t|lpM}{M#~Wir_-*{8L{=nx^?#fL*i+ZJOjMcB056cVZ`-cynD8FAEH7Y+y5oIa z=3Q;!PsSMDH>x<4Zw(rM@oc+7$y8Yj9in@deGd_*Vv-!<9c{u`Qg(uf{nDRgqej_y zp7oA5i!a^@&whT}Ey&eYPLw%Os|Ub7f}0BOlrY!hG+7uVxE(d_%`B=)+kb(duf*K# zPY4`@P-PiGU@enLkzX7NO}3@Fn5rd%C2Rr?D(^7bIV!Nra)N6<0V92>yO-uyjU%N} z%GY%orz+XpV$}WGdwce}uS#Ih)d3U4KT@=lj}O7_h^N7&VW+isN~W@LWXbnU3&krN zjtL(!_(c|mrShnFIyl9X?6G5y<5U_7VImPS=6Ywx9TxiGPpSIZX9#S|@imML+*=Q(sru*sPG z^X!KWMsq*bwUmsbA4UCJB$8iJP|Eix&E;Jt-b@o|X{tZ@Jzm$=H)!|N#uy+3PS25B zkMt8uwVg#NO1;1ij(@}w8Q#@J@$QFLkNylu*pz8-&qb;Z(qATpCtG+^io8TAYAG1R zp2iodiv2{;eDdR4=Y>#WId&#oy7AYVKzj5v;Q-Uf_XoBPn&36^R6pZjoWbggNtcY~ z#_hFzte1>feQhD!2`Y@5D5Y(4o&wgZh<9opbAL@KbqyW+B!A_>h*y3(;~#Z2-Zwx9 znzuYsw1G6rtUt}za=g8NTh8U?wM^#xGiBv6*$v*@&(x`#mc7%Ss=yVpz`-RfQo?G3bCmLZj{3X&eSq;H%sIdJnxMPsGMWk9SB` zSca629(kPliGTZi2N)sZxc8O;_WBQz7%%cb1+~qFI#zz{3az7c!4^AonUA-a^i!;% zHw0E&b5cUf@j>QeAx}09Dhx*%zn@_cY8BBpk|4}p4wzRX;nQ#fKxp45BHj0(o z*TAlo?e3qg6KBVhsM^l&4hY14UGv1nESeF%Q7MF60VE2$qP#t#FO8=|r`~KbE-e^r zvfLcw)_!uO(pzS%SCNCYt(KSG-5Fb_{Ln(^nmy(X+jtv4Y;u%r&RrnZLT%Y87`>*a?c8UTY zY`CShu0ERQfB8HCx%o2o^gxTYP^2Y(T%7W5fZ=e1xMRGVghpmbl@qCBQJb(57Jnc5 z%z6otfMRk%cwgo%ZP{)_dt);!>LM!tuM~yc9WoC0YE@h{ZIlnBOV|~1sV{7!#eb)J zf*D|Al-I{M-FE>JSY{fMa9F5H&p`dtZKDNWhw!Pt($9TfQYi;AJjv@Wp=vxPGD`CNtxk+SH_l>^D&? z>Kr+M)u%QfJg|>oj{OAjDgR@Vl7AmBbR@}Ci|q9j>1cvlPCb&u&Ar|p?$eFIbRr}H zE+hhP8eE6(p$b4uuO}E$%59qCMY;EB{1auSGV6c|uP13kED`G^k?Jr{skI5p$r5>k zt4zWhMuDMR#h2611kM_(L0veW`rjI1S_G&!&$2sf^#g4)?;zP7+TQ8z<$sP#@V=u{ zpeUh4v-%RLSEZobDg9GwdgN-Hs6$YV=R{~;;tXp~;RWH1s#fO;Qx)G=>SoJz%~_bB zRyOlS39)+1xFv@9?`ja#2CC2#^n_vd9)3@B2oX984dNK%qTpARHwfAYF)Gl&TJNsu z>vPtYNj>h5%h@C zLid)h1s-_@H4Gmh1_fq{xM`%B{4l3#^+`5-_7dh6CY(h>n(rBBrM1OiD`Pgh#mNNhwKaU!?n$td7>{vc+dGc5~HGH zqT(56SjN4JPL{|Q9DnX-P1snn#%g^0XZTN#8OotGy34D4>YZ9V_)x)%OM<4f*W~L} za3>1Q%Oa}m-0yEgI=_R*lxC51&-Q%&Zn3X+(6X{^VDd$?7ZzrTs+xuj5bXi;^>&{c zBQiR1E6f00f!MjcTid&kukbwumUAkvu$il9VAmm_5t)Sl`DdhsDoW=EtR!I6JW_2~V`QH3#Xd zB?eK&p{jq$uVlD&f*JIoRt?aitmdd(sGy=-9C@SYQ1GOw z$Wh8**0)iPD@43Em%1-(fLnpJCyP+AELzV??z%iY8`jJSy{k&wpxKG2+kln}KsP2BnZXDba$_akXvcaDRJe*()~h1uj}I#j0$-xdT5O zxJ@^VWT}fON`VMh*P9JymF@fddj^{2h0!NJo+@xG8|6d7Y4ETl2Zu2|Mz{8q?@`Py z+kcycTUP`+FBEKAs?PrRe}4%KaM)Y zd_@}1p~|yww&AvI$Ajmiiwc}C{_Bb4N>RZAG! zH3=EQ4$iQG*WAJ;S8wq%r-3_c=1*t#GJ??6L@FQBFcGEcPZ@@VfNt0(GWe}rpG%pR z1$k>~&XzNY2v~jm(Ps;+cpCgmGZ8wkF@J9j|Bjl=6IU*iM}am0emKSBLOp zKL0+EyzaSl3^+f)F;<$WgIY>%n~ZaHt1q5KG*KUea}&zbV0j?t%ipBcM$Z$+n)Ti( zK7z0DVzHK&dxs>ibxcd(VdI5MBY!u{f7_2tCNKV7wW0eJr#q?G;*iWL(pu=}dnbLC zu2pGDdBykV4>lpIn4-MqGUE^5J5Ml*&UFvr`{yb-U|-R?LkYmqqYQVpxTh}`-n-4A*vf?CEYi8c} zFels*7j&D36fQo=4_PWP=zse;*@yWas3d<+ zP2FJh%2l_%V7*D#nT$M@7och}BkzVCXQ*b~MyqxM=fGclzU}ly9Lz6fl-I?iPPdGz^$CS(#rwfvq%?(_DoJ%L zEuf6v@PoiQqA>5!%71gp$`%;J$5QF%2GQaT7`2Tn8P3@5Ch4%In&^Y;B#!}n4}2%2 zMdbU+FEO2I(Oq1t+I21IO1=@`QpO*GpUs%@pSV1i>{W|tP@PfBNDQeoCs@6Lq~PL5 z^eJS-eWNs*yA+S=DDl1r6SiuKO7_(bT_5bs>~o4&B5eHdi+^{Lu$~_y)dbUdUsPQ= zMr=MLI%*V|yigDb8&Ur8diE*uYOsgjp=D*cr1-l~0N-uuAj|F8M{dE%AYtyUXxSkv z6ztfHRF)z@O>@_M#xE!=Q8-dc{O0qGn)y%XHb_aZM=RNs-DFWmWD2(#{tztD+sptF z;fhsYIC;q}n19KL?dLDYKAd|C`;)E;&&uvR7|A9GJHrVqp>=&6$D+QcJAQMkWS)8T z$l|=dMBmuB9su>K6z`y{kQ+ zeB9m0VA3F?a`qu@Jpzr&6{%KqAxNd~kR*|^TqQ1Qh=0wg>757TxDQtzY19LGR;W(z zU&wQJ;JJTh`M=xw;qR#T{=ANYv8WLhuSZTNmP$d&rJalj1q%-#^kB}3j&MN9ksZjR zc!@Gq)knP$Xye%O(Wy30_WrwNiZoW3=3c)n*zR>{E3p@OtZqJVWh!S3Mg_&I3=Cu*rFz&}oE^-l$GiKjlMZA5a=Y zg};8`L$0eDKk&P~TojA9cD zKgD4>U0Y|N;wqiIHW}zC*VX78!E-ahmM8vN)B{d{=|ikP4o#JbN*( z*njt!p$JC&q;DwGSwU)5;C)`7`NBJJUY5MZx<2oaB-0H^wvyBsEnA~3qFEb=x5ev< zznC(KlNl5&Yv>wrYF-M;gZgu4vM2g~GScB7>%dP?!Rl-gn8c-9Z(H|RM!NFWoQ^?U zQQuC_C5!H`f|-0dnE&8$ZruAb7-#-l3x5h@D0%-=h!U;#_O1m_UAtJs_cTEF1FxL1 zl_ScUvzJZps22%pB}Er}1#jdh^)L}aK~X9Z_XOm&dJmXwAD^B$(;FNkJ>$_I;J!d#g?25j$8wm}8vr>@F&tm21y4USse*f{Kn<*! zSABv#I#=Ur!0Z1-eAf`YYM56aTjV~->sl&AAmXy0r`v8Blr_oPg)+R@0p^1oVCne1 zIOU|w(d1@}mT$C?i~9(&$Q4Nx)_-eyfRRpQATf+@LWP=;*I0>tc~2ytxh6nj!FeYG zZbCO4sYyI@1d6(|yn|HQp9r%%uSc>R>Wb4GhS*1c;=*PiDwnFrE<$hjeb$7V0OR*<`DtVwnWQDz*Eb{oK_lImKUh9iR zZgA`+Yfj0J5-{7JFU+!Xr}7o1^+VY{(`JDRi6yc4l6 zsC8cYx?#jKHS!ektWB6jy?-A%F8#6hRx*d&Ib(PybVXg7)ejE6^aagw4qigyCU{{@Ce_yW%i*tD)>7qx;{iHU;|NQ{+SQH4A7lqm3OO*SLL&OpA zsaMamqVcC4QgvE9S!78+%TijWx4o<1PqCzt5~Q$0GOi_q0RHX<^9Ku!jji+*>v~y< z4jv{K!O?a~rg_vSeScE=wMz?*cf@hRwg|*l0t&I+q|1o>?-Gf%Eje}~<#SJB%tdk% z-qzg)QmTfM5cHcLmpt(Q(7O(R@T*bD_}b6$kU$>=Ip78N-KgX zN~~W$%RNc_0R21KvQ{ZWrD=jk>LO8`(??Rd3M*s_@_f2PNq_HMH#^MHPktX}RBm>b zN!b}yJfqd*Cet^Ji08_-V!k_k_n}Eljjy}##jZPIr%*$y`eE{GY?8PzsDbFFNLejE zzKgwrhQHv1-K&ZTJ?w7jS;%I;K%!dwN+C&ZULwkh23x@m!RMY44a&1CXUH~a2ljcb zOG=Y?HP*4~oPXFc8BWHkv|gV3ps7w%R%)0@l%G+;s2rT@B40!oS^}PsoMJzC`o&nZ z`3n)giHe`zP17g+!=XnK&r7fOn*3&Sm+!~5e9#b{49e1)=GYlWVhEUSyz22+jpZ#ie7qQ+`Ay8zPu~$Z76}k+QRe$jcrgbG`M`uRE1G~{FVvndzBl(tX$FoA@F&>jfW_p;B57S-LwN&U%AAN&RQ`a#7d8O7nfR%(+}Tl5>9>a=X9a!TQny^9;o zU1QnR!a&FS7;R>g<7Q_x=LBEWxwWW`oIS36m}K_aEMdoQ>(E&wRZK^Q#!ZfZ8#x(MN%LJHQS29SSpw99_ zda4}lUnse`%ycvf`|0Plbx(sx<;bI=EjmkuZK5aqJc`AwM4I4Nx&hK=b*kLU6T+1Z zTo@n7g#;2gA<2KWq^qGh!!tmymw$vG818e(z|Yhp=3ow*(M>?ffAcv_KHvEjtstK& zEp-v|#+TI&5f_l{7PbnzRtkTd67@uAgO1CBx~Avg$GSS0(oM0K$+R;;2R3j}ify80 z5%qj0Kjbre-^#Oja2kwL3Zu|Tootehv^ngNC-;F)XZ3=;r+MrSJMXgvwtq@8iMX$+ znHksf*Fknn!2Gq#sjLwsGJAzLGGLzurMt zV8hdtD59!``qq+aT{ceMrsSr0}rXG@(FK9fnE-q_q4r8fzK8&!n{#PT#%jSG@+ zZe-8hVIg=#ryr^ju28s^XMe=?@8r80u=>=Vd}fuceIh~cp< z@Jjfa953c#q(W{hSB7P1u+w6a^H{l@NiDVk3#HP2X!xB>`Qqd4y_|30TeAW-*XhT> zLhKlKF*s~`Xp2OStTYDm9aos7qiRbD?mO5hEtE@3Oy3R8YiGo<^G>^NfAiMpO< z`_?y^1OuKoh{XnpE*!Jo1YA8JlwzoIN^5z^Js~ zC*5p%{F^lwH_{+%@qbk>m9P0n*)Z#ZlZW#V=uEP;nCQ|hvx{U`ZUgu@W&PEDbK0Ur zf#>o}y4wsr!QZGn{3hJ(vE^0xR+O<=#r_>4GbkWzjK6@`)jp9)H1+L#sE?ay=AWl0^x=Y86wd0ewVi3zk> zZi=h}zQazloBeYvzm;z*&D@W|v`+$(@w5BCrR?G(y|1JM0}?l#>0XN zyL|b>=V#RwA%E78zSMIY^3lF%`2qJxsqQEcm6TNSUAlsle&$W#SluVI?J7{tiuI5S zTG4}+(&aB!W~*$|%|g;|f{(%@(7%ST$jFS_M6ohzC>gf~MGc~{dcTXGPFXE~fLw;F zar1x9hGzV=p$>ok#$7sOzd0joqgPSh2KgOy^KQnsReu{EJF|(&s$8qfjg?I{f;MpL zT6S}{sl?^crN!|zl^Lw=l-LB{MzChxJ6+A6P#TGXLuSKuf$u)J@}BGR)X>jOV;zxL z@xvRJey|V7=rqj~*vDpBr}ivwG@|u6ub{2j&_zFyB2MqJzb^|oGn#^4eq*ZcAElFN z>Yx%+(SJ$LxnG6_!_wK5$^CSe6^zEikM8Bb1FCK_`)#_UVY!+{2Ht3N(kIm-(}AX# z_?tjRUm}*DwXx3bNJEx03sV(ZKag4rwo$WRyW4_=pXIZJqpKqHqKK8dWMlCjaJbNf0V{^4OtLX%cTT6$&M_8s@LWd262nh+jZB9f^j)u? z+HV08-O3=69}v3Fm5m*4*Ff2AD~TP1VSj#4rq{#dVX+-z0(XsJAZsFc8*Hq5!|C;6 z)5y!R<)ZAq$v5akhc*p;-qdAYlliM4Ym?uZMcVtOL8&~4_{SXs)6hi(Mt3qMnUxkv z5Y?C`UuscDP1FNC*gL*OX^b;Lh?)n-!DH7(8h6`ot3%ao2v{lxs~l-XkVz&A;M zJ3-HDTTd8%z@8_dJgi;f(rY65|LY;4D3TwN`h7oZ4aAbHGn&Z?@ zGPr~Kr5Zwp7igJZ7c@P(*VY=$Nq9`ZdPg{<3r&h!#xcIr$IlEm2>?7MUos)pge6tS-Aez;;u(sV441TCrpDN{r zi8~=_6{Z8In&?bV&KF;@zM^Iq85ovrh>lEamQv@He;%!Hf*FbqV2A78B z8L*8!gYp;HcXA8qbRmLnup6nl;|x@(PaDonU%pQmc!3d;=OQY>H-DhRk4ufAK&rR1^))IZM*p?9uAdP@W|!-sDH&f zlo9h?u%b0`P*qu72~-FQ26L(`MZi7^LdRK)%Ch~YD{VIdgvfmXIIL}mIs@`YlS;2m zwpKPx?Ao7t*DV3=E`KEZD8ok4o1#pRwA=EnG&SC7`K#y6tUkTh1g%cy|~ z3k%uu(91qI^sQ7|JUPYN1=lj6e7}$}91GOBKNdirWQd=S%NE8=^i?k``wt05&Z`j5 z+!1rPa=(cs=4gWIOt}~AfmP34xjrynyZ%s?H9i2xa+lA^Fn_o)>zUVKt1rs9Tf5() zrmP!eK%v8o?lh@8qoien?|Y-rrFuEsF%U;NODp{OqtVe0Rv^VwF?UTF7Fm%NW{kZv z

Kk_qa1N?N|pnH5t;pVH7<*yz&{3p3xgdR~kh{NK3-!r^e@gvU;&U7L()SlUSZt{hq3p z>WNMgAdnV$QEb@V`R&nb*$YMn7acZ}P8&|U+ADMKg1-86H}k+FFf$aGSDnZGS+nhG z6?eq?Q2?VMv}1`n*`GP44+<}>v3Jw}j5pc_$u-q+aDQM>WfQp9RC?dzOSa4}T7h$d zDBc%VlJFi9NKJYujzUYa3{QjiAes1hn99YE&&j$lB1ZbcMyOU(Z#bKIy!)<`_cO9| zjhiT9H;$NjQ+3z-#M28(PXh19Ly3(nF`H;6H}$9(0@%UE`^)%V_Ak8C*h*cV~*F}nrOVh{l`NJ}r#{!kk4$ikV z#qCzS`sZ|7&T>nXO98@M7wXmI$c3y9vrccNNPlOC*oPBID!rE|=hx2e2{dk0tk0@1 z@j13*GsTRql=##2Cr6|`|JDYoWE&OV21Zsa9D#4HcMD=l5V71U2KQZPT08{)V>%;_5V z=zoCiaZ|ZOsQb951*~_r8#2e7*;Zrj6eB9uaqMe7MM6cSJ}p?n;N0J=enu_7NltRa zc6x4c8JW@xL0}ANs=#{ZITc-ib7n<&4vsG8GU$tmm&DXkicAO-^o_Fn_5#kHf*t1s zFQV)H9spB+uX=ZrLt2zh?~7NXBcW2&uYWXH!lkf8t0|_Ya!+GJE;A0Q!fWbXq`TP; z{C05igzUHNg09nF<_e>4pya`16}Jf%yRwlyeD-~lxu?F%k-?g$ACSV>Pxu3%LCa<|Ec|>p+`G03} z7*5$Hwlnh6)6X(j(<=8^@638VvZShMlB<8mpFwV=Ni!MWBYO)()UT^r16H=2!3E!& zhVCF-WIws>oS`isNehqbQzCzKAZ3Eb{)T%bd3L4pu?FE?2YBafNUFklsmrfJCyrAV z)}0LDSiT8HmLOx)R4t}&X`RcIVt;F?#v+$d(WRQwXt;Y&>VcCI)I?AZQ#4Vi%H*>r z%Rd{xOjn#w9TaQeAg>J;zf~)@Sd;on{-G)BeBD1d*kxg4%K&OKI?R|`{H#?VLyXP2 zHi0wz#D5|;(k|t!%7)qQPKe9EsgOkz=KF*U7bj%o5O^08(N*VKN4(=q)_=PzL(~oR z*l~u>^*Oh?&G3_*s+;rzsTapHKT-izmblr zilX!hDsbK}XcTS^ljo{=*?%yqs`tyw<$6G0iF<#@F`z(z6(s2;l6j!M7}ou;rwbE} zp#zihm5c%PJ9DNlSv}MuL2qb#koIRY$RVSj1O%i5&vT8zsxaKpE5QIY)!^gcJ1gyQ z@d9sOe1cxNKqUiv0o9F?PCE^ zfuc^t?Aq6^TJO_ztAE2Wf(blJxa!A<7oZ|FwbR6ux7nW;y&tD}nzi_%irVhCO;4Ir zc*X)jugaa_FVk}WTRD*Sn6<)oo zDKbnc+7z@?0Gen@B~6&bQCRp`^oZqo=lY)7ad9PPowrnuZdo0M3*m3uF%J~n9kV=7 zXxS%LkEqdp=#id$slSRyn>A|}E=;V|#+pOw9QN@gzqj&Ud>?)CWBD7iDtq8N1?o6le_nLtC;gokag$%gb+!aJ?*}|{YL!g?MO!u0)IedYV)G%teMyE zB$ApjJxD!}!v$`m)t1uFNy;zajzh(CMPe_R8D zIJ1J;GZIWvUPfSdbcfHE9-G{htG60+>l(1X(SZbA_=7)olb{~;gK`^pkfLPAoPpQ8 zC!v}cb@0h23d9D{7moCK+INCooHvxXZ-r5Mw3_dbD)jM(z(`|ap=zyTt@cr)+dPe= z_hbY+2!9lYXvc@n2GE1eC>czpA>?cz{D+2ui4167@)wX;^_mRf_b{hb;bb3FDPJDR zQ0HdTj;{h`*}GIW@GmjRV3vMZ;O0_Cd=x-s9*nR+BmZKM`k`srs*?Ff)Lv+J$ObD~ z<)ExuIzVbYtn1$8tw}d^N&AN*G&6)EWLWznQhy>+)C2V1hN&;93vuGD-m8w)Rr7Ef z+YTJ;oQT!$!u@0EjcOdXFYWG9q8zO*jBSS9LzZyff0vqenT$_*1YZ{-sYKj3N*Rtd zD_PzOmQbY`sv*TU{bllrXOs=iFppl?VRh z$A2LsfL3BU8!dEA z0s2$ysbql=F*RSONOZds_RsHRM>C41-hVu5-z(lnAZ8sOH%7HGrS@I2iG^>anu~m8 z#jGSHLm*^yg^0i_1#q*vpR}#sYs8dKB2nRI2^az@$+p~WatHnCd5dzX2581jIF zLxj+LNl(WWd)A3YS_`{;)3HKi`2mjLydm!mVnW10#X3$0q#c(=uQeo;qdcKTtbfa= zK)Kiekm_|zAN6*#6oUp-o`VCY1Z1I5huo`E-3+(VieLsCnfI8kt#sev_73LaTY{L-JN1;b+PO}>w1 znpYn(kQF?=zZX~%x&Bm~=zki>#(iISp}a~(J&o5X&dItJ-rfx$WVGFd>B6#;zQ^W@V~3RNl zj7+Nres6ONzJKxyB=;7`#e%uAG!367TC^Eu=+a+d3CwSSov&gHB^{gbFt>Vx*aMgnXJ zxi^vFv5cPSE0xC`x%OS!So+U0e~TL=3E|^lt+=x9zU)*TySv;C#SOUpnYgXx7r*LE zG1#j~kRR5FqcKRdrbL60iRuOe@B-V4WuP5GhGR>oX{Ltakg%JHJ+U za{re}&3}b(x;Vq!bIfl6yav38ovdUaskWr=m0(n;!bOG|D7fe~9~ZviVE5#3$u7e- zgMF6PV(Gx&%)UHWYVl~F=X`wIaq3)H{B#Q+b{ee3!gMPDKu)kl4V8OR`Yw!fu)4Kf zc9A-hvCcz_szn^Bk$mJ`A8RV) z!xPE-&Ri1OM6di-#Rr3|29GKwUl3#0Zy#V=O#MlTiLKt?jo_fIQ!HpOq~CL89d+u~ zBj;l4vy90N(-J$m#WzWs%k>@5BQer`)&Sdi-_NTSOzYw zx_s=q?Y}sy;cF6`QT~=Mhx~S)5YtTQXMZZ91VCp0UU(eYhj5}K4;lXNMI>}Dl^8r*A8bIZc+Q$BStq5%?HfI4-&>r<8z$5 z3>EVyMKd6-On3XH$(rz^yMz`-Z*OdeK`PTkP^{`+p`}dy+X4lB3Oaq)Qvd**$bWvG zBWjlI)Z=Vk_;&htMAm5=>-t3Vk_MnrQu>BxFfWc}RYf?B+9h)H8zoJwO0pkKux9%i z7{V4DMbc%6Jod3B%zPFCI*jrAL^TesDj7p~4@itb38if>ta31$qk$LV>{uwa2^0ZK zl)_6O$9W3I>AOyD4vzIFg*H0J8h^dhf{PpM|Gg+Tspf}6&ttL~^R1t&8@{HHWK1ZK zVpA?$qJbh6@Decq2H{XNrhactN!|@aZidD2WJ~QU%-ki3Kg1c7dx#5EtkQtl6Hu<-0Qo5x%OnaX8szBX$e@5k z{N4OPoXJ0}czc1ar@$2mQ{yY4AD>YJQuQ4b*ENkc&V;?@g9CLAb_;6SYsfXA3FPJs zp~Y{`8WUS(Mm}_;bKW9h(0_#$N=`2wLvevmK)<|z#Gg&lIg{oB6x#71!79G+-V#zHGARPy&`9R%o)fi-rmc%QhJl!G@uETrwY@~vT0VI zGcR^<1=W|K>M(%juf=k{MLWN!CrC=)-R_03)5CKr41od@MeoJrR>x>y%hOfXD-#X(G=BdM}SG|Ik+3Gudh^$?*paxdOZSO)@c;;1-=dEqt&H6jcwJqaxx z>w{+Nrbn`GlBo=gEss~YPiQxdtfU`-^wwO9)9Bn)q-JhdDu37Y(YL$bfU_~gf9jt5 z?-Lr;T|1VvvA)ub3KVyAh0T#rUAQ=NYH~Xec+lzM4MYc|u&c5<&0{U{V* z5Kq$ZHLQ-xetr@tkCD>Pn`DTjkObY2uOmHf8BU8Oh)l1zK4vs%U=%3YPA3IByxZ4( zZDf#bE(Kb~M}I)Bd}2JnE>94GZN5KDF3E_CR!p7oTEv_SU%MbAPFi&g+mM8@nJ$J0 zO7mDA8@I8&Vy*trQp4raWsi>2UKIXnE%Pa|2c%cSm!b>Ik9CyeO>DqGf>3g!2CEy2 zh;<%fa$|pvlpIJwdpKr5aICG8HimNI=sRCtr-W$`vwv+z!U;JWo!f{SCPSwJ;B4ew zuAl+_ffQo6JEL@;7vme&6(jalZ$By&3v^%YF7;br?-Jpm^c$`{g7*Ql_qdDgDlIyk z@6w9OkKg8lVbSN{5Nr&QP7Qra;ehhtYa7gkkAGZ;s{BxUf>jPGX}21d1(71-NP2U) z9Mm)RFMs48Ntch}lK-y&RF2|!KCb_@GH4sytmQ~?b{$*5@9zsitbLVx6cJ61-!rj8 zE*=kAs>kAneV_axOQ6;_=r;l{Iuh`EM7q7=W_-kI#)K-0B#0l{NDdG%wN;>qOZ3`z z!$Z`2gXGOV(5`dr(iz!%QfzgEJv+bAe|`&5Tz?8uYWi^;L&xq=FR4hTi?P+ZBp@{i zGLz2bbTR=4Uswh~^m!N3UcX6N*-2?^OBB1Y0QWYU-I_<`pp#KWbHm&q|B>0{ozq(c zdP0~@g)4(cZar$=Gc0f->jC73SwT?Nc4WW1Oc2P1KdU|@KN9twAp}1nezRN*4q1?< zu7Ai;FvZ4?9aP@`xhOZORa4_MW=v%Y08~J$zg2^FYKhORb?!<^i~o%$n~Kh^@dp>P zCNuTzXI9~XuF8J>sj0QNl1&3?QOmp@0A>UoqWY-8L;WZtsk`zKhjMGqQh0_@Vx0K6 z-~)ntsL{!;x)QCj-AK5`+i38T9wV}bKtu854QGEdCW|#!q|~e21+jjRcCKbgHvy(> zM6p{^EBLwKqFY3T$K(jJMr3(gE86b5TqTh!@rgM31rr(MNkH(>yd-cP@zr%LwEo$dVMqLoRFMIciPY6k4816s@Y@oq%dV9qaza_vk>JZHkc6G ztRQISP|!{4_flM68rQM9*j&e67@+)r2TLw+(+mjWU4Sf~wzV2iFz&bCcn0;nsQ6i?D7v zLz+eg1bdx;Ls7$kluCq3-73(y_8#mKkPA&w@t2i-R>&Z9Kf{6& zDwgJSmci4*;jrmnn!|4#DjLO2$qm2=&j`LDXM9=06;{3h2YMGyMrf2C~4_lbW^ zN*8dN&z#nyLy~8KR?%~q^dK6!U|SEy?@`4@pePsxPTFS-6vdnfALh=?6HRuwf)H%~ zqxJrU+Pi&Tu-$%DHr{PBcBPqF-@Ileno~4TKOGqKGCTB5cPdKfY`rttqK9ED{0{q3|5$4ZQ8X!O1u=?w%DS>WIAdYjmIH z_IZ}6yQgJSSE&sFHfgK1vRpf5*|?yZ@%{ukdbVe90=_omK)`_VtBvnx>R0=BLZ#2Y zRHDH~Vi=kgv4F9uZ6(-3vNL}iW4}o%y;l(#j!sjiZg}%|ego1|f|=GR!b}nu>c>@A z;IiNkBXP@K)^}1G#%A~XyhdIu`ec!fVZuPKv#ll5y;{@^dGImL}FR3TDwuq<+vv?b@%^a25nl z1z?AD2|e?&q9Zi-9a(?Dw-_N|TMpWUOARnL4v>aSl$WCs?df3|S~-a#G+Kp)k|rZ5 zHqt&)Po>0VVy<$_JrBO{5W*$=y%=w{lNnu7`XR{h&DyZ41B(WnuZ8->?C=b5j61B) z8UYEQ8!Q%@!sFLub48NYJlxPjx>qJGT~Kq^Wiu z`;MYbBb5g6(`SF{EzFM0&O0KWwO$__7?R6=i@n(&tjIF`4HCv&nNhr(iEqVEBCD{J zY|Jc0*mKqjeTa!dEJ_uAfMCW3gb#ii@M3*ljru`^<4T3%(`X^0Zt3uh3X_C)w51t& z1pnk2&Q8qkcO3G*EYw1=z-;7o!t2{Q12I3qk)P7^N|Wb>DOQrAX9m$6{H!9TwxZd%i6Q}3Kee6`Qk8w_EorQ zZ=mGO5sy5)F@hK*)Lh6ozPJf!V9A^%-HGqA}q^R))1j)S#RBYa@@h;TY;_e7V zu@daMmUcU?dq{Z|fzR*JtqxZ1v+#e>4lSLv)%1VllKms#k4GrMssi4?`sH%Z<&>Uq zk2>baZYThght;2 zj~aiz8=izp$09KtL>Qc{opwWhZEK5tu1}|fWGoQhng0OpN+45)7nr`B*w`?^0^dW@ z9V=KcoN5{eicF>sTx___$$w_E}L*KvOlT0kfFy?D>;Lh$ef<&%TXVu2KxdgHb{ zc=b}$5%*?m)}L*kVa5jS*jN+zPkGMkUpcT)FNJHi&ZIH;hPaP z$R7EuvSr50>xl~oG*Re|8mrlS(qShKOTXKH_yAdiw5Xe&YDLd-8#k-}G>`&c7Vzqfy-bEnB@ zRmS>l&3fbw+9XDtFRUcRXQq@X>OCIWzh}8$XGCwsg)$9o&qoqKk#Nm4-%soo6P*C- zXDZ1v`qPUU`B={JqYc1R19){ZM}S59L)8`h@h?qCI-oe---p-v_it+=BiDaep??(i zr>pUEN#mwFr4G67SrQT}GK++EED&YBSa%PREB&TQHOtbJgnZB@xE{Y`(SO_YWiygC z);$@f(oL4E3Ou#^11(iz2iENcIvUx?u#cNsYV=kINT&V9WFG2sTp6R-8_wH1yZvQW zkwp_581vjkc`kbKfDC~-dqjT`rUC`lA!Na4POZ_$IF>ePfnmFAQU7(yp{m}0)d(n^I2xU*E_?IjKiJzv4AVzTR{&}L*+*9W$_eUI}|9ns$YPm0Z%<3 z3C1BtP6UvuCDY25j5cVZ3`<0h%xW~c3sd`QLK?DVQM4j4pIRj*BM^V5UuO@yn^-)i zc_+)SL7lme{{hrx1dO-j^A^ArH>A*Xu6bU26mSE2h#?$wnxi?|+S)&tjoZjhwUK=p z#JYD^ac^jV@=ovfE7ISY*>oAHP-S+zQ}+v5ff5vH6Z|?!uESV9@XUL%h~_3(;iV(N zid!0T>JjQEELMeuyEizoYyIfdOrn4*uD^xkgy(LPA(sZqca={m?)zk zP;b;~5qms=ns~yt!$#DzqdEa4w$=5tU7OaxMrHaVBZSuwqh%i9EwB^dV;7L2fI@+pA_ICH;`NELFO)0sUkecs#;6$*d46)1SVdRdOl+_qL}%$QKpgwmvQ zKH-0$^w{pPE>Motz4p{ly`6ZXvo8yF9zw*{CZIxg_%3gl?1?$p$9qgzd)646aHuKO zWi&7iPz2i>(l~##*GFh47rWdSEq|-pLNSr$FJ=t$vrak?(2}0TQvr8y5-Y<;#IvboV?|7@O?^(>(RCotZ?xHmhMOEA2E_+ zk_X$!NeR}9XQeeGBRZB(E|DE~bMo9D6m%F2nNgwv1r!?i|H?F|C1r{Wi5BFYXa0N+S z4tIaK2@*(wID-?AGPvbEGr#M^m^#Ns9V;6yc^y%NY$m)(Db!VC6T47&ROB0pazkhd zy#;SUu%oCW-NRV*Yj#vQjzRh$Z<*NV~5G*fOk6~axh$T^hV8j%|5jdbj zrT`PO!P0gydnw|lvMvY;Z~ex|P3Az=HERQj?Z^X<*fp$_TQuK#W>4ZvE41VuRpNiB z)hOff&+Fy?TM>ept7_e!v8{u?zs)0th7(YV9(6-T_q89O9~wO10=RM!^=?Fz|EQ=} zj8X!T$)eOXsk?6u4zKBD3)H1D;U_xG4A_CAsnXn3pwgdU;cOu~Yxm#>8uOy{g+Ilh z)iwXEU@1+jXO&cNc4wDrO*F;o5_^A$A?!tRsxuH_MR;4H``6k9Z87&eTpN_FQ=5x) zAl@Z*z0*Y>k-qs;k$MG_V1;52e&mVVIG9F=lffvx6VXrL*+tEIPX9Q9?hujU3A{yaktk=x+iriHge#?T;n_>U z37e~f0r%l`zi}Mr<-3Issphj4QlmW!zxf#c(}_Ncl8J#dsk6bj`4$FJ_=?!a4L}P+T z%bzX*qBQ1K=8kV8h#y_Vys|vaPSpMb=RY@H`U@}?ZVWvosJx#G;;Xs%agQm;ylf65 z-1pNMlrGH}o7yhjoJ+Svu8|WeYUozSZ?rHG67)?dC>LAvgA0E|^hxg_m7(K1ln3q} zJV-W;1+Iup!nV=wa@h8JrFDKcg+-NFl(7g{@ItjFG#Z5&FSI`05OQHJec=YZ z)pQ}JT>d6d`j3BPh#@n0vXh%SMD{B>fK3WP_?OTZ2$5Ge5No2XguA5*y!w5Ibtv~2 z?k-vVp8Q$1O=p+A>ntPwdjjvT$BpK0LDrE{MFzXX1cupIbL%;m4DeH%Q% zpQb#dT}VqhndNpYooePJ)E69>8ApM_K~@REDkTL38FYUDb9vqt$vBOMyE>ryTlof# zJpZNrQP1Lb_k5j}C~Y|P_jhqNBIzc8QjI;)(~GpP@H8Lq<*M6vBDia|+o)BPYJ6)D zAvqktm!+83e^JTjE?(cibg(;+|5w~jFBpvJO$lbje#}u4HlF>5`Yj0|<*PI~%+~l? zoc-O}x9ESp!3wg6^A8l`@EtNV-mS0NTiuMzE9hZbifw>Yb1ISVOn?3S1kd9JNE@)C z&aYDeqV}4e9vgz;mdIvkPJmCV<-1Z3yz>!N;v}|b*J6FDsu4W-6G?RURkVOmKU@BT zt`*ga{@o2z1vrM_LMY9}Dr6#E@Ms|6GG^HgCDZM&)AB;e)o@|kGij5-Au({rb3RjwNlumHPfmjiqL00Syk-2{JP zS?VTh_7m@dH>cXcO7KaHbJWZ)%n@y|pm{|$23Xy$#n5pQ=C-#9@1O|=LiXhBQtLmE z-|>$9vAWX>=@SlTW)1j(7|?U2*27i744AV0nTv?r>iMr}1Mq8IVVTGO1caniN6>+q z!~Hy?zpy|ZlH)5LUO&C_WUV(GAzy#ws1K1me1hc9BDJFes}!sTv~$QW!;Wybl2cul zM8YmrPH|X2WX_rC^D?Cp@v8xPG~M%^1yt^epv%?wMvNXD`tpz9v5M^F)QH{Z@{O|c z65{cb@w_H%O?}%xxo%`c(ttiz3Pc6p`aC9hXafkm6;P z58(rNb7A)jWviX+#?MWYZ3a52am|XG-4zjaUhlH{lRB|L1`-yBd)^S;1q{6VZdHvWvB%FVCSUn~63*%sk)el^*1#q2B z;s53faPG~>b!5E9pk)&pT_q<)P3`xXG1dS)+wEQIpv9TBL%lsjvmk$M5~rmW3))Wq z3!;l7bzV{XNOcwnbA2j{uYAqR%HMPWo}bt(6oJiD@gmtrn}#M5@Y$5lBqm8)4onkB zs>RfrU*_*$kNhK#M14o&<{EFnWArN~xc8Jhy7z#kvp2vR%J95bZa$0d>K8xKQ&ZNN z>&5S`D&mN@rLJn&6W z1m}ty!F)oPee%D~7Z#SevN1SP-~L&Dp1No9WC)bh^_*BWaytZKpHfbgfwH(s1#`)l z!~Z8Ni=|7iPtRP?tzMAnb?R5K;uB`$h+eN6e6|QVRdP#6zw>|h_%Kjc--_amUlZ8O zYZ}$AYwWI1XILLls2oYJ!v}z@@edGga1XtHoEJ45VPghnDP5_<(`A*ON~vUI);9%1 zv2CwgRWz&fb`bq~CxYBtNHG2+8rNvXg|9zKDfkqPGavdzN_Ngcsu?;n5qt8xm*NB8 z!};xHt?x~o^i6+1jf$4hgS`uv%JRM8bsu)p5z6ULP$47vW`B(!*$<$MfRA!hKO5Id z2ON%l=yUQ$JJk{fOT1@;;@f5xVwrMP zgw1QnP~SwV2sB?l?^%s{tHMX<7pF-e89H$14ui4Ij*zi~(>xUL9b-Cv%Hgm>GgRIu zs&UzttKlhPRDT*0(-YiLfJg?o;yHAJ4Q^_WT`9q)6d#pYoe6ODN~PsKUCV!`ml5j$ z69PCmml4i7^@UK~Pt) zGeqQH2C`6)CG1fqXMYKMv{Q42094!@0o=R*ZUGT)K@l!401p?J@P7=Qp&|e|OLwph zK#dci;tT<~Vlv1&yLdvucJ{ExH2?VtV76ufa0?3yvj5=@kahw=!Pb@#fSM)D9^~|x z(c01xpyO-}2Ejc4D+IHcJq+d|0t9+^cyL-expF!~?Ic*(0e>D~m_0xnvYzy?4+0XoX601X!q zaJICzc6M^Hgm{7>b^u$jBM6|Opvnn@!`K0q z5S!nImX5B@kAMD_?v`LjORGnNKPtBbC`fAoEFT;Et36k1DA)z&%IOMr{M{n(cbLa1 z%R_8rot>OO5ST0G@A~AxP>}WG*gb)NZq@;duq3)q4oHnzW;uyJz%>OsJ--9XB6 zf0;arF#nO+fnWfBE-o%XVLkxpH2?&+wg>(Wuj}ao`hP>o{agIlfv>lVvkSoXu?dhb z*cSBoh3V~T=?((Gpl%>v?|&=)8)0&D18l(7Fn|@v4h+HkC;FopWcw$6Ts{;G2bgd@ za*rFp_51VpFSAE_**HTSJ^wNPW4}N-O-& zaZ@gSF6+lX-2cx^|HI|~kKn(f{NFhKzXd6{IXeEKX8uF}|4~~yfgL^nGI->y8|;z) zYR->W0Qp~21JIv0s|K> z$Q;2CkfyUM`1h*<;Na%s`XAlnWm!8sz8tQPjQm3ddOV!}PALzucDDI_VLbc-081#; z(i4;Gkw`rJ`~Yw6$5XTc!T;be0LTe(hCR9f9^3N;*g8Woe{WPk005NvE&2lq@dAK4 z|9>Dp08sZIBnSW+{EdVkk>x)~2mrMD2MGg!)_)_u$0&~vfzvY$i~VM z`rkRZA63wQ!N;op(LQbi2=j3MN6qsX)_?1tmLJFA1%m#m|F3mfyFsCk57r+C^|;Ib z;6GkR5C{&k#$23pwiXR}RU6WNT`f)J!Lc(gKEtqMkjBE{y$J1ayTwIMW~s^wT8Car zClB}FuWZXRUq~&{{POA*zcH|e^5YK*5Gx_?r; zKEGc3=m$C=w;*<^Fyy{=6T;QZC%X3NQ-s&`mo1Nm&FyIIRtdbox+|OJh|!BS4J@8z z$g|4+O#U1V#zFmrmGBsjH+yk8Lzpx1K%AuaW^V&yeCaE=K z4cE3ONv@-T^zw&OBj(gG;zktg*bUyrkgb^xTCa|*5;rsp<66j5w{!$-*?(o#dITP< z>e3Fcz=xD)PgK07Bis+RSsjUw&#g0^2Re7hTy2~v%n_3r8XAJc_p4izbL6ntsNRs) zWmCId3b#<9QpV6FXJzEJ@HS{-4Zbw1-T8*al3BIi*6)FN9nt@Fo48D`>_NKfL#|L3 zK_P|`dR**H6H@r*m>a3$|s#~Pvc?D3s^JCc7Hw+sl-Fg!ivk@ zGwwhg{c1$txIvNkU2A2QXEt2+ee>S_{$fsOpLsmKkLIM@hLMEY@elYR2c--hAz^19~i%tfr&}}gfChlC%PL7jiISZWWb~}!dN5I>{ z#dgjfFOuwP;tn4@28{B{?u1&ce8RL%9lhcV_vBfPq<%)pG=CXj` zu7Z=1=8PM*uM;+_W-;a~^<`*@B}# zs-VKFutmBHc7InUj*NV@_a^KHcZB__CJ$f-j(WEwUbJOqOyN+;pOUP$H0#$s@t-fJ znDgb&6}tyIrBK_j2_O!ceqQ^a?@Lkr1sazUy=&Vl@1pCZb6DPurqYj8|3dXViXrE}AaQwn+^n6Wch!7K#5l;+-daKwAAiJ@!m*KAS}R19JOxvJkcP94 z7SM0fuGrCNBa-auKZLwmC$Bsy2f0>gwRJTtsiTt+F zVDYv7q^uL*~2E3l-4{YaC4VuD7gbIEyigPrKe1ZY=s_CeHRg zi_j~4uzwz_T+iRf9WHU4_1{bqn6}RlKsCYOSzK?J%!z+SW4z(6cb>83*skfrz@k6c zjO%pVI$xemO-Lxt*lvlrS3!EN65H#V7V?t1V6-+d9n~||f05G1TRSK}Mxd|$-AJlT zYMkIJ88Qh$PcSW*uNBwzWM6Q8zoiX;92jL}%U zo3>|ishHkogD1O>8Ty9RO1>E-P@Ll>kfRn!4KiB z$j@@)%VMx`q-M>fAZSsloP>X^l zS$`7?uWOPpe|ab7Ak>ClC7N6&IH&|nDrn+M)m~B}Z{z>?VI}}=Zbz?yWS(8&sm~be zN^o=tGEqg8CC!dYBrbWdx(@cF2`%FXRHFE&JN@+jKA*3g7?31%J0={eH=i6p-9oF4 zq|_i$O>W}`77UV0U5tpGOZ;zM4kJah~I*Rx5+}s@})3Asi=(XxujdM=h?Tg7;=}W@2|p z5J-mknq%wBRWNZwWU$|i4$+qzS$?ioBEgVO@VDb4Rn~e-aVEAVikAA*-AC-Z0Dtc(fwxZS96OgMijKyt>ELh)^qcg4biRTsOFxw6#kT`!&hzxD!$NjJ0nheK%`?4W<*LwA-Xn&`A>&dbcPR`{U3GDEmh?&zY39Zg>#uloSL3riP zx6u|aNE&WuM3{qYNww{31CGVyU%>*eBc0J%(_Gj%FYR7A8s|cv*~6&f#wB@0c#2?) zCySnpR0`>|9%7fTX^wEeSGOr}s?Feflb3FaW=L~EZmkk4CEfdojMT^3RDV(jwyTKx z1sHSb4>Nzpi(z>Zex-B4yPBv*hEN8dzpCcc{gRA@a1l_#f z+%-D;+??#gO@KCjArU;>$C%c70{|u{o#;_GW`Gmrhi061M5jHT43iF;oV#^oyvYW8zP5=Udlu(`s!Q# zlfkeub65(WuRT8~VNFRr0@|naLAi)sqX}JrX`_f@bArGzzm6s>6Mr-0AxvH4EBO)~ z+!6s}L__!86a5{IHs&T;m4+tckDi9>7#$_FW>sGED^l~EjRB=MB-s4lBM~Mz;*#W4 z>-k?o7nODnKD@RIDy{-PgYFdv;qTjxRcSILy@3NNY`%7;bis3HrGHs}>rWeLoyg0- zGqPD_4q+8}ckLWwV}B8mpD(R;t7#Py9mWAEOb9=yf}tdu(KQrB4mjE|4$pu}Qa|AB zr&#gZ5KXaa$Yb!w%-Fu#fJ!0$3L|Oeex`%O2!C#s3@jFG$||C_GvXr< zNqLvp*iFmV1o=^>RX1OmSU$bvTcrNz`@$%%imkzBPQu)JP5+I+03nyW@c@i{=oc{& z1xp3^5*g$V(4eXNFq6X%A$U&(7Lwt=XWbnLNri7fI;3d2<$of{X+B7_=7Q*nl`obL z&6^>MU6xozWq%SR*LnF4bQ_f(lHD%7oAnQ4Nxi=|VGY@&)XQD8FS!BjGkrGDTJNGe z8|=hw_M~a4Q!}=O#)OV2*=0PhmJ0}hH_8E*_Mu*7=Zll*r|gWM1D6h{XsS&q2R_8F ze3{JWR+XtPpCF`D`BID6aNKov-+R(b?LtPzMKT5;Mt>ML3{@c{NO&P=tSa~1vLN}~ zc2}9ZLhVqVS?IvT=AgFw_E3PpGtj#w~TUTrD#5^$Xbf4A@| z@RN8%y?<4kaOaL!ukuG)l=lOTPy&#mdZ(efi*#fPADW)4nU$zr0^+k64pou8=qn&e z#Zu*{3xAR2Ldp|7k?l!t_|4$k)1faG326FV$tR5R@<=&>l8x5*xc@TUF34}0**eu4T zI?p=OTou0zJ$&oTgS#!Z+E#{v6jAeZ5T_dt>3>-`TrFO?(;Tzo{DTR-jhyaR<2n2r z?CIWDeN7udNnjrh&OLcy4=Wv{R@Z(Rbg%f$xs0KD+J+1syJMunxjSNk68w$jF)MUy zXc|q+>2iVrB{#0W^z(IyVgBd|cLQP@UnnFY@C9|ZhAaoEx^(HLxGPu)gnM>7Bg)v+C|8m=GDhuX@h;oN}z(NXXm7w8+l#j3Sy&+Q4}7VWc(Gfahku zh>Z%wo&8-2i}JceJVQ>}U@?sMJy2dtQm(;o{j|?)w-N{UQQM+)vKS3Wy!EN(5Gv7@ zUq0ZJ;coO5Hvm)94XiN(adxw=hw@!J3r)`2LfMp1A+5w%D;6#QU=F0q4#luzGaB z3n_J}wCHcdX;-#YeP32@f_c`e3wywG&^*B@)G&sp`9$!jsWHAH!8hN9J~e$038)Dl z%IA0R`z&(bkuB%p^1NL1)qhE~G|KGK zZc20q%tE*m>VkCucf56=GTAdMJJJ0lE;U<9?}fyl3cS=9Nio4X9!d}wU%48t@94MR z&OI-_SlSi_2b5$<^GeEJ#&T-o=g8n9uA}Y*rlML;==o@zmaw(xQGe6dL#M zsUY#c>i769Mw1KJH#UK@$L3H`eo0E-THN6#B?97d!tov}24|>YCa2Fq8Z)a+g#$3r!bGEj24d^FvLL#gWTwM4p9LwD&zz zW>y3oJMxHxEh7>06Pef#G1z>fuzJQ~_vpH#vJ!Rfs%v(y_f zWxTAEHDi^~T3#nuTjLN*Z2ro$GVn^}Vm2~#1 zJI!obd7`}KrhhJ@gvWG4kFl;*m`unxc#6rmB<6a31 zD&5Wad_Z+Z^xRLjJTm&>c%EJG%k)y2Y%h0|Ba5eIvIm1^)@=I$fm6|~A@!)N!6P>f zl{;!wTz@U?VOM$crej0*XwCyP%V)7?PObWwrR+tzChccv1&ec*AxBL8(AcGqi%sL= zY`L5Vu$K+f>`Vdgdo)>=&L)fBL0M-AHu(%fUFPX?v7YLAQ*%T&mP`f7L{gmra-zd1 zUoYjR=VMx0XpH*2-j1|ML(N;;9OpftM4stwrGMZ23Ow_fR@1(1;;@LO+Ni=V6&2W3 zyY=bM>9zAa4Y)D_xRsgIIG!>)w=X`R%?8?0raQ{x9eN}+HFwX2umwc>yPVrB)fqYx z$H^JG(GcgqQ^aa{X2qk11p0up6UhpipTAxQYcCtZg<7QdQ{^E#gvqAbBzb7Lo~iOP zn}2wLnLWtqJ;7A3Chl~Fxyg?-lZv5Ljf>}Ix;}kVZd~bJ8wP4oI(y>P@kz*M5Guq~ z%HU~-%$v;nzL+PV*%R)#eX4NKr*HYgf6CaVTcNg}0Z zhkt1}zIlI%vYJrJ*d1l>c7edy@k|;qj2=HaC}x)7Hdff$R1^ETBJ=Y#?EbB?n_m|V zVVj4j!(H9P$b-%^T7PrO*7Xo%rfT*|ppf`3PC z8R4}b=+=%+mk%Sl#&h(#=tQHHcgxn*=Drre3_=zbhJ&op%(Q2`y<}^U!&@aiHClD% zICt4Lbm=VaES@g_0xx{VuFWT z$!OY$Rc#lUPsg&)(Bk#xxqseqT7SS&p-re^6|1ZP>eM0)^&p9>jSBl3QkyJm^KRZs z^RTH0+kAVz<&K~rfFXa8XmZ4fmp49Rtgap;M@7Bevqxi3P7+<xo2zXEO$4^h^{eM4ap63U12I^#>u?>+)G2(SZC7AY2nRR7b8La2g=Buw2 zxh#@c_Ws~Xw2fEs0nsv54G@7#0$P4BT(JTYF@XID^7ko2Sx}#GyTdHa(w<|tck0m+Vul_(V;+Hj~$3L z{rtV$6x>%klR`MlS;*4o?|~i&ZAn441a@mb#RwYwpPqAwMHP1VYKo4?%p1FTWBzNZpJ5q*a}f$%TJ=V z*>R@CRA)sZgJF27Wth}oACJWw%vtj4NbT8&wEPdcMVr`r>lSw37FC!R_=DLV2p)7l zWHJ$-#{Z4FI%3KTlq{gHXi4>{K?dMA*n*+lGM( zvK0AbqeflI0YJ|gJqM5Qq&W!$tW#nO`aDw~uuz!(F#(a)L__gQ^#%QU$?_-s*h7J6xOojVHTf>n)}md zJ2AKAc!=X!Gr$dhJWemN9%}IJqaaQV^pg<5&O{XctTj-^{<~hI`5>R>R}{QL%_Ba9 zPg_(rXU5LWD={hTx8hfv->Xq@Qm~KsMpz5*NPN#4ZGUvM`U|tEXd;nG3EFT`ew~xM zllhxpgh@W5Jf6+<9x^WXmuX-9B*A9is1O=)>+NXBU@z;L?gP5e3D1hYuy z_|#kCO|LH!EC!;D?j?hjLJE6`-8Sl)xhx&ws7i57vSzcKn%m{Ic8Kqr(b}shxy*m= zDFt0Knty=L$759l(THBWMAS2I_2D>a7|8n(k<1ZUcMn=rqATZU0WKg9qD(UVI2&0V<@3;)BeSc(~r*yZyE1mVFU3`kwzm&fGG4f7- zu>H=d$=@SsT;x>VKP`1O05`gLrgC-{dDu*}8F$V?$>fPbq?5>}qpq1ZozGPfvwOqr zS%j8f&_cP~8uk^aYasLkmx39|+B%Z+-AOO9>J~+~Z?xhM9jfq~P+!h|dLbS+Wq#gL z{(md-j!QKt_N*PS%M;i`ZWa$rXZy6>owkldFdqmKeQF-^%0G-;O4C1|n^>z%<#SpX zhHUe-LV}yjBx_1v-szd$Isaj-G>xrUXfz+gAzfeei7TEb*JTvL)UWeyCc&yU^W0Xn zXZLP4pLQ820#J7p_m?8`rKDUFl1DwG1ApC&` zIm`7E>z5__eq-wU5*|(Wz)Tk*&WG`oOyhRqwSaive9taGKAl_Fx7bX0NqM*nwtsUM zqkPP1>N!4df8aK|tB?LX{*|FMv9UsoK(H4 zU!lDH7<7CqFfohyonP`!A}ZNxT#O}}FkHe99ZlijK%QV)@E%XgHj6U-f`7zo!rLLb zZ5m%khvKO0SKD5JpnOkuj02(_yF5jV3~U_6pR{|CdLl=ldjCS{$l|o6>ifRZG7FNQ zM4Hwyv%vi1?u+w2%beZQL^?SW_ew(Q^Z+;%Qs{5F39%o1iztZ{6q_8E8m3=P<49B?SHyHGfrEWLb?$n z-j2`|IL00~jds(-n4s728i^TgzK1_5b0P=qk$q0yqMHLCn`@|0^q@bJQSP5TDTW{s>}M zR!ZjuBi-PTXNb+((SG=)pf`_+Rq_%d-8}S-N=oK(tJWDD(SI9xrJT{l>^Z_Q0({Yl z{{gm>9~;!}`plf{%W}zv%cp2<{Ee^QbS^2Fr=Cv}Ef{o9oiI`B>$(-io)a_VOx5dN zX*YAnBhR=#xB13m%pxxPeNxIKQ*m&PtCTe;hx{j!+H<|hYG)(wHu8nZ7Fib1A-o+h z<1xo{8)Vj_Zhz!Y0W)RhQR3alc}R=j2rkwL3xVH@vob@FtfVE^s zl=xG-rpW;bL6w2(j9l$A6yDT@Md8g?HBf{>Jl z{QmB1n8q&lC$?h*!7lOkvzd?D-DkI~Jk~4<{?fW6^6Sb=GM}O8X_A9R?9sEO*a#fe)?eV z+}&8>n|+%35n3rug>a)7fPej+H-cqdl#WG?gPgis;9Et#V*P=BJqj5zcia7npJ|(g zoWsjzlJ@T*IAn2djt>ux<|cWU_{D6#BM5?vC4bK`D;0WD$!fXgOpJx7hAvt{cS~Fu zFlqy)r#IcNw&ME_ar@Jm_E&|rd{Ori38_0@@%ot~0xaf51fCDwq)6~z(qo|n6H)Yf7SE@)<4co%#2W=f!-ojK4&Gs>ZD@L`q}G_NxgY=N%08<-APpU zCx1hCyF`t*?XgZ`>yDzp&K8H4rq;-+66-i(Kv1PGni`OS>?Lm)60PZ*!u7npFf;R` zui&3L@G<*>2$bGik1txww?ebIm;LNtCj-#3$|pa|lza+n>2vR?GTB$cE@CBbt{NSa zMah6)KKVsIPeQPEV|#S=af0r}sml^|>VGqj(+*p)2b2yf#AxJ?W{sgA+uv^xVyNNM zM9PBqrHl!G^(^29=J};xB5mJ}mV^lD&+`+WFLTW&xn)MFrPG^dS`WKOir{URW2pGp zd?RDGTil6M80Z)nD~y2oC`L*ENR&uPO2f3qaS!WG>-My>zjn>#*OE4R{;C44=6}xe zrjV})$ww!x_*H)GxzUZ_fObk}OQFgjIN-0|CnK?IZE0%L4U1us!gK2hw)QtygMu8h zLXn+&@1RkIc6DWZ6fTjBjSMdRK&++}@S8BDR_F9)h5~UWI^=E76*cMpH35w;C~K%6 zS2J~9x;2T(UAb=SA+o)@5+}(q;eV$Zuu9}%@~o6s7vx=hh0C^k^>U|)rLFiXA|-&Q zOE^0y0CrzBby}FUuDg1<5P|QQ6yI*p!200BGe`L6pc4U*4Qmws|PfslZIeZLXjyhx|3j8*OciN!Krcl)P+Qh#}XcTCsy z-00$|RBwhOZ&QV=HUO7EXuo+wM~zz-NyzH-1qha)JRv73i6df@>*zlL`<#l1W9cwC-+I1 zA+K@r3;1{oxUhyaQ}~BkpQ%v1^vWig}}? z<(VJ*?LR9U7PSY25hoq(0*NI)JzpCalNg{t61T>lQw@g=tfc| zrcb^tZlL$)o3o6}M(lD&V@quz=5Au!wWo^N*qhs6AU+OSxt>zh*dU5{n}ys2JuB;r zVI-!ww78)O_yq5<*kW~j9{=>F@3>DH%c=xKJCb8ZAp6LBep_=1Xwv7P zWf#foN%GKBK=6+B!(t44`=<ioF2>=3)EyiqcrWS|gw=zwG1>1tku|lv#h^h^akQfk(ud zPE5LzZ=GSPf}++)XZeC#mj3SQTCJlww-KvP)WoRC(ukmtbI#7@C)MQTRjQdXjJ?c7 zyAXBYZ2b4!UkblDH1>1jQ)^V8tcKwxTIy}!X2X4c1ypvU9of-na^15iraGA1*izAh zV5d0kfGJY5Tv0K|SoVKo3jY+@)Pm(nL_q(!}Z*g2w~2aH#hC%v5h*{cwm;e5$RIl1M}xI1Fcn$4|TmVU#(ZGas|Cu3DkBJPC zB%xu(X**sSn<-Pq_a)%pj-u7rBui# z(3cYiyYia$#2!eGs?%hwp5adq#@%SsTML*wjuJsr+Rj%+l@0c(D4F~-9L zjr}x!+WA+Vz!NVp<>!D`rRh(WFR0&EOj4u1IhTPA1r@hM1O&z`0y#355!eG1w;(YD1Rnu8mk`(k6%jNwISMaKWo~D5 zXfhx+IX5+zF);)c135M{lhNZSe~otqP#bE~ZlO2@N^x3faEIXT?heHY0Rp5z0wK7& zyHmVKaV=ITQnVDeQnZ3Qh2rq1?fK66&v)<4y_1>b-Dl<9-S^p@2?LFmE{C)=%o3~s zgCaP%Ie{VoS#=!&01(K_2?X-sFfiyr5Dwr!C=P=G814drK}G(TUKS1pe<6^V90-9l zQ-?tTDy|LyZe9SlfC#ss2oMP10Rn~pV+ezb0OUY!5Nm)sCqM-T1-sxd$ikdF;SgIp z1oD>u90AN$EC6m{VL|ra?f_{=FdSk9f&$b*2s^MN@U*!TcK#t(wg>m9A0QBr2E`MNM zm<_@m1P23tBW-2NxL9e;?!qf;fOIkp{mL z2LTkMwE-YxeScNwVg-jdAzV0JAP&DOTA-nF$ z_4`@vp)hx-_n)&31Zr*bs|0ITCoX*`#Mu?BEccfM62kchvjrmn{6HX3P)Ha6b_Rew ztn9dc1=sU*0{>QWfB%A!`TKf1!JGg#$P&Q55F0S^2gln5CIhZY)0fhe~ zi|o>W5_bFR^_l+~3>Lt@V`;#Uj0FRj{~@?3kRND;{Nn!qrulD|{~No1Mfraa{J-;2 zaCLC_t!4hD{y(%JM~H*xUwR~8T@gs`tHY2J0R3-ML-3z*RR>!`Tpj;gtBe34XFwWi z>+p9IAub9Ke-E&=76f5s_lGKfaQ$Bc<^X|$wO}rgUke4m!3_ldmkv2qR`$rH;ezDj zZxt9hH2=O*9%==%{xw}Z`~m_QW)aR!+-aD<0nBi^7 z+HbFXf3D3Fbtcx{;(Qt>?H?=Jk#6Xt!hXV`C$;W#S;bYkBn)Z5)fGX~F`6NfIevD~g=`=%uWzGyaEe3*v3XAp8p$EbA>CdT0 zd1H4^RT9~7e0O7ci@l9kdEzc+yp}5UcwD+Df9NTU$*Jz2KKeMp=q-ae%!kngJ3;cy$|#1oF&aP+G(jB|H@r!BeAJvA32 z#B7Uv3a+zKtrM_FVmKUsU=3%J-FbC;A*wZnz&W8dj2OGpk~b4z9L)iiyp4~T*`9Y<>%)$ex$sb9!hk0 zFp=CFD|@)aW6>25r{>B#vP7`@mQ-#O9gCGRI!k*kwsp5fx z^Manu2V?rplf$Y>pUlPe7M_nD4xg(v!(Hb*-X+;8ZgTmcV2JE8YC!!D=~ag0f3?>S zJg+yFgZb`$OiPqGc`|*c=FJGcdjVPET)3X194L8)HZ1HH^=)*-5{T=%o?|JhP%gx* zrC@~WGe<0^%aG(Lej8>BrO^&FP75E;$gM5cguIRj`?+5AIzfp&Yy%`{ahevpZf-1g zL}Z(DWZZePGcxk1u{;Bev67ePfA2q&7v!88!R3eXg2_aldkOpTkh?AWplVe>$_YNq zaaKZIs8O^QUIvJgeMWqrs);%w+?lU6@zL9duQ+vf5GDpw_scU>pY!dkF$2uo3I@@_S zF56F0SOa>_edftuy41;J*Xn75Q|ChX@H3}S;8-nxb(a-{P?4U0*cN!8s^@Tf-|2cz zYF@&O;?CylJgVX3M#zGoe|Eg0!A{C*CA8?F-*BF|8TyuSf<+8r;eK)$>pH5RAnqn@ zE2DCY-r59Lm+{Hju;5^Xa|i#Lg7X#MIMG~*b_ zq^I3qp1E&{9IiL$h=w7mvObY#C$pK^Cf05f8BY@rh2G-bz+BwRf0H-0^#fV5n}wpQ z2SHI^rJsWa+$22uV|#~{g4)fYALjk;1!hM3QXD+JTlA0CMPz+Y%!v}Ld@!lnPA(Y1 z^UfxxN;dZs1gJ>j$n7c_6ihb57s;4rwzKg$qsDsVP9b2?$#I(qvqk?=4S`)t{#1Ql zHwC?Wv1yHpHKq_-f0u5)ym)EXv&cJW^RPi8!_Vx&nyk>GND{=JPq%3Xiz+DJFDhu(ktzNsM8Ihp3*GDaq)7GobZPMmehvE9y*D=|s1*Os$%l zn`yWG$o^w{^RT7TKb$)8treSFeVcUr!O-Go{l)Zq>>=)Yai+tBZ1&kDyR!Gk!S?;} z^EmkMT4Cc?84=<6JCn zW5+X)e>r0p&cj3@9Mi;7-JRM~BhOewb9+Lp#2!N|F&P(n67z&zpfLrNmQAj|R!G`6>HT>$+_33{a8=u*ud~ zf3b;|vxSs%RmZGMPqKG4pI+ybhD{~-`s$@^pOGwG5eer!k(*@R8n!~654XajF45GF*1{59l3K|v5h)M+WC}Hkw4R=KA1Xbw9UQ@=lWAZWC816fx(F*u zg?!CRX-(NZxwb7{z*9^~NfbyCynV=>e=ep&I~&Vn1FhoV$<_n2G!Lx5k~Zx33FH+! zGh)w8ZMu-Nym7CN^dAf02?gF6>@UtS)EQT2;fhmHR^BQPh7J_iU&>zZ9SGG1Nl9q? zQd@>96qulG6a6Uj`oZLspRk5#{sp1R>v8uhDtaX}ypoe5>}nOy5Vw-ocIf1gaL z7YuXC&SX~GPV3BxI{2GP`=BP7M=OlS`r9{6&mdKYUlTRn)>yfYcES(c9x11r87RMA zsSY#M-QTBGj;qF4cf5`)#`Ua_2?XiXt{eLD+KJ~Br-+% zXz#MGv>xrrt_1t4`@Dy;Ip7rB;1bzP_~qlgN16`eUSVUgHaM~!-A?olz+pm}t!P7) zG8uxxY*D~^am4klUAf-d{g4lmp$VeBy6cTSFeS=cZDsK0IA<%kw5SkT`XVLz-rBgp z|A=ys8ujt=V~@NahD_wEe}}fxD2c1|_uaaj#~DzGlEq1-DsTZ>p2X(vrQ=(r?*hD| zDqEep1+rHrc5m_3Pz%-5ZX6TT>27dza6-3?Uivq-XID(nkLT}J1ssH(pgr#QDG_MR z^m)3LnJ^fy7*DL6-fYopWAFSJ|)Z@4&n)3&;5v>>i%w45Q-1MVRv$WOv$@56aXb%~A&=rl&b3br>f&i>I-Xh}6kde-iP{Sbg;)sELd@$skXf z`TbaYDX43Pq}n7qiJYN6@yFYkX^)nB6ymPFsdSD_sRC3}9@2PJ9?#LWjjz}kh_T~$ zB3Zr3#-e7L;Q$>aY!g-^&-6Cn8f2gf2(m=Kd8{Q^Hsm?`F4D=3+P+lp^T#THem9v-0=*LKn6 z3UATs3zEbl)-Gl$6%?(Pee_Hh}Ftp@VtCq$bMV8CsVT!IZ)L_&TmujLiGxq(7&Ci{)-Pg!M=H zd7_8jTf8?OXufaF893jeS>}Na^Y;nM3wgl09=mcVK|<88DjvgjGdI6@FTCyAYTnHD z#lq-xe}}RgY8~biS9`rgO^eAEon_OBK!h5MJUjX(K7wmH=~~hzlZx55_d}mq)~)}( zyQI<__6x+F-#xj!B61JJ-sMzq+hvrzR+7n}2f@9HDX!T1kOH3OAeQP0w$;YwOoBZ8 zi4S!{9-$xk5}MD-@Dl`-m27Ka^0Q3gg`c4Hf0pZydrcjxKB^_zS)uM+TXNx-tNPk+ z8)V%s%VE3b;|tKSEo_ks!!Xe+_j^Vl4Wy5lZ9VxNbfb^LTdus{4PfFLcZ@#Oj>L;; z2Ijo6K6Q#VwB=Asuq@7VI=iCqG+pq*V7ApM6~I~r9}J9kRjS6mxm6@95f|3ySt?!s ze-cdE&?;MdQ$qbCVMYn}Yd6d(4$gG(8BIZVXNV0?zhh{4k^a1CV6=^h0=LypbRK(L z8KuAvGjKGmC`g1FCU-ul-%&*_UvZ((;t3N4e!dN$I+R>qm|Sqw8keA?9i|&d?Z2$W zBaYMKSD|60JojHCyU-<*Dpg+>q!VJCf8FIMDZR+|41`|x3cp-Fxk#SmZ?07gsnc7Y znH~x;@W(uPgmYGrzQ<;GuTIy5Qghppmn2ck(K>RAov?x}MK@ray!)o~NN=|w%>LZ- z^r4OzJub<}_oV>rFFbc3EXK*7Eu?vYpTvu0r}KXv)PB(z#SudYk7QO1kpcur?xq&2@#o4DSqqHNCW5s^!Dx!%s<$&{9qR!Am3cBmr9z%oEb zSiLh~&8uqdN5C2jFF``qzIyvl%wnagTuhJ0J$D97m`TN)%u_D4m!hk~J}c%JntFLN zxtPy(CWS4i712W;T+?eA&KH4=e-46=7AC}PIzp)VMFs!CNZ$bamTC^IXO{p!_0S_nByD1E;llGM^|w1wXG$qRsFi~ z(5&Q~b)azWmGC#h2sFe6IX@lT@$*+E`8hB?jD9q$urzgPlFds9$|Wude|<60K%P6n zT!lH;JIu^ZnpL71$m5Q?B_>dy0JX~JrdgA2^?GbDuJibkq*pof?e?d7Ha+_;7@2T& z#)1gJ%8;SyMTA=d=R;J_0BL@bl=c1|+v9sSW|A)iSnm2gUY2_<&}hW-7e?E%Pl@p4 zL}x|pE5x=FGHkfc$Xo1JfA8I!lG*g|cR#~oUaA=i%VKQAf1dSYBq%3{I9j9R)L?A0 zZXvg5OnOiT&z_ADwMS}*X>1}R%%vwdtS!u3v<)+}vY9x_`IOnb?4~70WUrlbUW8>o zh?Lr70-I72&GHt}$Ek5xg5lFOtu^o1@7vSG72#U5N+&2yt6%Y+f2Aoz&vee%V@C-O z4)cZaEIiAb=p6=eUAP@}1j_N+>!+TWbWP5&QL^t;)X%=BCMRbfzK^AeyT`|{5>Ag! zq{MXHS0{@>$n~i4wkbLh?Lo|SVfTy=d!d_n>w)i9SoTxdi1O@gPYVGfd@a_N^^^Gf z$?)YaAxs8hZy29de+u_{o2KrOOcRZ@G$xk7PL-JE9D+91>x`DhTi(T**-VE}9!1H=g1-f9w{JDlDMPqD+fTPm|a? z!}a>&jnKPOSQ4{Vp{LGvcOzl2zV0gvd;+nj7sNE)6j3>fCF9-TcDA74b!OS123P6Y z9%nR)afeMkD_4^=-1F2Iv*PjcSr|t%c@#Y7vV07~KN|fjYe{(6tl`@GZIh&h#9X4? ziTMei6EA#ae}Df8mGbwwW3&qC>pY0%zEU1UeWK~xhQj}4pAj#JMhvcQo?Lt6AUiSt za)Tg%atNJdPJ@81WFR4~fe$}L!i}9xeffxcd!x(ADboB~P26r3@DQREa66KkdJq%T zUU?Lr&|+Ks&X_wQUL+vYZymy%INgEGGJNS;|X>N+=B6G1k32WDtL}w+_O881Je*_-29iD%PK|uPF1^ecy z8=O~B2$dueJ8+Pd(%Ca5FGG$~vFE!DJAR@6Z zYY@)uLw6-gk=m(I`gSZHIp)CTn-cMgs{M*7YE@Wejy-+O;G@z`R?$d}@sVTzouL9Q zBL*>L*%{sBRl_DB`F*}veBVMZxUu9A*$~|ie>$t9)BHzAV=tc$0@lz$YwJldPG^46 zj#(#OiEnmQnd`~r!6yu1HuJh`?$#G>KItm&asnTefy0xDt~Ft@Jpl*T>_BZq0^}Zj zjPGm^tq-kjujWhTY8t1&2uLzp6#jSEEv|B-ug@_@ig2$95ins;(-)k%QzB5?vWufjDtOsasPE7zI< zM0}z8>ch0IhI+JXq$kip9_HJdOE14{ znrR5GEp(w1ZU5{(_;Vx?1%;>hvxY6 zI^l%NsHTPBpzLfnK%S5{i+CACLSD0b#bH+S5ek}F2)L-Ug|xf%iMz2Me_pt1zIka2 zDjMFLd1mPRI)b+&Hh3n6Z0^FOK5FSF?jft|F-nWeC31ze+>~!ZDDOz#6+O9<1;0EHIgfyA)9(!;Ph~Et{4%S)di6}Hw@kvlyWe(-k62^e^E(CZ-T;m)eA|% zZQ=Idv~YP0x2EIo75t%3Gi~1V3d~(Opf3guCd z2FlU93O7jS_|UvV4Nb`XPt!y!w1ZWH;5fMT;im@jEA~_^9Mq}Op@nHX(%DzBR+o1qvKq?yaOD{oE|1Jmfa5Z`EQD5UOpQBZ`Ap} z`Iv?0a9u5qL`$eMx5vgTvuJNnJ#G)vr)H%0w73X;a4tAsud!MNOb}6bY}B}UQP!&b zb$!AIf8bl|Yk#RloY7??Te_!K=3w}1Lj4Jb?m&#lOzwGGe~B5v0hw|P?DHD?ZZHl7&sl^zq6ufrU*2^V@Y6axxM= z%(pImu;U+1GUbLVsRh;%vTtXOpn_#yz@_}rG@Y&_cLA`fE`FS=zEZ{nB5)%Mm$K+l z&p{HKdwHi@7{%%QQ6L-7#)q2%CC%Ngf5Ru;lX1O?0Dti zNDjQPXR9%zfq-UZS8UY<#Q^3PMyiI%x&E6to@+}2@l(FSK5DcH`qRW1YHmL{iO+C^ zu=_g50fi{BcMIk<1-)1ocgY!V7<(A0OERXE%fC9+e~!K`qn%1*-4^7M!=n6(&F6k6 zx;NLh%UM&BGocX^5(nb$sxmpyb!NGDp-qTl$~bG@zV+E$Y+XmK(}0$*%;EEJ;$V{4 zdo%AU4?`A~(C`bh8JjBi;_;M>SE7thT>Pwz+TPfSYF7l6ex`=L4nc6+bLSAm(7!;9+F1qbP4T%ne~tE8KL+<0A4}b-*oy+^&Pub@FBqvu z^_)|WpPhdiwn8;x>_?=;ciVKW+2ZmYJeG_-YO!swY`{IZ4ULf+lQm$d(Y~NLUMiZ% z3c@i77ScurM<70>tE1xB<+}Y>dpztOyhoYL*}y;9pV%3Jsu>v!%Tq z@4xh7PCz5jyG+~&^lm0^ZwG&nb+G}kumM;&d0Du4nVA8s%*;IhV`%Th3lKMQwKN6D zGXiAo?SRe*6k_%c9!{3#7NGZA{^tmwHlYEq@bGZa|LG18u?0F=ni$yu2l zO^j>+s`e(9K#<3Og`noQ0D&BMnV8(%+!&2)of++&%mr!a0dAHc3xIzL&>86D3N!`$ zkuE^N$QJl#VvGnB05uCs=fA|N_GTbABPSr>U0`Er0}` zfOdZw%l&0Q5BN`M04$6we~0^z_aA{Q?f!H&GBL5YbuhB?u(UG=m|5BY0g94xj39Rq zJ;2D$^bbQL8)y4>e^FJ7*IoO9zlMqqC*W9~m^%jbkEI##{U3stvym$h0CI8x`gr|Y@!tr6g#}=0X#xTm1I;b%5dMk&E(V(Yh2LM^ z$;XJ~k$tby{}6Wl&+AkFXE100{~b%g z{=H*?0P24lT#uQ9+2s9)<^Q?O|8)8P>+V0I{9hXUfAf)av9bA6OZ|uX|D!dswY2g0 zkN&-1T|n=>FK_=o0e1h}R1^5uxXJ@fEnRH?w^jyZ^ge$BB6j9Be;3ixS<=!SXsToh zGO_rpRsNEz|1n@TmUciTduPi(77BoYg_-$(>E5Tx#QJ?{IKTJfpDN({(ERt65_Tr` zrhiNqD+edQ$jQmb1L6IN-w_AEi{*U`O@Z!zb})d6(as+9?gDsE&j(;;?}YHjdvbCB zm_+^%{fU3L*Z@p2{~)gShWZ8{2=v|4~pT(|^JD z3xIz^&OeZ&%X`E9WAL7p*+1~z!0cb}52fYbkmG+3Xz$|mFYkAr=Kq54d@TM2-z#nT zFUSdCvicW%uZ#7+;Co^I&Fei;+kf$TPs{FK@SUgqKV^8gegDw>OZ`sN;UD$8ufzMc zxBIUWv$On1`rid+e<$hiKBD&jDk95!TK`I#?;~%!~ww^$zzk>bOl$f|Uz2^q{ zbBn!?(Es2+KS)5JJJ1ASWzpV*@2ge)*N)${BKU3$2a^JG6bG8AGz?xVPMt1~D6mO1 zHJM+wobE)DM*Gm#_avxqg;$ARyiQviVMBk~5|rDYyq^u?RAvs^5tgTMhNcQnMH&VP z;RzVjgb%%69KAIHtRY*$yJabI9bLFll=3luyA4RWHw>1qjR!9tC?D2venNaMpJj+r zkJJk&nWxAz&RY0D3Ik#wgrmi{bVr@Py_>_xnR+9ZjiW>GIg4T|^3vI6jec10+^Bz4 zV|DJqBgfPEKnQt@F+M}-C3=)Bi@W4iTD0Xfp0a?`Ik97#$YOIu?RlV}^4sb7>N6$9 z6fZU22PQ}?nTW`(HtBfV5|Vfr_N>cw*)4aOE3Q^!XL`kW%QrgeQUZbKml2;xz0ZS<<^s zHhj|XyyMjFaY{@|qfd!%a%uQi!xK@ezh$VLjW_Yz3zmHSQt)BCmAWAvl5iAE6tP>X zt3)PBZg1;EYc+=U`blZjEaHl%K8vBFx9DKP9|T&>9Bj!j5A1CXtY>G zRyOX{SW6f{B!j+;)EATePBVY5{dxc5@hjG)iH~us1wLv3l-D0a$YuS)*YK3?*jR)( zTMZc876@OlSG>%P8aW8IJeu z8~rQL`z2H{g=x!o}kF!J$^U{ z+byW5QoivY$#Dens8v3SrY!n8s*_khh-{St%_i7u=i6uqQ+?#aGL(u(kIY%8>up%f zqsDh7Zzqq_QGRabJ0PcMfPM41iu7tO;nzjSCg8A?Rn#sQoLJz1#Lx=I(CH%ZCqKK} zWZ{Va$pyac+xh|aNGE?A41%C+HEHU+7`2c=JxIKF##RV|ZL;yK>?;-A*#ll^S3&D; zDW(S66rIWnzMs^KL$-%FE`juvtGkzjKZc1M4pjaWBdF!&b9V|fL0 zYE|&?T|kJ?JPp)Yn-E`zusr5?!MUiyR;5&z)@_WqCF+SiGNgYU60%bDifTuns@9q~ zw668(U1W^;u1K7_t6v0q&GcVT4y?&s=YNBy0)ZPA^# zhE_!;qt=b&F1#%;D&<%!LE)AXKh)dM+86RB(Q^3DI(C~E7(Z)M)}^im6U5qY;`2BQ z79u~4^|yD$wH<#T)NosMdE&{;tsRS{P}sN6Jy%4hE8216U#XarCG&}QB#+@|PouHM zQOnW=j$M1N%=E%ZWhRsyEu3ebVr^UVtky3EVqF70@;{=#lroL*(9ts(v$?hMXvY5L zg7C>&I#~mtpr4<5F6(%`;!@~fs(UeZZe!gG zO=6>Rw(ol7AHg1J;2wn0ab!S5{t-q)_vaH#g0#*{_Wh@tCnr6(+q{l=KNpG%gZgwy zt_ieFcf;H21l!tQxnw zsBzHOGr~QRv%A>OHX#THR_jhuBRug=OhVCJHuw?2O47FYs|5|7)@UbW9>KzNNCbCt z;4pt-#OiUf*PaV(KXOEnNdfHvU+EZ7Xw~>&YZ%N%qw>}JeiB`{aA1Z3J)gkpRK#qT zr>RTh+4v@}0Um=JLhWhIwBG6iJIS#|M_cMXu>RI5T*q}@haRX=JR1xp#EhT=v2m_B zC{+ma;QF>^(}?MNd@-~VTC2<9Bp2f22&aE`>1t~wws=rsEI)w3Yo5Jx-rFB?2S1>p zc#35?dH5q?wH%eGip+b)!}gwmeS(30>{lkDS&-zNyXGTGRA)tJQ5(b2#-BE6>j0rjiO7=UeH0*u6<~zmD9V~T4Y7VYZ;z6HNVzCAWV2LBs z*N|`A$y1xo>C9|y_TA&-@bV71dTW0KcJWwLIR)`Aov&EK zALbHPlqFouDBSywsBKB%z`;cksg0c+wH@(X!1X69qzTQ3R|dd76gqI_Cggut@zyD< zD2rg5f_Iz;FDz&${R;T0Y)$QrJ>6$;@26V8G%|M2ZIqz#FhW6Pzv@b=&KgZpc~)Xg zXu+W@6my+dPIDNZWKJoYM}9$Ef`#rsKSsYjyk@1Uk4^cVHTKmJhoHP#MXl*MLhn5nYEseW0w1sYt}6jdmIntW2a=kDZWDVa}@&hM4{BJntEb z(u#&lXKMf zr|BQW+ePi`Pe%!alkw+S=Oxaqk(>(q_K}Igklq%jqQNrz4DC>Ld)Ju-EJa?>=6Yh| zFt*@PXLlh72jMR&3i)c69p)XfMSl(=+FcFQ*caJm503OgB?ky zs*AOUD=A0anz$#zV#zu_75m50`>jc^ugc!Yl#8WpBRzB9+EhN6uvt^ib*#wd<|47% zP9k6HF8Amrj97noPwEq9Vsh+njU({LHjhNL5{=w0EY2Y?SD`HI<(OaXS6zR;W!3 z>&)NXklV7I+^^6ow2dI2GlF!Ed`wmQ-JqEvU5ygTR!o1-)nSM5cR5FMO`5?Xo(wYj z8>5Se!WeE}414tqNcj1v$R$1h&`^789%rQeyU5#)|FvDgfa6YOPfWGc_|HPFDf&v= zdWb!Vl9Lur9>Ju!=Ta`|;Ey6H3m-axGdERUd(+jqQ9>GXV+sZI4oY`w37a;PIf!QF z*?cmuom+psNkaLgX=|c$i*w>0)AdMlXYzsw5*ze`>?XyFz23(NAARCbLQ$X(1Rj6X zVl_{=V;g_EV12%T=m>xMd~oqu^BziFM1!l^UD+3iO?Dw6J8s6r0j|PYf@GDkIgHXc zZzl{Pi8`MyLy2wb-Ihf6zR-+62amQXlu~D@0#<*m(Qnfam$CSl@WQ_aB3Jsir2{G* zXPBVTzTw1gvI#B445j;a!$L1&Viw{%$JS;I#HjlDXk>EH#Xq4uUI(~N!Ex`0Y*_EC zm;E9c>Hd)O{oKbLAi$+_F0@XUq{9dVu;lP>cLQg=FgGo1QLIQP}2=B6fJesNM^F0VdHzBi4ZdysgfG% z;UF%*A*%oyStnwGjlOo^3BjJs=X%(w(%igq-L`$2zUyv1cVX&L#BNbTYlE>@rvyp8iSKqD>nwUE3X zCh}63Al@u?fAW0sEcsDb*Ll$z%)&(^!kMp0FTlPExuv%j=HVtff5m{G{akD?Sd1V@`yO^@Wc1s06mHYWe74IY`9 zioi)}PBO{N@Y}HL%tjoxL%M$n2k!#!>bxK&q`iGDh4jRtR-n$F?0+hUOf$Slr$&cq zFQ2ta78DClVWAZpO)uS&!N`h*!!iavIfYn3n51YrcHM*gg>+>siTNE(cjgMT-7fCX z(i4eMo0}XwOXYJ^$2U_9J=00U0Pt!d+w>i^MKY>eBC5?Zu&;`pUocq>N z98lR;#Edg~4XMN<)6P|?Ab4fTfL7hAz3O7f03Y{Z&8lXXwMHi(>K7)DgMRO3b_07a z$nmuE8WPD#xK-gNvYLM`BO5^#9mx39RDhQI2C|zTzIv zt)ck=nX$OYG+Txtcj0S@xwY>x&a=ARtY95s@R14xF=8vm$*F&I1(t_??HT!WqmjQW zR_)MTe73W4BC9VWFRW}juo4r+n*>G;AhY3o!d6<>X<5SAgm!t#Mx8ijFKZI`RXv*Y zjMYbVA|3?U*RH@I>z#4qu%9+uuT=EnphERW8;1~l4Nq+w&lM$vWH6PGx zW9E%~zMHlqN}dHqqYs^l0d>?}rQ1-|c_hFgxUcuUs4jQ}Tr~fUAZ&}3eU$X4Bw69+ zr_3t3HwjwNW7{%@1P&Y_W=#iymCekaF+9NF5efbQ7(FSV$>0sAQ5@9_>`@1@UDssjwy zVbE2*lWwVuut~Ud?-q3^{TW4FKk)>zd-+b(P)Q`>+U(yIZ*4q?@*r`V_l4W3qEh;t zk4wsBa5%B}XdPv>3-L`!57%rFDk;)Ruu~Y!O+bGID0_rqG6DkVSUSN2FTeY22Hf&Z zOzNqo+I*4_uKZ4c3o}@#Ogay{zj=L5p&@=<7FHP%-IjqJJbT#caZVD-$Ba{AWyn}Y z{4ME(`hll@efQZEo}?s^nJ*?LnMoIXAmUn(%+Y?=G+IAPQLqO_z>|Td;;o|Dl<;@4 zxu$=Ox1B$n+(JG4uRX~a3F+AkJzpCt{5O=@ukmA8tvkPdP9DU%JneC+mjR0hpZzYR zsztl(zQy!?k{=JtdR8QSicAOIJa0f}`_Bc$o%U-8S=g&^czhMwNOR2{Xwi8UrfR&P z>#_An<=7V{;&sTL#U8vohI4FJH}sf5VBLR)%X{_3qZFQKQ~>b>M&`c$7J!_rMZAnz zy|q8>?bfC%|1`9g5fBqD**^#h@*H6L=BZ-s@AshZNuO=g&%@S7*@*Z#8mR&+>doV6 zfU>1h4iRqF(^?bJn#^$}90Iv3>(#y98Yqj_LjytBY>Qfh|-<&KiOTvC4( z<(}gbRYw;0u<>I0AIB_aqoKM|U%K?&DTybN(EY4)QrkEro=d5ao;{-_ZBri8^sB-y z*KO7My{5icq_Ox7=!D0mQV$W;V7$0yf)sl`67l9)Pv?KY%V77j$GhxRdh?ynN2)lg z%dz3xjkw=v*mxad88K|Q@sJTt508H)F}wUG7kpD9!CA0`&L22Qx3TAznVZgJ5Ku&? zrEndrF)4T4qb4JyJ#v_d=VHxCJmj=(UfO1q7y^$2auj$#`ynq-^D6Y{@`K&ig3HKC z>aENTd@(t=aI9bzz<+wci1VyeURlemIeP%d%Jz8@#^kUu+FJ0)krZ38>cR`vMY>+Qrg#-5f`wW9i) zYK=x9PgyoqI;CVJ*`@l_j<81LO=qtY)B{j~W)oDB{#~nlVjS%zyBo}l(0C{6_Ry|@ zFl%mTJ8}Hm8nHLtju@4q@ymbbDcNgG2lDc7FT1>*FQwV%hxjA&+uY|1Fd?UV3-4(fb}>EkEWPMMQt$;!LpAmj-t^ z6SIN5QywKNDlVha)Vp*x5o8E%>yvR-YBpV#8a2u_2EVp^O4wgoZ~NGz4bUqCTAl+* zn#d0Wm+BPpAKz5Bes-wHSu2@_8*+MD$-})sM!YEHJ`JSD7xQ5^R`n(|4C}>_pL3fa zQ-G&pD$x|ZbV0P|Iy`@%H2`Qpm%otXHe{p+9-v#;0BIT^+c1Tl4;DDw-Ojq=%Mx3I zVhyr*!HAP|iM9@J1qO;E6s|bTZZ1Y^kBCADcv=nZE1q8S5q?goaY33R?MnH7AA^TRmk5}=m9+u#ydLP|4Nfkrcw1Ao!(K+0IurMPYoNL_Vv^t3tvMJrDR5Z7+tOARpfWeU==J!W*tW!23Rz9>uw{kZd_HdZCaX)M zNN@l>W1j=!l|l7uHi)V9Y>Ak-PYGUhC?eX!p-QbKf-IJEzI2VZzlE6A{m4{GI4-`n zvGu9O5n{d!b}E*dp$;8?WyHkiGor}$#BRNgsr*->C)KmTTo+!C9 zLk5I$XjS$8HmTP971yeI(E5}%TUoTcK?K3Z^!*Sg!-)bj91cvx4ADPU_O{&-o~Mw@ zk|ECRvw8>LN9YiU-mJ2iCul53j6<1y2G6h;A#u>WDB!fl_=B3QmOkouAnE5YG@o9qXS7q8U~^9AFjl9asfcOER(IuR{aK^6S6l>^HGaXD=8^<)5M) zI%uiCF5`RIY0YZR(>LL88_9pOs^mvIO7!}1_zNQlpM>pwGR~|>`t9y`QSuqqVr|5D zW~r#feLgLnEUSR+j85fHjd?lO3_Os~RwSooh1%ofk6@VE^ih!;$A~} zWa!9;hk;GN)zGvtAY@0!?*AcEa@QHYGh{Aq@QEF@07f66AHa2k z_2W42^%pTvCnpAs8U4;49?@|n18f%SA$fK7h@Wg($dEgv!1JK7T|iSqV0!B8PS`kx z4D0C#`zb+xvn?U9I9Rq437(L}_b5&@bFCZd_j@ zmQ1z%!^H8#J%>tEVrb$(Q+Nx+YFGv{V}m@nJFjzp$@iJTxXC2uTpq;;*cKxFLtxtiixa5MY-7I9?m{nL#WgasxZrzG!e!8Cnbj7%bWryPQ%<4~0!{}Vr zf1(#I^o={{jcxB>0*Rvw)60u}e^Q3$)p1l(bdsvn&^W^m&Gkb2yrf2>ra`$B_-v>X zd`t;{BAqA!hegE?Sob7|sBJEC_!gN+0{6f=@3(4M_ zIFuY{gT@OD5*ZCKZ*f5-PR;Z035IGc!ea--NwvR))%D?O&9D_M!`kB>1Wr_o(@T3k zAYGWV#(fgzuxKHC0iF1p>I+n1ibdZyxQ%IlGY-=@&nAqsoiwj%n@dM(1n9wCV(dy={25%T!(ScR~j8l$SDZ2>#16(ip&Akqhg8 z>-_F=Gk#bUlad#9*522w=Orjpfzq_>^%AMJZHWCy6d27KGar?LsQZgF&)5!8&&(Oc zvEA=+LmN_dLnRDa>LRVgBmR4B;MZR5l9;IVBc9|iZ8nu$KblOZ#*|sF=1I~=6 z4}H%^MNAkMah%GE?i+4=F%x1Jj6$^>f1nDj_Edz@=XrC~xSBuJQ{3AjyF)ZTsX(}b zmj)%S#3?kTD?5Y5yJYvb;qC|1XwO$-8aN7^!SYLs5_L-3m3o?~QmHSl5VoLyI>y5+ z!yPIl5CEnjET}X$amcB<>OXWJH&xzB-&i&r)KOf#vWKKq{}P5&wTcN9#+`@)QHw3t zSQ3mnuLT9%KMwnnRnk7GZ-3Ny9kovD151jGhb`!3oP@P84z(vU&6BFLuj;Ia5aoT0X;n*WpZu^pgv;gT4!)&73%Oey^2Y6!kgtp@(A$v3Bm? zN_z?C`nejOeMR90;*#V`J$1!C4uj1?8v7!waH^A76$LF*je8?mCBc1Medz_>5%V>| zbs~!%Jel=!fowvmL_#6xS_sSOGX)Mam}>5zM(Rqb#haZEvY`<{iEN^O*<$e>A7b*v zL?zpKl6CLgMK>AIE^=b(!&4FgpI&{3IRoi4N78u3qL`|TLE_i`eO zB{s_1O$f8eU37it9yY^&gDy@lW=VXN{o}5@ty47p%&Pqr=kx+cSDjy8vBV@9CNg#Q'QbTj99_86VBCbum^nItfHXxRjUwqP-LctAn zs8i|z!1yXS=fw)O8hM7F{S8BzYq{8o55M)-5IbjUID_{t@uJFqjMNXKMTLo&~b6iQ~i1R;mZf9HmWd7VXK7+)d8Z z5)J52%IjB8+Dx7F5X_(N-|g2C_ls>Xfl|wbqDbDREJ3U#9x*@N8W?j#WTO7gdZmuZ zxLM}1uB5trT!UfeCk zG2*j3yXhze6H`ehrDm-A?!P%SyOCw8M;piPQ3R@gj;~Iw6`g>h*VcxO+UojzRo8c4 zEn(F|7c|l9M_+n)ZXZvy>lz}=#B z;2JN}#cr{e(M;o>M-sV!Mx%6IcWTs)Xg}+JqjeR9NdI1v>P{t1?@&f_TO?J6p*i=R zIVaM$XCB~l=mtw^D!yo3p|Le?S6GDj(ws#T&+lww@u`C`*J9kDcwmdlH@c+Y;Vjt0 z-{2(=-?laj~xn|PTQ}4_{KiafqGG4y9dq+W8hDG zZ5D_h+epV5F~=cQ@FONmZp;E&>fFVF1>hjahNOVbkJz!ZPwzx(uX5Of)7@QvJOymf5DsA+vrDeJOEP}vU(}691nQ_DEBDMAChK3MBIL$2ul$Kd0#kx`ZC6W@p ziY-s?iX+WZWah=HgZs08lYcQS0ShOf)@TbdIpR1d^ZBe0oaJNNT^Pg1)mt>oHr$~q z#Mz>3lc5{44Gx~KPt;b^qhF!W5Gi)*M)t|+xX-SHAkI<@BN1I^~n_G-x`Q=Ed~>RxiHWdCQanWsKSNM zoP3Bnx@{BPq`~ykZgYalJ$K)55EHaB%3T^$SXZsqv9A4bCxVynhZd`#ZO4ot$6n@% z=*ES6p&U6c;a5xIez;pVm#Lt@GxL@8by6V3GYhoxiEXN*er_ix+No7+A%JQB5bAIq zrCwDwgQz1U2|f*fAEl=T9Un)+haBHwOyxj{y_rbgR@{^KvEWxr!OC^zG#xKV@LLNA zM-3^`r_lL#N{&gLA#-wG&Okn5pnmvynmSg5AI1>z1?P?v=CQ{#6>walh%q-|j?5_8 z;On%hY7J7Wow^Ltq>|3w>+&u;D@|bedf~&{R-ni(RU=G)Qx)Y0nyU5pZw$YIQdM&G0S>Jx{_-h@Un-Of z;TV^yYd-RS(7}5wao?H}&G>I59O?<)d7@A0S!bcBpq&W12e9tRJ!rs1O-?okGf7={ ziD>I{D&StZ7WDZcb;r%-K~ID=WA_jWZ2x@NwBc^T8uPoVUKmta4uvuC0-UMH8`w~R z?BOFIj+YL~XD<18+FS@TO-VXABt<3B*mwQ>D2Y&ieOUTE?-8pAT)4}=Cls4NUcb@Q z?DC58l_fKTFLfFIEdI2Ezy_bl*Ov~n+p9o#k^Z$4&aI0wYp=d%U@TsI%!GwdXZ|{C zZ_wnZYlf#d`Vg^sxD{_KPAQkUCIipAQD9`(`g?NVJfjVr^Alhm)^i_abr=ISLrIcu z{~+am3u+8ST89&Nx@K?_Wp(G6c~~ju>Gw^cL0P5GA!7sXc52r@iy#X2+0Be_%Ms@D zMkaU+vBq&duH3f1R6y%Rb@W~taq-Qj1o3v*Du%Uk@_(U~YJ$mep_0+Z=Xt$KGGKb7 zYLEJ^mfj&J+iHl0e)Uv_GLqUsdq&+Wf~Sqbjf&pU#zZ=Kbbt{Zt$d2y(mUI+YXr+& z&}ma8Gc6O|VhdtOyJc_KIB&Z^IdX?WieDb9304qAJ#~A6yoH zb8hSI_K*>bFPk`eJxF;eNQ1Up`HfEGWVlp(q;4cW&k_fnglQ@E%OgSy(Rg3_ut+rd z#z`gM1V&_+|EsmIxfg11aTGz(R}~Nocqni6-m^iUSdvIq-K)s=+@O(G70-aVW_?og zTy}ct>6~6YINQFQQ=^l|f$p>%sL=X&ys-nR^j51rY$@D^pFz zYT@}P4#R_~%NC-<;=%}LJ%kDZ+o^p;H%8>n95e@7$->;(n-D+oE;Sc9DKVcm{I5W4 z<7)gmaRHl5I=P6uhp`~;gr=kbxjSbEc<3yrL^Ze+PT?nyymdW5q@Xsc1f&^%$0%3% z05;P=Y})mL)dU$#x$j3N45t?s0z4qik@1(=UrrL-Ia_4Xe3F6;q{KYkm_U8-8a+${ z7xbW%T4#!M0&7NX`!uDn&`?@5VzB26Zn?Z15+%>d<|Or>OKUzK=suXgou3aacGzb2 zC{gB`Zr7*GGq?<2#qUf3-o9afNgwn>bQpDrD%`=+IHsZaT8c$N`Ol5`Xpg+`1=6d}xQqVX*ZNdC75FkdD={+W>=$in4MU4@_)@(ph zgWc&d^u{Mk<4meM-k{P6u_Kpvf&qhCqE+YOyt#sDXevD1Qi}d{i7zGTMfp@dx>-n< z+fI-h0%Gd0DVkyQZ|TxX8!6o)PfSNbmO$A44g|Tes;)*oe*&@^K)Za=#6J_|3tw9M} zBx#9XnA(PV=-h%5g4!yeZVbyOD5Cq;6d#_bdZ46r(}hKPm8!Vnm+Ksy+8qV`C9RSq zj`edhF;7Gy+NOqo43|Tf7!{2lL8aC|(R|lZAxg_A?T7MGN+Ndv`;BYbQgHSZ z?8r)4?Neslc?vsSj?i7zZeuVzFOQfccVcoHd?5*L!aH{(7UTw0MsvSz(fJ@hSPA+^ zVq!E>9L3UB&Z~MN#L^LinS(DMjOg;v9TE2%D_1AvF%lPlHh4q1NQ3V;D{&^5hixG1 zJbw#-@+_Jkq6vF5f4e)OkNtvMeB5i7aV}e|J1K+1amLi-6O*BXhd`NhfPlpE*3|T6 zL3?{GNOWqU0gAYcK5rCqP9|`>3@bq^ZypUj%XA1$@k<;0>=zRJmk*@ujM+6Rekt>0BgGQ_*#hN`)ar=uRF3ED*u!p!KUep|JJgd4ozJ)bISfxK0AU^&K zjX6M-N(@7XLLOW&<+d5??0uLU8?L&HEnO7QoH@&X6~kr#;iZ61SL?rU-facUe_x~P z&g5grc4feJY7xmzK{TXHX7kxe>7tQ6ra>d zO%+dn1UC5e_511bCOPB62VJC*`X4QK5+y0zc26uM;CC8GP{sn#xMU=-C^s_sbrj{d zR&`ed^$u~`U!|*<1|{IV;(V&xzd#W6_*2*rBvg~q)XbEFZ+A|V1$k*}vzPDX4Z?$! zeuS9Rf}%G4A-C`qoi{UDoiA5~3%fHu&W0p^=&LE4AoS!L;myu@vDSmj(&JtH!&G5p zQSM@Rk?U6|{1%qQ&vR-x8+)4Z%~z+8MWWF9QQ)3aSU9Im1!c_gKK=OEVwNL497O_D z;yV?}lK!&C45wPd)gfn5aYPZn$9Succ07)+uFtyJxr)fQ{ovfL0A$wt{p8LHCB3Xxja=vAo?nP=vwh75EMM|vw*QxZ< zlzus4Tc&$eLB(J3sAx3dNrj~Q3h`G65T{!;rLC;7@yX(%ANY@YEAAApb4#@%JTvEQ zoh&~f9Q{BbOP=Qv)az*#gdD``kKq#*5K>H~eC+XodrKIRJ44F_^wt5* zV~6?{#bK2mbF)W79bDgs(~fA`klyP6KoFpJm+9u4eSFes4|!a*g)(VUj8+%b^2zfS zGq;jbiY2dQ0Q3PcM*+P!>Utc1-K|f>iu?HV*mb~7qiQ>58(^)9gGkjo4mBQXPE@Nj z@7*x(7rU^aAVPR82$frURcd|F&@{0q(_1y*I%17v<-(yiOtUU8PzP=&Oc%@2vK5%v z|8Vu(OdT`f0{Nlz!^i7c-a4mK3k6a)aEV=ZZv+i6M#ALRlS(|=bvSV(%S|&V`;N)0?h!)Lmme&zWon)nRFx#2-67Y6&8E6vVm6`tQdIE{&(v} zl`|OCu9m&APEID6!1e8yt);zG;D+~#d_IkD!e8~9# z&u_6AzLF~!5XCS4Yfv-zz?tG6Tp&*EOIL~&52cRjSbL;oy^jyP>p8zd;qP{e04+dq z{^&^LlRPujr*$vc3_lmW^`*din~7babVR&pI6RC9785Fd5J573BW{oL7F=*Pa0fcH#HuL(ZuF1%UncXg?L)sOoq zy~_7n$WT(d#3dcxY;1w9AI(08${d3uu`REG^{q+#xa&3c{b_W@UzKEzN^bo{BOR6p zk*;~$xn6|kN_~}oM=Sg4@HiC_b8$S|&=P@{*nCfLP@*Y?3}-i%71OB68dYoMKtYOi zZ<<{~p4cCmGBw`J$kj>j%!w?IXg+*2TMs+^6tKnI-4n|(1Phgaj&9w=AE>eVWsgyO zdw$L5cS3}d6p_CCx ziuMTDGJv_>D^tV#!e)iG`%L;_$zS)6W0W|p8;j7PKc?_PvE8;(JvO_?opUOyZ-@*K zIdtKp(;A))3zj)15g*!9)&#Kfv{YD9id7XsW&YU9XoX6X@PS{$D8hLHry@}t>nJd{ zIk-ck6l30h8Ce`g-68dj_4rb{qvNa~zz>ikAiJ%?h%`(B$(G>+A*)0qo@D)M`JM`s zBkh5h?zT}q5!hO}eLiR;26n@WQ&|ut@iJzpJv-MU3!<7zK9U7EB;xvLY2=W(y;tr3eN=YC&Hd!ixB+z($^Xn)a zyrP2Af!9R=dY*9NTY5?k8{hMnLDSQ;9r$5Y%t0Qc+K;y#Me|>$Qr!%Eby#+@tj|CJ zg2L&mG8-9UQKCJFYaWSl(T+q*mY7Nl<=@Ia@ObdJt!|pF{~Csk(ivQ>no+C*C(cD~ zSPR#G;%z;Jb5v%NINf_~OI@bvR|Y)WZbNoo`7teRgcjgYujlu8VS z&&Yba%RVtI@jtEEx+*mDuDagEn$hjFFffHUy~Jzv)Yjz?4WK$8C_)2QzliLr`^@}E z5)-^<=WT9L{6KyIujE0dkGly~A{}>eXr;G*8A-UNouBonObX6EN7&X6Y)b9K(U8P- zy)OKkjClRgH*AV+)r&x_Az1gW=Ixt{JgeyQf?mjWWhy)PD2>qX`y@N4XPc&cqmat4 zDccoVA&L2I1roN2s#xDCtxBB1{3y+^Um~R~3~mvNx^fr zC=`jH@eY{uJuyAR#2%VvniQ&-vi(?pY8^(I#Q4rxH0}qgHpY^s?}QHurZ$R7h$(vm z(_?RTR`&3eQcxNy9IbCYyDsq2?*5}yF>c?NJ zRrIhRBvD}g3Lvd}B&-`r7d+N9xoNk%T(lGTLBC_}y;a#_K!v_?s$;T6Ef@Air~6#3 z4&1i5g4}6|;p^JLd@;@;7lEZ{?pv`x#!47eaCpMKYki`wYwm>1H$s8`LB}J|)A)thoTbp-t%CPo2_ z3T19&b98cLVQmU!Ze(v_Y6>|pmw^oh6%jQxHwrIIWo~D5Xfhx+IXO3%5jX-A1UN7> zIFr%iD1VK(1ys|08#j)CfJjRBK)T0hq@}w{ngN5c0UHg{DP2-h(jkpB0s<0}(h3sN zNQVgePQCBve(vZ0Kj(eV&e?w7&lTS*KG(IKu`p`u@yOc2ZNQ3f7?KCb%P$U)*U&Qo z@&ow!LA?C@0=O(J`Vb@({5OuvVhDCeK;SU(|9{eucL!S|QP^W^BuY^O4g;uqKmkAy z04OXD6cOj=2MF-fy*KfclB|HI5;9v_x$|`V7KJ} z0L8>axPO}iWL?1S5L;^)K*Jj82zEi;Xlo4x=)r9vV5HB#T(CcKL?T_q`S`rNym+l$ z5P!UIcLymBZh#jA=?KsTBf##SU^~FClmVL7F5tgXo!v2Lf{d*h8RTfR>^FjC`zyZ35O=UGs_s5~e>K+`2KR#b z{e7~B!0haQrD5mc%4YzBxOsq89{;6-f^h%A9Kc9`5WkqPun-Ucb_0ODZ5{c3U4NkO z;|l&Q{0*aW2=H@-y8`S{X@CPD_F&Wpt{=kM6AVDQdw>J{{#)?x6D|-4u!Gnl0XAR< z2n_ch?-C=}a}>ku;4rAqKkC0*%%`ZYtEr^I^;gRO z5z5KIy#ana0%8CjF=2iH5C{|oh<}I(0RsN*N81|mR~-Lks{*r!1H}G>i>lM#A$$JC z0rtNJgahzzUz%_fbHM=ie~A8sUx?op^#=TZru%P`|38-h^74Nr`u|3x=mCZPmb3p+ z`2WbQT_8}Ozcf(H^+2MgKm(4N1=#{^8f{T z`33*r5QHMc8*HZyLE1Y0Va*@h;McrCAuzBu90B>YVNh25{Qo0E4VkSoYKtIH)ch?1 zqh{#e_bR|_;dZ}b;@B^Zz(hltXo6G<{UKkvSG6A4+3;@`} z-En_479;@RLs`MSpkRCCFMrV=6a^wsm4G0eQQdL;4-OOp@Y$d$3jRkG6&N2F3jQ^b z|G@-M7!(yX*v$jg*S}E|=mLRxApY?N6a?_WP&>f-A8)@9u*2__i-1}q{_AQ0pDQXL zxE*Tapdv%{{+HxmwXpSYcSi|-lNME|zt6w75E$$Yw#8kTh1*JmIe*oMbzIfT(s=QF zd5^WS+7+E>(jO&+WSz_Rb5zI9Qkrs;v$CtE9C@xiUmh_z>rcb^^=i!fNl#Aja=LOJ z5>26hUG9jdVCdUvj{}(A4o>YbF7iBjo%k?GhmO$74AYD)#c1{>T%;GY^=h-|whOUk zDz*o30hC-2F{aZX<9}pxyY|qZnJ_Z1B8N?$5XC=mH_PzQS1}mBMSli~zm)5UrTXTx zZWf<8{OQxXoPqx5pp!ziz8c}`2ofq%UscB3k>o)tvZNf<*9bILIiU;r^0Y)Is$!Q2 z)@2MUk>&5xg#+zLgCLJ42Tl3l`&v&&n>`xfLbH;&y~`)GmVX=B`rr8QDO-}G9l2|t zGt05m*r8nvXB^gmpm}|mxjM4;?1Kp00}h0T{X36JJWhO|hgi3agMU79$$ z^H^s;fv9f%zE1DAyB3Ky?nitAI2LMoU8as!rJ8K2NPodZNb_Fe&9~fym z4}(BUlCq~y^6cZj$DePVH67*|%Qi%rLZef=rvle4UyjmsnhwO%X1tl$@9Shs+wxX! zy1u|XBC#1(5+7s=D~47!CkVC4e;Oc*HZU8oR_{1#!Ex^$wQoNAh6gmeln~qqcD2}U z(mZtiUVq^x_ZaYikZnF(476UY5yUFyhlv+u82A|fT=W6H^+Z#Mz$}ax&C$LYcLOS| zwn$#MXU6=jC5E`+TFLe3qL20yNn0H)pX#8m?IlKWh@$9sPi@f0&wR#O!tZ=!;oWs# zpYCm$8@bUu4$)}EiZT&gDLsv7AucpYm>DfJ)_+zwQoj{gw-ji-U)@>`S5EW81yXoV zQIQVqvUPWOQ2DpR@vknfjWikPbh8vvPf89lTN9?y&%U#!u4h0Q6n~OG2~;OW*L4KG zqF2ndIWDOl58#S~;>%x|14@dQdf9QpXg%#`;Gtah%VVNp6e3-utZK9No0199%l@C$gn@G zKyr?jl1$$>$j|ZfUq3(B39trzQ7nUEq;;K&dSh16U>8jxla-BR%X+KVBpMhO4VNc= z;LEoSlZG0?8=fzDw&m_8OZPUUGDxK6)PG5ie3ar28(1%`?0Ujf`K>uEi(*pu;I5~x zeA;|5W{%EdM_ej`X&FoI+(Gh@9KufL2jp=!_RuX^l`Cxv^ooW|uZ1j<5<8V4WnX7@ z+e=WW_xD8ln4#c(y_C0$N#?1;^zt7XRsDHC) z70B#mDu+g-Jb1LM%@(iva%3scGiio`{)aX~PwsEmLedqkqWcBoM)I z!!TQ9#M-~Semyq7J^cjU9%3=a{F*iP%jtlEh1ep0K4%{dJt`%!In} z4yN$Q%W@KPKCJgVfdPI|lLJFCdDH1!&uFtC1b1%BZLP;#VM9ynjnkiJ{3`G@%R|r( z9a#|HDt3-?0cfprtC~gRA%7cRstgx5#s)*Xt;@5_&$gv!xbe^rPHd0`(3A{EBH^T; zT2Y?8mZey_JEIL^iFyDF4DAC(9oNfyJ&81zt?t5?9X%4o4W{Ya-2)q*^YmiQcs|7O zg0Vz&Y2f&;O@gvI9dM6*+SERtoi^ukWSnEW<#Np}*_!yI z^}lZ~&da`oOJb=p8h?9h#Us;z&Hum<>z0P?EN8rK;-Va>S2k2cXea%t&X^37ggw+G zH2m$Qv!+p#$(sYk`A6Gw0S)Op&J9a_*ekjR?29ww76S7uMEvNoH@EvPVeM$KV}v_U zf0t1B^t=6XK`NauZDiG91wJoG{8JJZJsBPxay?Bf%Aqx0V7#sU~i7E z`ht#p4>=!>aia{*idfK=Z`|?J{JO=YBpiTOvXB22J1^I~30NRYk@zMymCJvtmVKku zaOQX=Myad{DiWe*Ph&*tyX>B4c_8^+iOG+xLU1I)SOZYP-c8w;Ru^$d<;(Z6p?Se~ zO1;lC%)d4I@qZoq0YM(ZZ>#(Y2d>RA)TVmZEvK@BtC3YWQ4Q}_speZ`H&R=BI+4(> zx-sS30y8xIU~j~jMj>6eb~I;WJ{Vk{P-0)wh34hF7)eQgr3~Z{!6{3CFvU&u9fmOT z)6M?~ZmjGxl!kOaco6M-x+OZ$@84Z4W%tv`M?WhrxPPz7&}DG*`6`uL>8OMJFjdlN z(&7A@wyZm1zIWTd=ts#f2lBl|K5a|t&xp8N3a8^dcrF$@;66U1@~i;vRAX?Uc0uCp zRM5tIj~na#6_*XLcDDW)uTLc#`dIx?#}oq;eA%qc1B0J+oOH51nlR~H!2q79<2Ayt6S;FUETJ>hRPJqo1C=`+0Naf=>#y9>X_hA>HR? zDzQpzFSmT9^BO`MNWJ0u=Au8Iei$1Yk&G_n!+&cWnt(w&_5Kyd@g{Ade!&4+$%P$I zEw9kIvT`)W=~G~3Ar1|U-_*))%wRO}7Sy^^ox18a5=&m(wHwF`d-7g}Z!mt+$ z<$tW9**6wH@7j_Y?8p-5e7~$tXOI3qj;v2CnbkVkNrH>ckF1?P@*c;;qHMB5U#%MF zZm_XhFZz;UGn?;%>FKB}-6F?5*w>5k`wcVt9jU~9nTbp4V=Dxzdxs}G7LOriw`L_r z;)q8tKDG$-G9HsI8$@3FXQQP*#QG*=7=N~BKWPxN>!uwXaCtN3FZnYz3-x=ZS4hiW zyANv{ktKFqN*^Dv@g;>5myXN9RW^vbmb*vN->FhSh**9oL?rus1~2(Ay{75;JS|Zm z?+%}084b-)>j-~gI#M@hwJipnmxsRb#XoUsu~Gzl&P&-OMegk zX?e6OI~52jUDF}k>6W86JbTJ~B&JZWixMZk0$*v{Q+~Ktb;>=f*PkbR zw%&12?|*R=XWfC`mrBe(^Jv0~cgJ}H3R=hRkEXsZqxd-9 zrT9KG)wZ@SD=9>hvbx8fk>U;m=SXJ-FBadH7uMToUC}mnnT3UCS-$wTEuAubnye}= z&vQS$lrm;~=aL3K9+nw{k`oyHWSTORSKhvQA^O3YVkYVCBcH1rO%HtQRDbN<;x7Y{3h%qMX~$x`y66m-&FM;A=5gXdeMVr_svmz4!@_z1CW<%!`8X zI%yKg_U!Wg6q3n?i~F8=1usyoW)kxG@1%LNy$S{v=?OO`2 zYlzzAF^$q?PDW0@gI-)bcV&R;)a0k=Y-UDd+N_q5@wuMfX*$iP)lYHjQk)dUwEQt6 zOPt&d+auBWfc>-3MJ?Ws)mP%tOm{9;u*=E18AN1soV;-_=jAaQC;6?LaghEU*a`9x z%}lKG2_KGhxqu55M}O|fxcymc%|Y7gTH%$?L-zF=E0#sS3L2tP#tt3&96o+l#EN(8 znf;brC0Esq`?EuZl|wV+GJ? z?FZ69^!PI0b;yxq&yjJrebuANl1KvJjMJVjz^qJQov+i(OOGVMT#?Q%{2 zNqUo=8f~~u4Pp3h1D>qSHN%(kD_=mGXwB-T zhz2ixZ4bXBazsblck^ z(=Kozb~H3u>VJ(A4$jzOJrCGTRCp3&p;oWXze-rmkZoROmgW>FDvdYnMF~uJ*0PVKrRyN zV&S4dNo`)+vEiv^qge~4%CO~bRFFK*kv_Ta@|69(t$%xurqfenZ-Vbw38KE06@as< zY#q0&pO~!zbnjsihF~uSJ}C<#UegqCwlB0kg?p%qfL;U=?KYlxuI_f91*$C>`Q>O# zFN37#65`4=PRzfF8&OG+5_>Wvh7)DnHC~gr8z#q)d@s7xm?VK$dsRh3I*(DmC4Zi@PF3wOKoAHpK*Ou)0qzAr(znOuAG$I z3qD5dEFXk=!&S{!=PDRSy>5iHKJf-T%MC*AjRXo29~By|jg&WVRS_4zuBv`>Lnji` zV1Nk8dNo@<;Is8*_-zWdeqOA+(2bJ2!lFM~x`MwdRwkqg)7hV_(Ks zAKlY6>!O&*fNMT-dbo-6gDqt1Z3nQLWS-!SL;wTfQTP*$z!$c&?Bes_ggWVq@Q8I1 z(@a5nwJ3*3%<}&2qTcc?LK2zS9Q~?Pz<&&z^#v2lfSSLRj#|Ly!guQ@9*-k(Qlbe0 zPFaI)--?Ry-p-b`Z`n|L%Gq)SDs*#6;|&RwM6p7}&Wu~Nr6ynwXZKVTx5TA;k*V{E zSb7FpW3~eXP6F~SX2qW?wM3+XosF)Yiwny;(MODH*h1^S(v^_s5R&yiGAON|(|=qN zRfpR-Eg|LzKtz#Jc$p7rsE^Ypk!;3kc4T5)3L6#F6Kq-SpS0d*Z4CDISZWxt$*?q(6??*x%;4oP!Cu;2J`C`l>vg?pLv#ASl}O4 zA8;8mnBS~eg#_@3k?HWgE&ig>01nEPp6?kP+MTLxxjl0Tw%>N8ggYZ5m zR?dB-s7AcL5jlVN{effY{eM71Q=tglx(kSFNY<|Ha>c3 zetFSg4XqH5X1>xATG8GJ^Xjvlh*sc_VN_cNMNf<{S$vuN=HT{2jK9uaVSru2l}Yl) zu)XaZZ?>}%;$TL8WG{F<=APEK<2|bf!#Jg`$r*kvD`hIe6!Ph6w}0{&d|tILTu8Ai zKMw1CV1A|ZoqkeY{jBgbsfFA-!|UGXt`fR%#g^slyR7(6nZh;{Ql#ET_%};fVG{P^ zd46ZPVpy!vH#@MM#WFt(0i(w-DLpr!c8Xi6#0v9?IYN4R&xm{2=_HYRnEF_f*6Z6b zrBuAM;o9oaiZGvt)_-_^W)t>0Sr<00mnZ6etVXYeP1O@=pUv(d<7IANVwgG7YqlHs zbT1aD_-%*Yf>0LZS#@u4O)J}Ts)n{%;EpFAuJ831{g&nH5&nfwq&5#PvhSE>`}&M0 z&oEhSwN^rFt=8d8hEc|uw;6{tZ(u` zX&KPI;b^4Z<>p%!y5IwjZ9Z4s!K>wkHx*2j0!<#c84BQJp)0Pp3$=(+(-Sso9MZbh z(({bZTQ*TT_0(rawR+G8c~1QofJ7>4Uu;h*G@|98wST89yd-MAPc%sjV#2m=)-TBw zcCoqF!G;1;#F82ma1stuo?unmLBr2Q;#1TH3j&iZQbWL~xpyf{gxxwuZTX>Ex95{d zf}C2u-`jX?TTY#9Q!7naZ&p6e&ySNN?C(nMi9AR(q0DT&xO#WA%PlJe8&+9Sj7j6m zk-iy?$$wnMH@8OcHfr+yke_KsCqPnsyj2cY65{s`0Mprs;XK!)V*Qp=g|idP|HZxQ zbERr2y>d{}-QY8H&FUxJ(iVbjUvsu?%7@y=8Q!pot4&#Xx!R8FlcXmweq6HriFcu# zK~sAb(;D|FCL-zd2c2JfKlx(759MwbQzSg~bARIUuE=m@*Gf{JPVV6At_2&2)W;lC zt)f!;{IHl5yEZ$;nQmKKTxO=qjQjpaB#!i|I-WRkY}8L)U^KiZWf>Lj-KYm`*Qjz} z%Z4~m)N|?godJnp$R;hNz_3g^<;m)E+1f%IB_U7P}0TvolvSwOEMuEsM^g0Ss4C(^9l^vpS>% z8)oa%8P*^5L?+;UwZYi%N|wmVMwTmMaDTAJSu|Gd89@(fk~ar--%!WM*|pohndOr- zOl4Wz8HA5HzF^KFu`8SkO>fC`DuNp#Oj_^q_i}NaJNq2&tW!+PZC7STUN!G>n=-IZ zR2pF7uIi(>b@AZoYQ6Mp??cr^Lx*84h(zg~_LaVHQs-G>jN%tK5$;+;l(!7mi+`lr zIkUPp*{_ZLzeV&;h6(g9GAjgJp40>&qkay2<#b$x_LB?ZHUNjO3mcXm4OfAuzqFU^ zej{hgzX~K85x;WeG1@t%y&PE2$VndE&RIMpcO`JJ6Y2Hqq`d;{AIVtm)p`f1YJPBw zlZZ;0v}iWOKSwUn^yq)i((1_=H-BnxcqsWTw>)+K`)8K2P0^3pUz9L{F$gq3irFtY zREc(Jon8c3Y8@k)IN28R)P0|g$Q$NA$oK%bRuV@WTx48Y_I^kC{YnSNldYRHYoz^$ zI6u$6*u*EqE9t}Wa}X6&?~Pm%vyfS|5d&}LxM_OcK>3a|$9)e;Z}QUor++g}dC^o% zq++p{FULb^FIKV`t0_rHNVN;tIwW(G@Gl>B|q?=ZkafKOk?-YPIt%ZS&Vy zzhU&PjewKWO?e4x>kaUiP=6a|bT^uOi^Fn(_cCsI(IYu za!NkxxYX=UnqUyJY%G9%fdKCt_W+b8LUv`n1?CMt)uryt+2jlehU2|$yea$<=i%o| z=0W6aX4+@8;=XbZ;3!WRi({sDoUmoTS1|?+bhSv>XA9qd?ni~k5iAD5gKja;tR^qncintSv z>vO%yj^(oH^Xk;K6G(?h8U9I$S=1si6h#co$sRG@ij>-3kt7u^6X{T4#PF8#O#%%M zHOjSk@mr@R18a_j)_0#|3D z4|)Y0KWY{T=+vyvt4OSe7)ztmk?th-XSapjqw0ga&OR@{< zkwM?djf+hpf%nnqB=s%<>!5bY&M-pw+J=(q2fd#5z~!}T=h|m2i6+lrA2y8!g1Io1 zd!WSc!w%D8pTovFBH!>`*S@b4svCoFwoPoEQ*b6gyKZCKn%K5&+nLz5@dXoWV%xTD z+qP{dXa0ZJseQ9=x~i*hx~sbS;(ec9%UL|3Iw(x`hLYkG=`a|RikVa0La=+neQ{|h z2!3FjY7jspT(6xsNtZ^#%{=n+oru&Np8`^A`A0^TH=C!%si2)jo3HkIbPDet07R#q z3-f=q`I%GhhW}Z@Bk#Z-aY4BlS^sC60uSzr3-T`n@Lxtb2^ILle-{4>DMxF87XugP z1L0!&PeK3)tL;Hs*58b~G z>hN}Sr>h<+`sWe1{$~-dY}K9iEIRr622^=tTEjn(u6f2^l6sFyC90kV|AYGlpggCWtQY&j>hr zPH6I=dW)D#L3B@n-Rp_vXkA8fmmd42?dpeWBP^$f)NZ%%->V;;-Uc!Un8C* z9RJ0ZBL?+|aDYfc0U)q^OHclao{iAklQank7jU|La;tR*O7$%Ser#d|_4^EZaAS7@ z1^J!%JD_{}NA;5-(AW$jRXe>EC@SDM+06ma2?z@?`{^fmxiL8do;7^85HJH;&vxAe+0lm}X(7U_GK(F65 zm}Ddq0ExTUgn2i!XQ1nUFjb|ZAF#{k8-(2V7Y{|y@0FCmFNqxxU{%2S@09SYvBQI) zw;$(*AK$|t{n($Qqo1a!AA3=hYIb(OMcKFM?N0&6f57FREkhDJ?d?93{+(YVq^n>0 zD)75K5E}RvR%cd#4?xpAy*NPwp^drS!;Y{vw~VG2kX#b2t}N~Mbu=J+={ubTSB57y zzN_I#KLcEFW^(Wm;6gB9YV=jdmnooqZ;yU!?Dn0av^hPv{a8a}YTj3XC-58z<(kL#P>K01KfCE?NcPwPV6)Ykxv_aPXdeak#D3<4XVy#;Xs zN96;MF#VM-5%(b&BYrR)nSrs$z6pH}VGy zoCYb}^@LpnDV!m`8z_DU@nfle6S4ypoD)38Rjm^|_Lba0`rcZ8V>$v(qrP(yv+f8U zkt4?d$RB{vf7?Dj0Qn&?H2#n=vi>;v)aRJ6ct?CyBHATDBv5KkueYJt|j2KGhF-Vk5ovY!NYB@o#EEkmz=2M|pBxr?P) zMpSUCZXO2E0Y3m3eQemoKLnV3T3@Te(2X3UV-V>Z_6aam>zvqb5!pVfVMB%<`uy$ zfW+@b;O|iZH~zmp(`Nr0k{;ht4?-yzau<52e*`M}2A9qX66pcpjC zS}^u;Ic3bN6Wc{Yb2^_BT(XOBggU4}gZu|uq$j-GPV*M4vh4B|oAIb7-B(Xh!0BI5 zwOWwWAqcFl2qlseoQ-DJ*C_Ge5p+YK@1g(HV=sI1jm7tNjm=qCZyk}s$j8~njk|Y*GcF)Z1 zrb{wMVNsn)ucKar$ppZjDPgWbTb+N1!P9t){%Q8nFb~WXuvEMGpy;VVU4Q6Wr^z

4pz#)>2_akK#?3iNq+BVo+Kdw-*E`QY(u!nSor^C|g+mb=tveQ#T zHQ>&-->qOQNN639nS2%23HLa{7?wG~)JzD_P!owU-wxXiO2|adX@^)XAK$(&lkp!K z;Az8KS#C!#bO6+m+|lY0TX;UhFypQ%x5r{tfepG6j~uyuuA>Z%nSqm}^)*d8T$Z>* zTvpC66{beHM$OJ<9n;cqf63_5MA?m^G`?oxuNh@FJ%~3*Lx~?FnsYx+F~-B?q6H$w zWA~x@3*)4^tBL>8IWA!LW>R&-u?>NL(hQ(q);zrTuLl^UFKfh)=%=L(@p~@Z1!MG- zou;6hGrW}*&3fZ3)4xMev(ca0ytY!4j7AxAX0N|T4LV-=`p`JnN4~o3{(cY-K-#wn z5MXDq0~lug>8>}R_H~nfcGa&VQDWnk!2!u;>bGA|Y(X+7#kleV90*)IxiPcH- z^B?IWbt-WsoN7E&xKx47l%2x6^rL6?ZI{mrL2^QXT1Z0+oBL;6UYu{Stt~$43`8 z>C=YZZ*3&N?Eo;6gajp2@E@`5bWTN{h)Tlt%K$J4!c>OJZOJ9ko8&h=Wjy7u(HgWUyz@atPJ-M&YTZp*n-g984fR zu|#KRDNNg7+xZG1&gQn7a_2C@ZQOR&tQ zMKmug2lFn&4?1{Y+5a*ARy(ndy<~uO5>N8lql@A=pzV>cpo9_>8@0rH84|k_>X;S= z6{1spH{f2b6w8eZE#Wh$j4OT(Ps}ZyK*myyV<^yUj=kot>0|!AGOKA z#xLD;7ca%9&6Y*=AZ4OQ(1@fh9z*UnF7NSP#`scGa^HTPIQ%`7h_Zme9K9xn>e%A1 z;(*R{EYC{A1EgKr2Lh^r@@yampc<@|1hb`bjAEuash3yr$~}VUb$vDTB`812cVWaP zzPdvuhr@A>sKRC0HeQ;Wf;DmcS65J_w2#=DBTZ^n&HrAiSmu9;?~*CIV396XUNOja z&ONo#nW#cNO7it`U_=R^5N7qu0{apKFP}rVy(TsN`Q=!tZ3Cd6HvkRj#u=!3rgkJ& zA(4zIKFD2x?1A7qW;8|an$O@^O3?H|FNYXD66i`jOae5nkzrD6-u!?i|M}_{A;lfi z@%>1wxs&J5OT+Vl6>3Hq4zlGPzp7m!%(G7?Vis#8EszBt&l9PUcAgfGM`yVx12>YS z+If`*N6-gXaR%^{$Li&gep-&w_UR`rMiHi?2_t#rJQr&T$CYlf5%T-M)M$(op8!y} zf%<_19LOw$ro@;6#wd;c7-6`iq>Bb_4Wn&)oCVI)&TwFXSC4_6FO7AI4GV>=U4G!@ z_O%SzxEi!gj5$6^FAu51f_-f(B63nE@Z>sYjBB`leF7G`lgtm&f5ua4l{yVO6Ri|X zZG7UxiOM?2lRXn~wjZ%+s81KBQdt*C?K^tn@!7RcEDqFYl9?@DbjBxU64@;s+D+z> z`z9|7{X6)K<2KLA;!;fMbDjv|7q~KTG21(Bm7yHmM0ga*Y4>#4@CVaX6tO%fNdtK| zQh7?N$^ej*n)Eqg?=5v;V>;$HDw9DZYV85sdf08fQh$;3dsmaeUDp#7(+LzQmmCa|2iVsED}~0Nd%3}hU6_Evci;PlYoelo;9FSHgayZHmQRGtEK{p znkAv4tBmdtazbjG^a#V1MZTBYnL|1xdlHh=`2k!@a?kq&C=1S}BqcQ}w7q|uX{X_y zNRp-XGb-NoK3(gnnjkZZ&iEI_VRCW0rTk#@zAIDZ0xpk)T8^u7I4$!}65A#W^|$cW zSG_U>>b1^@lM37E-?_WsB$W=c95>--54=bRZfz_vpj%R$g&$vzIW8>ANejRvdEwsY zHvtfF0`sCod3;F%ZK>Rt2Br~#)E;T9P3DQbko7X}a(-H8)?>gR@|yWjn6flbvw|cq zk5O4&lpPWt2*uH?e{jbaz*ikC_VoH9)^uB5O~X`ca?0Zi`n^ot&5OJA zt?G+>UXZ|%1@&w!>c&7P5%b_kj`l5Phoc2=b> zzd30se&gW_#h~D&QX++iD9ZBrISqi`r(l&&t6D3n2;Dt;%l?2!x~%6L|IO>eV86Mn zaxiTFK)x(J%;+ZqOi1G(`_|<9g*cR;_v$_WphnskRxU)RG=60A;Ib12A~S>a;1}VK zmURW87zPO5Kd(|C@QVv|)##YvHkQ%R!p)snZ>B|9VBWMU0X+}VufKf3gGZ(#fUXUmEgyq9bLI%l0 z?SjQVWLdtd@4<<2S&EEql?ZT%)@jfS&Kfv~l0&!>7ZstN;Q$tUTzc^ET#3*T(#E{M zK=O_n+J|87vQs`h=*Ek?12JRJjc&{TMTU8NIw9$)#se*pOMF&x>R!I=d4 z)sZmour3WvrIhHojp4r<5Mo9Mbj z-kB+uNwftVVF>9QN1fqcz3rfz&4eB=X@b>Ei2)3K5K4Pr4}nf9$l&QJP+vK*v|%shCB>M+Xp4uHA&!e!Cp$Bsj?tjE=wh-m$}9Y-YSl_ z(W;PN1^AbRbdkTpxCqUPWjAd4YfPY@uYcc(umnWj(is~LF9X=e1r8ui=u0%$U*d-)eTwi0)y#3=o<}VD;5lAaX zMh9dJ=4!U>P}CIxSjcp0&WSZhiq?uv-J0cZ<>LA!{h$NRG{t?Bj4YUw&XF6K+w^Ra z@D{r9X%AYZ!GM&%oh{M?^v|+^$vr1zs)=4yb3XVCGAdf?{ES6J{PjwlBYNR1;w?Dv zGy_1+H!f^gw7?@o2J8KXUuLtm8#9R0ug(_}ClxzS)n+~Ju)EciMTY2vFzfE%5_7+* z#%t!w_J)lVSdK3&oYU`v=R(Y(%`;)#HYPYJ3(exi+5jmwS%kjtTv_L{cBBMjp8eIP zncL~F>}AxGWKSOuIOkthyooV+k6)(l9GDJu-YrepjlzS&36ccb@nei&Q|Vmc^UKW5 zK1w>MY$GpMfDnSZ?tj1S=gUKYd^zpEocQot$=Xp;a);xAsIaOXP%-rr=w1wH1$SG~ ze=9mdqXI-)K{s^iFLL+m+D4KWZR6nVgfh2AZ`)hbmTK z!KIv85qv&9F)NC={D%C=tOJ$K)5X6NeLt@*CjcnX7hhVb>%SC^2f?+Sc`z2@m)Nwi zqtRvA7UKB&RzpW`9;xDPQjgj~QCBoqIYr+7B9Qm$2z>W+W>>C7vsIh1n5cupm3lG^7!JeIQ><~fO><%Lce)ike! zKLt<@aD$|N(ao`{ALLuN;%3@7*GBA;Ca~*s8ICk{`o(l{u1?R3F%##QwU!|(Vkqs{ zdvvVjU?hW;S!c|s*DuixFJy-6lWP% z^SPF)09UbTcV#AWtYYd37(P68Sc8690|l5YkNGK_pE-N@wr8v?DIFWkk}>)`MbJ&x zx_E$Sn)&=R$<+#H)enyzpd>)$#hRI;z`Ah~G;T3Se+#NUx(kWA-qS7Mm8n2Ss+_0RW{! znUR1{pK@?n#Pkt6wzS#C$lSpBWOc)88H?4lknsTyfi4B)Crvi z>kY(JdxJ~V#N%biskEcuzz;+FESYC$+RjSWZ26Fdqx?fPzb%#){3TG-6JdJ{u%Gk} zBMY?ZUW-#8wLl-%Chy69BWS(%LjW^^%up!{VdKdFjdmw^zWL!`T}!EFBv$2|Fyt~3 z4mvbQewZuf-5ag&MD63K;;>+$S;lC-N#ET$Ru*i)ANRyPFE6Z~46|Gv`R{J0*L})` zR-QIZJq(Vi(T!C-c9r*8J9WC%Ztxx7xy;*iwmNsFVG5zPi8w{1r~1JAG638glIoG= zn4Z@^A{EekX!cQj`J1F_R7_v8TR~r%8l{lyo({9Ok{neLND5EA4<{FE6=$pt>+eG> zOGb|gpEt3!lq}K$BShM5OS(Ur1713RKGw^K3?`q3#IVci9-4~^fVP0Lo42qG0hZ(! zhWe}yW`XBARd2HqU(QTskO2RjOWC)&H@=oT+pc@)dh!$$AB~Wa!Sc)|&e_uz*k#GCT0#!Mi*TyaKJRoG$M8bJr-!%6!mr?(&AcpYw>!*C`+xGU zC0FuhOKcc8;V1>^vESF!`)LYT={^!EAt&B)X8Km0FEp>O%v;mfD*&D5TJp|hztB6r zK83*FMKP0TcK!|uoIKu;|T_aEt|=%CQ-E|~&O za<~16)TvRVY?gD07BPPP8jn(){yHwljj!6xh*R4iGMt<~1sG5#oJ;D+lsM=QX8(*EIYiK%+^AEIRQiW;f zW`#0sE)!9vn58}R0ZJe)lPw!5C<+k9fu|t(`f8+{j?aPdpq zKpUyo5dBE54_B?LoV}b!T0V9nAbaG(T4k(Me(>K^f`^T9TrZ{@%YmU+v#{P=f)x(g zR7qpATg#p-%Sba*tjnfEt<;LhpBtRh=|oU+MTgJ8hIu<>N-e5A9lL)|0q0F{Kqo-U z6~gWD{kk#pcL1Q>O=_g;avt8S-W$6I@MeOswWxbEr|I`0k4xcDMH00$Y3lGXLfpQ& zWCHa((-8WJ9qwhX580oV@U%qVAD)+tdA~SEQoyqtPontCIZWAwUAEm;S^98StvGxG zPo$r2grYc{mT*)NesW(3DMvZjCHqKyv#0Pge%@|%*#nY*=6+~D8v&i!c10f#^Lj2p z;s8@su2a#EmI&?T5Zx=Y;t)@n__1GJE*z3(U_j2*gpru5aR=+)18|T^z8K^{xG^Wx zHmMkF54+T%{8L*@8yG>R{!9;esP3Z&)&5h56$wtAt_$I*plKoX*geRP@EAwL%_xxr zpqe_W>HxkZG0c}wvtqtFN80-2=LVYuTg_R9WRJZxo`0G>WLF#>)5gHSiktijq&`WE zBzNdd5T5%q=+C>Mz`j%aZh@(WbRvPGJz7{f0zWbf%V9+79Jtc>+NLd&rYkA4S#709 zv!DFAMY6(SbW#Y(YF9{4C5OHP{Vy;IZx#L#0)SO(5hseGPUwwbdiM;Mhyd&O1j8cr zue_Bwo;tNRx0|3llXa_NlfBMCokBVFHht#0lvx$}ETmjQ33!D{Gnqdj5^h2R_gZkI z)6YZZKN(XT4mDW8S$zZuJ)WbOx~3-mpde?(au88z>I1d}3l?}=zWAVy&V<_31Jkbj4!7DVQd-nco;~lhCoBY5m_!;g+ax%JYNQUCwl1#=qlPQ9 zDAe;xI1~Qm>wzI!YM?d){y>h6_rn~~a{{<~deq56d+Xt7Jqbroq~t6X;5o1&+8qfH zBhhTn`8x!M-A#BM-dlm&Wc5r*E9#)9U{3G+KI>TN35qR>O`VA*zq>q&>MtFW(z=wD zb8-#fArfdpv-WPLAXjk94F27I?V5uzBKx^|EOM77Dqv>h2Z7rayv7>5M-?aG&$x-pFjPxKnjl&(&>~V6j@|bdeMhNmu1anmlN) z`f}&NMZL~rz_`4{F2tzcu!|L+M+A4>@OS+owpOijk?684wyQw-u3##V;V5Wmj%i8! zzI7EdpK-C!SPJbrJ|ObGMAyKD@(u7g{I$4hNAF$h*d3noW@9Y3>%GSk!tPB?FJ|cc zskw^wDvkt27t=snr+YlseOFX_r3MTg89~at6K0Ita7$JQsM6=okR81 zNc^47kM2l~;n-{#dUUk2o@KzWqFG0LilW{E(i(gikXL5ll|z3Oggpp!V*>*@H6%%R zYgvSI%mBci0Dhe`t(Y-j_%*xSb2`J;JTk7rX@)!Gej3hz%KIOXaKiF+dz3Ive^IRs zVyd}nA`g`7PLf+{K>Mp#23_B0XO~-kH2Jl|1Q8txkKMYy>Qmvb+g|{at#DD=T3U8> zw`psKT9SZ_qE_+uA30U|Ju%C?`oXg*H_h(gFpVn#y)_PP_H}r8?Vn)rKWyvUvXR=B z_PyunV;Jq^VodxiJil1vW>ArD2k`dXe1;Kbio3#?cJryEf_OIQUPn!Zle(?dt>YAZ zxhBUk2%kVBmTAXqlobIl(&(p$2s_I}tKr(T2;6#iP+Ma63Y5a)i$1sWW=w4(kTHL*b|HiBj>! z&ziJz$haXXjs`5o^~VQw(Ftj(RTh}ObRxJ=(UtQx&tU$5^=XJETvS%M1)De=lG`6> zifQ=7jNVSf6YyCaXkyBA{jTl0J@u%Q%M>!pJB~peYoi)rc|dpK&cR%R?HyX1TFpq% z3|xJ}&NT@lu9T6=OwUb3fXPNtJB;w*mfBszUS{;^Lk6(+UCIpg6{J0erj)lnhblRH zZyL77M&pO5#am^Jp3;J9cEt;K8W+^7h-Xz)k*PzETsfIgygc3$*+M7YV;lA593?lq zM)gdtaC>T=j>A)5Q>yDx8d^Cl3iEYU+};(%B50yF-=;x@F;;Zbj*l9s0SkB} z?}lUSuK}(G>%5gLSxJd58EW;6p#H)XxCyC-ncW5u38i-^ug!hV;lo+t2RN!1nP@~; zp|b~g^y(1lI?QuB?*0m98r2cZqpOl(lh98O?KwJyU!U7vhqK5{Ts0dOs3@xXRHfAq zCP12L0XgVeqJeX_-a9uL79cacwMrktoF7$df(DpN{diY&-15fqBYQIOme=nO|C72U z6ZUF3V22ku$EV*box;4kQK)b7!#ymK~KY#tIbQ&$J@4f)tr#<77=+nu>%6G|Jyy_C;N)jxHVjF54XDXLZe zOeU=RgNBY?Hfz&U)0RqxMD84(NwUpD?)gvp7Z}bJr}%p;7u82ddlPwV>;&PhnmGE; zb9?K@uEcr^_!+#IF^N-mE%HCLyI5R~A)583pz%bqS+Z(|zh?oJgC&~|DrWrME?#uoF$0BEM(9Sp))LcizM;*NIRm-Vx+ZIL|6f%Dj zDi&DbmT6B}?p)FtIMkt=NhmYvE!xIFY$P}oO1P^Y6SX>m9$zYpJuAtQVJ5RFd=z}8 zA$u#nsbi-(k}>b?hU?GW$*kydwJSg}OWmiL`D~Wl(9ERD9>ajEWO73cd$H&q+WQPo zDag8Rr|wS0C=b1ty<>KXjVwQ98b-+S!P{&DR(11}$_fn5K~?ipW?;g(Zfrlpm1?gt zI7^A^*nUsTj%1pcCl~$Gpw}-_KDPL=GpG}LLDr)duE|{VEt-6J8d+C(dJnLC-qqQx z2Fx=X{Cb>Y+!#wj7b!{|ahfltL74dQMA7R4_$v+7ZR0y6@E2T%sYq&(n`Y z?pOEN*`=0ZJ-e6hV|um#RnQ@ih$SAMyGOx9#$N1ZUHtMxcPXcFa=XkruN1gJ8QO3D zN&-JSW=Wm*u{K_0^!5?>3lCr-+Wbiej3-J*MQhvH4`EWZvYMBseWP&~@=e!6SmkTs z^;Ys-*ND#NU0&+LpFH0S+v{U~soODG89%1+tkQW?o?P5v=LpX&cD40;{P(DURxjng zoHFVq(uw)#jV3)*^oTo8b-JZiz>{xo{Ks5 z!zhK@2`v?C%$MZP6|(L=`0(zEa^k_X%e|mYLCzQ&3{P?1ug9Ur&=xV`B&ktn`r-uc zn2Nw`Q>jJ*5Ov+Bc{@U$ zjc;olBK0&!Lv?SsB)XMXE7b<=cJV5l&9@XBi~!O7qOe(@ZhYK1LgHDjzuy|l;(j@PIlqeZCMG~!ai`S%j1x;GC)&8Q zV!`FU^A>_D_=ck4-j$+ikkO*cc=K~-m-GwA} z=S)UrfOm&;g$YN$dWdbuz5h$1$smYIz86}d{@tBJhN}5jj*|tn zOTE%;^}u+6_F)6pMFTsAUH*YrOzOtwn|rBq;~}6Ks~x~VG9OPkVXV}vo9#E2os61V z1`8Xz+R59P_kbDMlUtH^PP%UfnAb_J%&jxCeH8gYE*@tgUnU*;lcwV$aA0ejqFXZ6 zZ+yRfEN=`r{D2K+5VUGM(i5r9vO6KBaI9N${NPN|aXN%>bwqvCyI(=dQQU%H*+nYh zvwv+@ItDo0bQeM?NA=V&jN-hAE13>nBX z0xwdiq-;HBDX_{o(Oy|Q|G2_ z5-D&u2I-kLa0|w9C{&8_bkf)N%8+DOXK!s+(E)Ir1gD2hJW(5PkAzx0j8iF^=gq)+ zF4wPy8c#~$ljweltE`6IEP;5{I}P+}p>TdY;l=;5M*yO~Y^5{w#sD{rta2VilSrOr z+cK;eZo|J$3ibeAM9_W&p$Bc(vfZ=lN4^;?+B#+;<_j%3cu`}tcm1V$kHy=Dt(Y6` zeF%_6LW`d})M8yjB!(!*+C~JvtJ3yC6M%Ce_Yfnk-aRjR_Ng0Znbdxo5dooL4*TR* zy_v?93KlAGn_eMKgHf!EU?0Rh58uP7@qPm7UFk{F3My-jK)5;rGqXWLw!8=58>y&z zQ^_`eoA2PuT@77xRc?|KqQ4xq9&{}!jXi`~kx5bKxG!e`@&>+%#fTVw5V~ikdC; za@h$cpU(1;LbR_N>T;%B$NXyT&u!-u-Ga6txKZ|e-MGC?YqvN4$`fGVuYjcPrUfLF zy?FD;+}8LqjH(ioLy_z?(^8}S`MPc`tC&bL^7`c33jS#@BIr`fP?vb%Rc5cUG8CbD zj9YY7?A5*DE)XHdk-8jy`PfNu)WWH8o>(-p3`^q6$A=cKo(dMN&@D+UqVcp|0_8iK z5Tag2oRhGn`?{jmFHmcvX$za_WCc*a#0knfDD~2ruWiOYO|U4re@W9U=0E=~VF$KZ zXj{(dm0U@}8K|wQQrot(LNX)ZL}rZ%04eDXS{!OP^II3FXtGbim*d?3)!i6dXV8Q+ z;K*R8k#C1+a8!A1HsBvbRzX}!9|9@t#ME#YkRj_l@$itas6u^s!Ml$MHU_}8K}*rN zhlksvCVQBXlJC(c9tbv6^OdxK6pyY1S1 z%&&KPTTpglN1qZF={Wpc9dfMu>h*wNRP#IS6mIJy(z_vN6$)yu%XP+hv?k2Qe8AL3 zuzTD?^4bNm+-fcxWmpBrm-4qAWw(G-!jX~{r6On3avzWR`(XcoQRr2~xmocD=vc2PB7fHY)H~xx7v0 zPA)dPfGc{tCuN;?UrED-XO5qOs_o34BdixkwuRY2SZ8IMnlsV#YIC9n zDKCc)YUxY$%$!uuJag!!Lo9tBAubq^*I8;ovFQkE91XE24zMKlw0rkr@gAW0e{yzw(J`6) z+(IU9WZK9{h;Zmh26ZM(;xQ^?9euqLPR~3~n|}%R=pwU3g0lRN-`Bqa!pC}K#P-qO z(G<>L38cW^IQ3hsHI-btN&_AV3UZ7^{T>Y0D6-Yd)5O8ULA(50*c=vebUBTn#Is47 z$XwAcf7M>Z|5|$_6ds}20WWfX9i;VamXYhsOd*pRNLzb9s>E!$F(pYT7uZlG2pcev0xa$kcv7bk|IsqS2N_2w#hBgHq6`aPfcSvT}SpOrcX zTkRz&#FSogquatiM8$#Xo^d> zXqsHl>~nxwbSn>l07Fe-DLgzuP;b{RkvuZ?Z+EMWxU-aI{~*WBA&H(F@MuP;-@!kT z^;}(D%F9|J+5>G4+_Z#G3z;&n($M@;Pqkk}fNL2W$BJbR`I*EZ}t}3m*ZX zcTsVST*c&lO=N}p8Fh1?Vda5ADWasx#Hc?70_@{93|05?f<@zeiG&|EhZ1znzkHB; z>jx1ecvl?H*y#XO5N}#L8CMe2tW^ToqG`k@wi=n%U-77A1d2oJlhBeQk4qX=`6Dm0Lgxs-KC11aKW_KARPFSyu( zKpxQKUAWvQzsf9f&hjSu<7AX#;md1^blDDnnexjV>=BwjA96Uh%}c10NjW2)c)qr) zhBT3iS`y=*{ClrKbe4Y|qXcjm50^>-s{R}Hxcga?7P;26y^RW`e)cTbEPbnmFH%w_ ziaUcq&Q=c;*OPX9jYRn{EdQE9J}seUYX#??-n}*9#%l*9go#Vs$C=$;04{NG%`$@k zzYn(Cai;0UlqT~s>=(J)hR+f90crlGJt%z5n8^L5O{uSI`^T~}$Dts+3jW}44dwwZ zG?7E!aC==P7n3~SHeV*`q$?rwv%Q5-3J`~~(>WCkeomPetjjFPg$O{p4yN+vd%t;U zoUZcbA6dD}oQzOyjJ#Wga!92>ds>gsxD-!tk?7wXU(zw`=zw~;y>H$Opp#1c0JFFn z_yF3c&MDYABNjhD^NqitMze+O61LqlDcE2FY`J~7=j*@ck3I;3q(U|qR=f6e{F0g6 z3MO)6NZ02iS$6)0iuM6Is~yIOgSAZFd@}|`#)Z)-BsO{l9PsPNfk~Jqg3qnZ>nI$F z$WzIS8EC?p@6xKYF38r>;{`&Xdt zNeap{ix%Rs{Xy+623jC%Fu^*&;a4^wYe?h*v|powpC}h$ z%S(2qaUIOl#rk6$0yb$6<*D|kPbiN|6kH~VetSxze*HS&J2LuH#hF=DZfPn^p@FXugPVKZJ2moWqzqsZa|U{}Z<1@p zz5Nl(vNboR1jJbVmL#GiwkoQ5t!&r(6m4?l>U!d=PC-CYIQP|}4m&RLQB#;mha1KD z$kh1}(tuvq8dw3OFCK_Qa7hoDpzKI@-?(SkusO+4ru!c-bg~p=vT?p@!Da;5jo_MY znZG1OyT{rG%38ieqJsj0O+10vQ$<8MV*Yk5VFI*LVM%iOb#)i_65Yp0#@A(={`h&} zHzKk~+~R!XRaXz@xWg zarW00%*d?ERyi7uanQJ+h29DW1JJp(gg#pR=?Z`xOft{ZaTb^;+)y!%w3ba2!F#=U z5EoolWUmDl?+MxGf_Fik+;+kJX}s=*d5U8y)(rZs_ys=V6!Hw@gsp+l%RgvHbdwoD zzFMVzZ1F5B_IECQGI*bG2UfjEIG15gZb2^kx5YVUs{veOd@Gn-{z2ghb3E}=0H!paWXmNYZJ^f z_4AMp>9pe1(jmtEqIUOBqGn^{Jqi72EeQY*P% z*SLh|RZVf=H)v=`GHUmc2;`)_K~DcFblSs(AIui6YI-?O?rbtx`+?lWHj;x<7#w?y zc5D_*3isc5%v&mJWQL_t$5cE&HCal>JRc7Pn(?=zv%NCOB4~=Br@Hl3l|TRsJ~;rE zz}pRc%ewF0Z9^Jk?Y8lvTwbNrf`6 z+!6JC7zS=It<7vj+C^`HP>dlHH?fE~(*!E^5VF}&NM*)$gKsxCDpccV2zE{$)eN9t zib+4BpzM1&)Ysm`S_l-HwroeO2cvRRV#)Cs7eo*UIq$koJ!12|-l6uEP= zX3qQ4;GrnT;u?5E(#4u$iTdq(;dR@#ys?+^5{^?kd1JSwHf>kCUhGx`!2;C&f-#g6 zBHWS15qyAmbzI%Hv?;C=zq))Ff>&iivH&IT@Gq1V{hHHeSh4X{%0$tM0H6FSq12tPm0e(N>uzXJ ze{)BV=Scz@BBj=JF|_H}ol_IH$xf$nzv-`wVJjt_e>#7iQRGnJ1r1!}3@lr-ozyaV zoQDZ3I9E+UHH*F`q+uPl0){&EB`_O8f%AQnW+JvqAp2x?22h@N$pE~Nzu}_e22ynw zsk1{eHwFiV39#&#>eIyEwL^6sId&f>ED9w3-Zs--zwrJxPp@5?UI@d; z-eScMnr?-Kcq2S^P5^wcTA|kxUKQN1@DRUK%di_739y0+zK~VEKHiaI^mNY0fACs^ z+;zLZ4CprxE%O}GktZoo*teJT1hnjSZeVNQHSu0@#H_^JmfZ~p<3f#4GNS$Tva~#G z0mLEdcaTE-j;!8I#rzTBabeNVZNwkwFRbvW&AmY)NjCitO#xLHVJQNIbUvwP3x0nY zpLGTZ$ngarG5>U`j0OG~;p)#GduiI$k@Y&Jcg`6dARDz~yCOTYfS26q1J5BwUR1R} zThEJm7x6NlZ#>KHQkcY;!qDy08^3Z(Cb^`^CQ(a3>-Q~ao0L(wPJ)m+c2~2)w2wNF zK99KDffqo$hRM^sA3W)rVYpwg17 zH4WJ@qO66?AsQ)1SsZCzW(0`T)vcW4%3QaTSj3;g0@03KP6m6^$Q7{EHXcq0Bf8>Q zOmabRsS9%x#iGVC@!|erM&K6AQa{CP5Hk8h)|kkj1ee4zFRMI?@5Mi;=UF2NB-+yN z?4Y5a)dGqn1}Arm6Bp82O6L!5?Ei86OqNV}=vd1 zSP}(TViuh@Xg;e~I}IC--9X=98`HtvKMCK#Dji`8sq+NV#%-dMy7T;&i{&|bLxT0v zG^%;*(1=)zsqB^zhM(W+Q<4q`jz@udqBN>$iUG$J=k=NO*hF%F#6-1;NB2e}r9mr* zB!7;%^DlFwD?}Se>Aan_)Z%`(dDdk^AXnKN)%7ttkvudKYl#a(Gyc{5yDqB%L!!6f z9=W208h992L3i~&INEz^XC_bi^~Ed{wK59pVnCZgVL@$Idwga4zEWgA=@m>cKmYHw z#RZ@XeNY>MHe(F0oylO;m54FHrmTQf2T2XsGPT~~TZI_v?c|@c77&hksTYfZNNEjT zEP)?Pv$Vn@5z z<&Il-;U4@#1+z}7R(4L>)+4 z@2o0>yd+;lh-bI$*hJ(@ve*D}GKJ4l^2X;DBwmTIE@0&%X`DN*ZLPAmhzuO91WA z$&9?EE6c^JqH~E`pj}UdpG(RdXjTC}Q1>(9h0``$R@C-|E0ujBw_FNNUnjEyIDhEA zFJeCrEk1~QaKXneMh)_TZGM81H@}7RMD2`5>T|L``nkS0yC#q54}{31|JhJ5!<`6# zPgH^w%FTx(%_S_hv{=Ym1muV!y*(I7ELXxUI1SS-+hA{R#)W2DM!Z(guOQlw4oWz| z;#GNbp^(~XwI#D1j19pU5i{+Uhf0k%b(5I>{3`mubB#{MaCw8sc%Lw|6y3~xWKSOM z7}Tw|2_k<}*%EeQ#?7(p^>hl?Eae7t-TU(-XYoA1f+QmFNdHa`8Gg9!<#88Qxf@vV zC5=ST7sKK3UT1o{NZ)YsmdKHdxvdd+(tg#*9q;oSLe5KAwn@B|99Pl>Wi;R6Lxk#y z#Ms}+j@iY>+V$cwSya1eCrM#~2Cw6a(ROw;!OKC5^nh*~eJsXb_7OJtHQ)=-zu&~N zsilp0NBdflNZW2EU~sd>0869dx>EvKt8s$H9}pc-DpMsdXYoFpJp7Z5omSnL_gkzC zjxC(sT|kZO6Ie!#+@>Aq$@aiyTWDid*0A)FX^Zaf6QTxD;v}5MBcY!g*7&P?RB2)F zV+CDZS`5PqY`eXG%M=TCC`bq3(Cy56V}|VX>dQ4aUY!RP&@++lKx+(5q46mU>ID(@ zCMuVhomn4H286{U-GAi>1phHRs(Mg-D+=I$ADR16Paz=Z20u%|b8TENjEy}|e zgCiF51&Qw^Lk9V8#kEb~tcGaBcC>#Ot(fkoW zKGIP8LJ|hNzsmF)km)Rdf^1{y9)uVit|@DR%+S7b>fR`RD_UF|F7+|$3cZWDKZK?fH5R@ot+kCp-<3_WH;?wk~cM&jd19`JH>*T7}#I1()@xUyu`N)EY{d zq6b$@P=}_f-5~HlHnGyTSG>LvtEngU6eua=<+jD=J;<7gVUXny?JtRkBV{m1tL)^T zOIFuz%Yv;wtxTUPC}Nik(0(&0#CPF+drLpvP4WW+po@4j{O?pirza54#$bl;+yf8e zH9R<2m?+isZpgd==NouDY$A?J1H?U(?Da&SGGEMJ)?%)|uZx1+e`=4(9pJ`HEzUMV zI*-0tlk%`M{^aZXGw->nK7p%B~Qcf2rL@s%!8#q;`h zdWg&UZHILqpl$soKd+f-1mfqj28mte)lDt&yw-O%8z3oZKOzOV@z_)muAtPaP2e0P zVTvQhT{n6w6?@9KqW*a1AxmEo3Gc7}#@~-|$BAyq$ErrAIvHZzW)kCudp@B)->=9? z?A4c@GAgvxqBfVM%Yn90l@7@m^-n=S2CrSz{O32Z$}_diiR201I4W4^Xi19%rw0fh z|Dg#(JUu%r(PvPZ)!R*C(EyW!48RRFuu5Vb%@^T8EMRZwp701#q?G z`N+rSBEPsAgX&*uZ;*lZmYYTiAIF*2M4=2gmPV+W#~v$4REgHAD*8Rufk=%wH4?D8 z{=&}=!1lK>nDOp(W)f8RH!d*QyK4z(jdrg*nyn~9n)}wKcB}x33LOC?I=J#@dQG>J zWN|)JlX>#qtJ4OUBN_a{SOUBZM+&@3MVR4^h5#w5qS}kcv5SjY#&j?PKc3&WDJjyq zYW8_N9+bI0m*R;zZGm9P( z6;z8}iXjAygs249w0||HU*AJwfU>oI>*2h>fb+8cj}#8r3?vW+lp|RMiW-HNjr0FX z-H>o{a&i3^0_Q?s&kdiu$$z;%W7y4hJg1MaLe3$TP_N}XgM*Q>TZ70tGR?C{PlnFr zaoOo&0M^qqH>0=Ir*8SSG!1ceSLYuakz9DRC+BUH5M5ZkKc&UZX{)PnBBpw?kx3Gs zME9$PG8?eL=kXY}DeyTnRTQ>a8vS+xYFWjMsC2L!WB z+|Bw-Eo#UKC`c>>DkaPl*TWzZv|(#@1-Uo|0Jn6Ng}7-hRA{NL-;cs!GARn z{_|7i7+`OVEGd;i{+DM7>!ry$DMs!WQ9=QXLIzfma?udmU}~~R>dv9O*+^N#49z%d z%mAw>`_-#Xn%Ga7f^sE_Oj@;c)C_2WibbxY2IAd z8D{+8Ipv1RzTC>pTr6y-lxwYWqsM>p{nx7VHH}~hSC8MSKA%tA{&JOP2U4g0>G;$3 z?02>Obs1{65U{ijQC5uS`Nxab0oGv+0k9MzDh}5O8;8SZtmzPPXM(~dzRE*l;t-}5 zk{aWPu20s$HS_tfSo3;PUbSWQB%K9*{Q-lRB7{p_9qQ|h2n-dTfqU59f8Dp{sP0yO z*q#5V5+d@;*NFZb|J9B=8@sz|UH_Sh5?g1f=4!bzZ}{QQ@uxdCC#KBV4~GvY7Z4Y& zRM(?rgww8d-u7@6V#!n3K0_5o4+Cr=Ng$|)2lvpYkFoBXZ7O-oHujwZKj032u`JlL zWFds6Dvfn!Iu`vsh0x(#(z;9JX@Cw*pu*L+x&uAB4L;Q&iq8G}FCF`gL9mXkUZwHV zQYG`Zh!U^Y1$2w66yikIr=PCt1;Bgf7U)2|ZFl0U^XKku3wx0R(SRl+fm1aFM=>f2BfG=`(3=b!O+egw_z5CdEryY9h}hTk zcmvwMS9>lmMNg-(%Wh>2t9r9}{tf6gS%j%i8509x7jZd*v!+qD>LMkE1(2%5Q6mW2 zRq4%y@wYw%ofl=z;gJ`0Y)8{feZdV@tkFzR9wJGwR{QsJ3{@@~N3Cx;iJnq{t)DG; z11q1c2ixp`fCzImGNkDc!?({{mysf^d3eIgXWFMJkJmDjSb1P1yCrUusn0ZBWffIfRT@500HiE00Jl*VE+93a7GEv zc4&6!))}xx*yT@yx{3*g#t3ekvYgCzMXXLA+4Q7IvK-6Z<3y|^%-1YHrr_2z1BbTF zTnl&*|M!p_G>Ur&f04Av!LmHKo3u;A^*1mK%y!9gJ-{N6Q}b0wOvk@q(ynOIdJTJQ zF`XFgP}x*IThShA0^lIOE{ll7kHZo+f+9m7m7Ag9Yi{O(*DWfIp=lME#jI#I(V3@% zL9+#$7Nb?5(2faI2`q+`pP`75FzmW;_bx zgc;5;O%;G&Jwy{R?hmU|Wo2XPRUD`Dp^X%Rc}uE-3jhUu({c0f@?0u2pU*jN+$H! z(BBZz{_?LlPBxHUfjn065sL1W0oXXz3=kPurVLkbqI1&lo90wo#gr=`)4Pab6$c6U z2xQU)Uo!c4fE7?3sKyzV-zPg`q^pg@jfuaCfQRp}>w%T~lmuY%#zDs@QwVqGDaR-| z787+%CVhR$_%1{xXFz7f8iuR*J|2zY{axrUV$0O8ub%7yx;`)gH1g*W924M-DWcLT zs=9bUqF#4&2IIAUhbsoQY@mRZAQ3JKep@`zNm<}LU}q=hnPvITvuCd3n5cwtIRr3vQ{ zN@eUGO2SKy98?T6IXY}4hEugF z0gWPJLCzb0hb>rlkk=_O9Xbb(r`ebqEKD55`6oi*tlYMW>CDAu`N1A}nLYOfQFM`x zFyC-10c}8fzC3jgmU{91c!KMp7=E9FjY``vKu20P5Tx>YwVjcRb_J|7t;8e_F>Nvp zGxA_BLDPkbuz(;E{-uV-`cI8`*%VdGnCk#ZhvrWMc>Xn}&}`ScWJLaK8QtOV)~!lzwh94sW`Bdw4>m2Z@kWF9`S{KYenF`h9-_ z!N@UEJ}7gV{bwx^#yQEN|LC7cueln{1;IW4u;~+~MJj>W1g-5Jjiln0K~M0)tsqz2 zmD?MH@q&Q2GCw*BW1zyyMa~pN#e|!l1_+pY1&UUu*rm;vh$P;dUQrTObBw|;Gu-Mv z%E{hY(*m{`IK|9^y%5HENsCJER5SjK{aSKtqPRVv+SxyL5mL}bSHx+C*^P7p5_GX~ z2xAnbHlZJ~(nh*I!bLA2$&ze8;8B}gxoG8ZO%-x%d+tLN6z(<59QQkP_9Jf{0gRlS zUkJ3(>{IS^hT|2Sc~B8WeSiDHz|QW4M4A%2BpHyKvQNRevi*>8F$>;{nlW$pj@vm? zWl~|~PIM_|pvh54fN&cuG~IPsZuN}?%GYUoikItjwk!4qqSE&}>5i;QZB<&V2M{0< z)M?NSc<})ww3Q~-%*aiDneD)u0H!H~@ucq$wQCcq+Yv@X+aVC0E0}SOHAl8h{LqM$ z)iI6W4bwr*OPK{|!4qmIYe(iHzKqCS3;`#Nn*XbT&R4>4~Xhf#Ir<&h$12kSr<9(Fw1rkGIqDc!9pj70M_#E2C7$C%ILefZJBsnWtfWvvDnt@IgF5$&Q%&<8SIu;jOT)sY} z32RXw*sEO!(wXqtvH9=;I9iQ1*x&50m!&5cGf+o8LY|S-f%B18fyL0p;^d`24a$Vo zSoLB>!lqppeJh%lCg_?8Xb90yCM~EB;=#VWWtx#=74^7`_D`ofI-J8;-S0-CahNQn zEiR4m+ruU&ixzMLWkkWEG(DRU<2o?dO}#Ju+1}D$*$}qd_l&{`DCLA}58#X#tr&j< z5}4#z1A0eM*k2wH)1xP%2EtUA_HSO+Xi_CpS>b^9>B_v9-&A6_=&eouE~RWO1`jB> zn6U$y*l9648GXnR_kSCsi5bnHSkiO@kvL@8as|qAO1>2PFeiyCpaIjku+usEm(l~! zj#$zWG>1O$JQTfvD5K#4c<0##p1JkrJ zzu=+jNLMz-WLU5yx7zK&Gn z)Xk-Tpe4lvNa$K|%evMp{^otl&G@akI?Y+?#4|F9yk$zJe|gSp;7t(hhCif znH%2$N*`_hs$crT)lX+f57Dm{A00v!+Y3%-1FwF5>cq=EOFfGNuXcW_`T9osMvLVS z6+>bVt*`4DpPzV(+jUOV4?2E^`Co2sLLF7Z50ZX5MvGc|)hd1lMruB4+c8voXY;Sq z-l|GxC&$b|*>OF~zr8(#aAQwbx0fFrKD0gnzdrtamVYXJFqoj88kvQ9x3-ViK* za1^IoQG&Om5QvEY0-ldSgV!}$>&=v`*YxFMeB)T{DZvhMtQ?^z#}ZrQ5cqJoI2vOB zV>SW8d<5q1xal>FRRJbm>_jTpOPq- z`aN#tKcejS4NNGBM-;=bxsM#|cnJ*v6Jhr3-1Drwbdr{Cn)wP+1FP0zhir9U^`F7^ z2d17c5ANDVF=c8ih?x@y$M$XR%G^hLuVJ5MW^5^=FP!+}&oRmgkqAzsKcqs+SQ5FG z_qg-{@9RfjozcP{NWZtBncouNV(+uVuWBE-vu|hSp0~r+VJq2hXnsd8YTRw{b>9Ss zxX&&^!-e82>izuNgZtO3YJxY^cenQ*?PRbC&O296Hc|pTb8v3#Ry8@;Z&w8?vn;+V zkeB?{<=?X>%kY_jN^_|Q|6Ca;E^_20dUEFo{9oUpVn@T+FIhZf+;fhV%1+@CA_;aaaq@PkJrq|FrLVx9$EIjV*H! zO2{;=B(<4x7hCfE8N z_ti^FODkpg3EG5aE)!+V2q3(@6Q29XewyY5`K=KMV=H3yxw-%t^1=r^!diGAYca^M zZcg(#eYeK=uZVj9ckh%pFUM+E?c5si&gUBX!AOpyHl}ZmusMIoTl0U^eL)e2sm1-9 z7iJ3oefN5H@%L{;QbP1BWo?{VBFmGjuOyx)=esv+O+C%SZjMM%Crdmxdsd91JkgC? zEu-iC>BBnq8*v|?_<=}oK9S^xoA-sjn6wglC*f>as_>cVv}Jr}yT|ip9bS3)*N%$> z(Q-bI1+0p22v`X*i4(oBZ`;>-`ZkiNVLr7@#sKJ25&!F1eyZu&{T80BwsoHyFnJW$BmfVnU*RJLPSwgEac6gSa;3N2 zx=(L^-Ci#09nQI2=_rnwOob5BhC8?=bykm!l{Y7u*;UmN6ffUioqjKTYq8;vYM(S+ zt*IYpN^-3a7mKuvzOI6}n=Zz3w)D_%mnS#j`T1XGJIAA#_R5g`JOc*P# zabV@8&fWmKdW-j)vXqH8E<(NbIqECnZVGX8K5u>6TxTL)SK~GM7gu#r>9xSP1^MB{ zhx2t#0KM&|nUI5Yd2Bb$JkU8%vo_ZeFspwzv z)!FVpaKBd;q1;@h8$E2j;wvG_lOk^VV-4ol20_5<<$NHMcWYF)WH;UQdYj;9s;>Vp z@WM{eM?v`aS;pB;!kJ&umj>rH@RwHwKDnoE&_4Pqe=uGf_*(@Z6-C>k{WR|EnJ*@h zYMhp}I#;wXnOhpFgFKqQ8()4$`$?XynQ}v(IAZVDvgu;KM9pRT4_y`95g% z8Uk3h$}bvQ?IaBL>G`Y_0tGOAe|h_CT%ajnKSd3#&ds;Y&94{`80c`G{Oi`+Rv&fy zEqLiMS{Ut<98b^a0KLEI=7}%(HK7XaH&6DhT6jfrI|bVsy|EG5MdFJMy)5MKq0;G7 z^vLhoIyKu6{i^7|ZXvNvT6~Ig4H@@_729C{d9_#QC&C(|ot zXf)+R<6t-V6~B%5chAS#Rj=z7o;WiZzU1ap0A(j>$Z^s6`v3AT`kU&9%I8m`)5xSs zDcx#;0%`ld&iCndN-TFSuR3>Fs7COF>S>*Huj7eFG{)PSZNCA#N6ojNwd%w#R=Lvc zcrShQ)Iu)Q1WZ@kvUQ>Pzxy>FC%2W;s|C{6V5JkH#$yR3-*lh{CObjh&K>=Q&mIG-RW3Nb>U@`*#sI5%P2 zL7%V&VS`!m6j2OnCv-;Ze+A`%ty~4k2?4w9m8D6*-@knME~s4NAL@vJ?idZpoDlL>sua8P6e5cFgzXSJ_!5s>9G2#m8>?ZdIS zjfGfR-NCGTeg7J7fJ^=gdb$n3_kAzYaa~PYtMqyl@gp7H-OEFLr8(Ae<9$@3JAU-QV&q5Me#ifjFFTw z^lm7FN)BeM86Z(6IIl4wc1{Gp>&G^(+DV5-=Ph=Y33du7g_fJr3kbX;k@Fz3M}XKt zUcuMwC)h9RlPBVC4)|*p;|0~jF^E0DbB$*jC>zHH!#NW_-#a%E_+ zyljT%90P@X2{_yl(l#NvZb#Y{I~INSjxo6gJ-25`BBY28$JsOH5V4ubW|;V$p)7UL z{ptO5X_RkNw!0~8l)mSi=h*oRkXheqp_~8^KHvKA3%SY&-(4OaKl1|h>~!jmls`J) z>0^l>xFQ7_yuW^U<{DQad&TtB&pVO2+-Nms`DANW157!o1XzvAUTSiBE_+mam1QX| zd&nZWyVkIRtk#z@nIbh#gv++s=k4hv3svtmPD@nPf8g|OQ1Y+Wyk}FkooJqz1Pk^%H(|xE(?`n-*D1~-WN^TnQtLD10gbH&{O7AlC zQhd322bSU!cN;#P>K|K4rLC88MRKyUsiW7bKeeI>8j9w$sJLa8*5xrANn9fLp-eh_ zFclM1)FfP^Q0@&~nhTmlDc)`kxmM;xs;(;lG)bbE2ZynB9Jl-EhOg%HsFiL}3`&YS zHNP`3g?3VqwQoV$|J1@^Csb&=f}($00G2W0N*t}`wiO%tursNuO`24TZPq5{uCa&) zrGvF!=NGPSKK*Nz0-bTS29CB>J~EWcKhO13JgaPEQ&&7N?f^x>UJL8{|=D3s{?|^&Q1ks4|PKblrT^_AqgkOPZxE`k8t;RUMVbnw+gGQb$2%34#U$Bflr#c7~(z?;NKC9~ehH zc}O`w##9o{SoOe#JKd_M;5f(|>K*RRwQB#Z8_ zEYcB6A&66xWY4zk@?hAKol*eIgq8ZJbim6G3suq?d`f9hnIHHdxB>Qu zP{9&<>uqU>!-{ zB42hPNDj?ZhncDloTW8uk5OT%#m33=;A#=~Mnxu&%fX!vc0;TU2$Kzec}DpCDUb(8 zj%i|%@Z#Zs(cj&%zK8>aho=s{I|l#-`ZGzqIqti4XNpm$ld&`f)YR#R-6YX(om+sr z!AH>#wR)@$gl>dH5jDEAL7 zT|bV>U!Gd8o@O!~v$%JmQTX&=g)eU)wK0e+kIDSs&xni+ERp~>&v*CkePI#@b7vg> zIrZUt5adOZ#|U!23qbwzulL58=Q+=<*$tqzAHBW967NjJlz#hO^K=U-Y)`H5y_)X0 z<}wezgpnrSd1XztdcC~+cZ(r8ZAuVi=I0wZ-5tb?Zo2Ctj(DRg*u6gd6f*LcevACE zd^heQ0L{i5q_hk;xkKJVCrBd87Z6t1yIH>pgB;qwy<;;lVj6aVEhweO+C(CE9F!&d zrM+sN)$0OL5$+`c$psB>8=rnh%@Ef9%(3MdKJJw{U5}2(*7|W0bVHU&Z%*At*_Bsj z;*7E|H8^`t?+4y9tJ?#PQz$V6y`^MEu@9IFen5P5wgBeGFrWv%u{ z45jl~%cUvqWzGc9G>rDIj2uR{t%EoN@gWXZkp``Doh~oQa$G=#vLZ|WmSgA3f$RCj z8bo!127QM_1MNK{>bYH}!{EwN6Bd(4h2C&xBqtUid)g~5+nyT zYCV4d_QcOG|2SYke$?VD>MchMP|>%i->9`YMb%!!fOXk44WnWtZX9tX?1AL@7Oijz z*w9n#(&`05&i~|(DWcG))M4ri4&yd>H8}HI0yo~R8@)qhC2pRg%!r~2r)#i1P-Bs5 zrl%lP!HgZhoM*t(f*I-;*j=)AJ-zAHmg$cLOdp_iosF6zZQZ6&1Qss6)j;=NvsJ(w zdm;kcw?QgtHn8fP*LMji2|CrYzOG+X=?tcr~LP@WOof>z{Z&U?q0k;;Vw zfYQ!d2v`rhhBCN}Z~$eN^ej*(W5M6Hou>jHzhN}y#>I(0J4|#a6U<%>^8I)bLO*g; zVt{KGK@1_lZ_p%K<53t*Y^C1MaF30&Gk-`T!bFWKa!?OFoUxUgO5iV-3eu?H)Xotg z9i}*$g*`r{6yz%`b;TfzfL00&%eck>n8WBOiH4=@>P2CJ6G7XD$JmcPGiA;gxXjYQ zGeTjf;ebTDjz)q`pprp|KMh!nt3w}DNy{wuh1q$BxKAJ}(ui+JP-O)4%b0?+l7TIU z)G|;*%|K}Wf`RmX$Ra9y0?o7A4dseG0@cbvbGe@-NppL#Mv2b!sec@SDN^Ey&tbf&VIMm zWmdl`rMW?}+64HK?k%^n_&@LYi4|qdru4}L}n7HuH)2v_x`#+tDUIdOfVYw zOaJtrKb|lLJk9&FXq28jK7YURgXO$gyN9++Z+Fdlx~03ZGfbeNsNGXI(j+tF?Hb5) z^XTJQHGWU`&cj*du>yBOPjBDx7xCE_h`Sf>$N$T6f_5^sh2!OBOD{Tw^keuYHL7w}y8IbrGB__6Z~E>TBt8y19J7>- ztD8Fs8_WM@y0CJyll<2vhf{GJE|>+S>xllbA{>w0VJ-m1;m<>)gVJB|Dp4@olF0B+ zzhn#(lasQ6e? zw!8Is`Z_^#A&o=v}9#+W&zY4+4ZCVCDK#&auY5w2&`S0mrPltSfBn5DD7{D>B z*?3!!@N#p&F>8_Nv68TpuzpvnIyt$2SF)0@kf_2j%Q{**eV5q&rzAn5C%`Vn%`Pr3 z#m+4zCeFelA;Bvp$|cFlDIp=wF3Qfr%^^hc|93(9{?HE#M=N)05;is-*8j|G`uYPT zETH{L5ZT3^+QWW0GIw_L0b^KPU|P-4*Nj^6d@wS%uaQ!u7fzdm!h=L~5RCI*C54D- zsC6VH2fcTw91Ja8hy*+Z6f11VAQaXjyf=8))%2nKB5_ZZ-p@}r$3=xCiWj3S3L8_| zIsFf6Sa}=OikKo?nb|RGa(DQG2oGq741go-LV=(}r)(?MLg7UL;%qH6^^C`?~JXf(=q58l{R|;Vl^9O zy?o*kt_BS)D_egRaOgMit34X0wlE1 z4W#)c=9RriPUo|oBsxX3;LoM)q~^`6-JoWfihs^74j~oB7TLhUjj?3qy$~2cx??!t zD~uC^FAB@DUySQ?>=}dALMiBR!!~Xp5|isEuIt zp{>z#6lF05r&b-F&R|?>G=yo!1H#DXemdh{P-NApLj9VlE7&b_2j90|o;Cm7X^ifG zg-Bhdw?njMz@c+5v?8@GG4S^U{2E2!joRlbzyJu&!A9Z-K~(%lM9ua*u*zY6B}nSA zM5#|mmp*Im6huILUMSh?#O)fa7Eyur1&yGnxj3=;gx)!XE40jAh>Ejn6wv*tL&>kJ z9K|lDY|8GW%y(BJDm$?jq?*17Bd7hyOrx-RQ?O4VB}yx+9*l-c41s{=tk|mxS`YaH z$Jwg41ymS1hG--}#1_JpD&a@qAZ&>d$&+|JW$7;a>dQzQvuOqGNaER-Pu1rRugEfeevZ~Vyu+Tfc3h9fuua!z;%QicQ%vK}TRkGC~{ z$H>N87hNClPZS8IiDU-?4!wb^$#C+nEIc2q#_tAarnoqc?*A5(_K15GrVwB@AXsqV z6l`Toyq|V|WjzD^uG!-$2Y+@@i{KsM0RdEC4j{TsXmUpzL4{8H0l2WCnd8_#687{; zLBtRdv<9^jiKo2!R0g<$E$B9VC~xx3z+{QAD~oEDIyUT&Mtxpl@J!m{19d^Wr;TP# zA*xo70_lEoEBkfBsHZZ6FPcVKyg(I5q&b1XnPraYUN-DMQ)fNVxg`v~uy<5V;}+1R zzpXS2UWZ)b;DE9l1K<#}Z!s#&e=9UVUIxAy z;|qWw_aUu7#s@swt|c*dFQL~2e6O1nQ08lWR&RvI0IWL<8X&aD_>qgCxR>NBjJn^$ z>o}fap(pJAO?d#QFI+a0WEiBt>=Pk~kyp*X#;9SsyZ~>oQ!m0dO?m%!S%rnaH1;*a;zVzr zIeP~YjMr$#C*j(3Z$}SJm*C!#$RK|*ScCJSJO`8l?9$%P^Rp1Cy?-1(cnpaXaev2i z2^pp&O7|oK97h%yK_;j9UbDsq`E}97=0U!Bp6|hS4KwFuyzzrLJrfu+#kUI_-tr8a zQS?}j8ohF|h25Oj&{tWM$QUxii?``Ajk6IbyJ17zy7nAUlYgfV@Ox)$Q595H0-@z$j;cd+>n11p)O@HqTEREXPHd(Oq~(X~=bi z+n}I&NfPQkhpo&4)RfE2R(WPj?9q;4xDeg1vmp5#C&3Auuma;W$9I@;xbVF@?W&Cl zorA^zVg=5Wxr^~Gg{{&|ZM^Vj|SF+--d!P2XbCD<9^_ti3pNhtNaX3LOn3$;%X{SJeCf^hBc%pXf%HO;}RRgNH!Y} zA%ynqnP*`VEmJ~n5(7{Vlwlxmj2UE8g(Cxv4Ph`1Tyc2Zdg5dgjpLIxj+VKU{(;V_ zKwye=S;(7Srw>nYn3y3AhF2~7KL5mtffeBz`4|O;Vm0Bq&2`1_ zpEyzeDd!gnUhU~zI5D7*`4dK6qWy$rR%2oKBcvo)%x%1 zvuY^_Q`ozBsVH^Lzj!GrRVr>lw`FdrOqX8M`=d^`TJv==NY_sD^&>|2OoUh*jo!~4 zzLpK@p46CNCnu^~@3@Eu(K6t2FePS8KpP~7jn3&+28f^;(Cu^_G;NQ0$%N_0J||7K zdFz#{?w-E{nPsLP>Z5ZYGy|EnE-RUza6c(S9C@!HlOK4$DNXF{siXD%E@HE>9YrG# z+@PK}TjQQo(g-aMWE_yJt#Cm$4lpBW&dMsOTD+kCg1#r{U`-eOgd~FJWas37qokBn Hl7jm`;0WsR delta 273214 zcmZs?Q*b5>@Z}v_6Wh)cdt%$RIkEl3w(W^++cqb*ZSDKt?_%q#-Mg;7>6@yqEXhKe3^`JM+{47HtzPX-bA5_Bdi2kJdi?GR2fo=YNGaLUr4iIO&iUd zrRFLMGQi_(bL&P2;LGIsbPPiQo*arj?84NJ%YzK$sB_r_OK_nYmvWjaYpj3##d* z>_t=z6rP$R?xUVUVa)EyqsZ&bb7y;G6m!Ig+-e4ui@x5i`EkVvS6EG)3C;vFsrn9Zp3fFTKu~iT^itCsqgfAke|ZhcgR6JoA>H~z)wo&)3NA+{?~fS z4>CPQy+vtl6aJpeDXG2sV#3}XBz`Ow5nVh9MYNAz7Ty1`BYAOny@aB+DFO;y&X=22#BXb?4$5IBV z#qPJxr>If0xwXAp$7F$fuC!LXSr(Q^CaQZJzwLmEdkT`sCbc$*SAWJZ#R7O~`GryRl+- zq|de<4T@U$F#_j+r#kH2IM@a?8t|9{LrehQM*6Ewl?HRh-$0+-O(5RUAXF0n7ox@L zgi?FE03`EduDAYI{BDvT^3DA?+87Egt9-d_FTR$2Yu9E{!m*>FCB2xsBYp6G<(7IphKvJi+3yq*@_(UzK~ub`UE`Nco*AK z!iKt(^Ze+6j_V2%%Jgt3wR(EprpY{*r&TsfAG&Z@epQ2jpFUhaXx0XTKaT$ zRA&IOJ4!36vb@fZaHq#uk%vro1gB()^*M+&7*IQhET^35{t!WE8uDm$DE4d7FRKx- zCZn{T>CGoyt=JVPjW^3lago!u?p*5nzomI*$j~{`=?uPE|5SqqMt|B*(m}O>ic4Wr z-GPJyOdU7AS|ND7T)8}-ke5p(S>Vj@tJr@8Z>frSSu+@R2;w9;wedwMD0X$@*F%VSdlJ&K6h

nGJGJ;m6Rt7KN&!xX(8 z;m7J8EQZW}?rdB~%;Snxpdpb()_f1#Jkk~w4TK=7dm5 z%CgP!ldq3!-6^!e7W4+ZyOkeM9l!Pwl;iBwwDm-9O8UH=U76D(zD2of>nGvWd>`vo;2E zaF7mYuCdjF9bi=FN9yzHqNj&mhvY3=(~s3DS5r=FlA98{4E3+ms&{_!l7Hdt^TDoN zHV+)U6Yk3LmBS54awfE z3$exH9bu7H*Jh6>7cVkBRld?mGo|nMUJ5;oC?-SPln=7nRlGRLhgu_b#5J+A*vK%6 zM$YmwP9UjhgM=%yVwJ1_;dNDNj^NwQ+dI}qv8LL?fZ6V^^Nj_hiXPzx9Qh+a3UECjvLgxindm4z$}>U2;L0D6w1xN4Xb^{(*7Tk*)8T zskj1t=*EdO;XD!Jr+a5{pT}4Od$Lno{O;0p7{Ac{3|SHy`a7#D{&N_@9^d76aNtO= zGF#G~y&Wc`@|H*rk4AVwo}3rBa=~EU%^vBtm8B7nzVNBl^g^)W$&S1krT*NtyQi`I z2WT@gmhK15m3LyMzi1kv{m>_EyEAw24D31IdIJj(5a|_*)w>N@NUx|-cYkqNa2n4< zszW~uHJ<_l4ECH)55(`4P-8tvM66fNA>s7=6P2Ink@tHmr3L?b+LPJ(+PU8^9P~tc zAAT-Imp+mDSREy@7*Cs2oQVuGMa?j31zLJt?1-d4H6Pv@jW4)o1lJ|A6%K5jrR;>^2Hg$P+)P zd}5h<t&FS;uZ*^o&O)E{#CS05w}+pQ=0^RWf`9)l z{Ddqw&g1`Aq&<0X7Ga^fdqt0=Ro2?R{8%aZ;l;dEcwwH)OFOcD^YY`|7_i1Xh7RYo zxLg566HD5PrSXqm@BcX5jx-NZXGg1G`U!6`f^?b|u;y6~zu+fm4$T&8k#?_72w%pA za7u;hAeFx!sPxVDfRIa7}IhsigB)_XWBY{|o7jmVlNH_-DqZ zkOg2GM?wC`l(KbF*~A47Qx@n%*+dS`KH0hZzk5UVqDHHOTAbsrS)Cz+XLzcfQz<}D zc-;P)BqK32EEeYfoA6jUIg$j^Y5oH|ow$E37=E+0Yy4X99-|!w_s1h{-7z|NW0*9% zuK|^NQ)QJ2=*stA9~a(s#cYk*oRR^=)b}ifNXX-ZgU)YA?7*J4Ou!Jusd__JLd3#$x3qgAml|Zjx9p{333ks9Gl|)&F``}>&lEzJ>Vw(a#{O@ zeVWpo2rE)chuOk(|Ks9!-_&Z+(MZ@NIh<OhEfk0+j#0UW(S`rZ&+WZ+hVZ=vGdAoS;& zND1An@GI&zp~ht8Np3M#AGlt4$o4u{As?5&NBi!3bLZ|DYM|jV5b4*x<;7>ullM{A-16lmFD(cU8u>9FX zDLg&LW$hirkyO9dp0IlgyJVAyBmA_my&{y#sEuJv^HtOHJENlvZO}!#xoW>_5#L&$ zHCS-@)15~>BS7Ke_HqJMYVnpMiV)Dho0UxB6(*%n?iIk{*ntV85;7iEZa zZT7?S6G<@lVV*y~fe)eS=_YMb3%vZWkx~c>^=~L)LpX$xLnHHs*inI3s*6&*k@_Sd zODwS-kBAgEU?>YbVVk>0W~Cd@n}+@&BDsJQ)Kib;%dB5PxIJAhWU&Ee!FQ*MsZ6&J zQu%Fo{d#kPw|vGX{^FaT=;AbxwuX2x0@M$EwXU7<;Ux?XK#UZeGyCjb=W~d6_0Ln-eUZ7x<`)h;#msUA#sxmrGb|V!UJzBkd{H@h!hb zT?9Ko5L6|}0Xr($8>vgci;Lv$bYgHW^Eg+)|Ar! zHeZ&R7D(okK4$s3(BO=PF2hy(jeg}Pj!m<}R1Nt-4ujKxl$Pv+4*x7@LNH`C7fJ9) z4F=jUBR=f9fn83>@#0=Og^Gx(iC`FKZK^v{u^v^q1Ig3NFOppbT?&~m=c~}_4A?^C z1)y2Dj=w7)tppQI&)}N$hv;EAJw=c zerv=IaG+eES&IPTTr^-c%d>L_Z56R(|<|uqBP(+*m}m#N{Bb#IIWzybp3@cebsTa!8GX!!UCiU3%*@ z<=;;eyYePYDJ~nfW>9qlDSUB(KF%;uO^m8~z;Ki_im4!a#^FG8P(huN7Xku^rr2|N zS(F{zv(*WXE}UnO;^mT7mbiHy1eNCKjvVn4P9DnJ`UBq5)2uBNo{}27W){+zs-alc zYTGA+q+#~LNP4NaAV@gaQ*Uu3-375g!NE%Gjq}vc%DjIb>SRt*(KR%T%XaSt<#(3_ zKtg9!k>!Rlkt>_s)s<4!rBA zZWEb}pzyxv8tpV78rFl>YHBiJi=!d90X6<&o_*&?v`JZ!LV8a>Pp2$b7lQ9?msYSjCK^A>`Fc^O!Tta!aXVpE)yRj;2%X10pKk)!2z8f{*83oR1B%1j)EU*a+ngy_oo$vH%bwORhIAk zKv!K}yexY(lKa8)70ebw`cEJT&~4ngckU$)vYbOHp~G+FcRYF0?r4b2;OAtQ2uoi; zEdWbB3&7CZV9%9FErSovMV;Z0DUn4kJL4R0c#Pp{3Rwy6O^~Gl-E_9}>-D^QUK`~4 zrQ<7F42-f7KpXTY!w9MScEQRwv^K_$FPDlga5x8pe$5n#qt-q7CcjGJ&Oy03y*`$988P~nOUUM z3_40ebXDgIyfa)-g;X>9P=0-BAj!be97j%cr@Kn=q--h|7YM!bCGOHGcRKP_(@ELR z*jD6z*r@Qf!VyQJ5Gf@Fa7!41ualKy`g>QIdrqoXfhvj!uWMCwDUS;qb0#9_T-l@7 z-JjBhgy0S5L$K%?v<*80QWo@Z|I;Xge4=!s$eoB+n2MFH#ah)8+(_&wrX<^=I58V7x#V~--!D_jf9H8V_~`Gh@-Ry?!r$|cnBK{DF1^>SIg&4ubj81 zWE{lT%grTi1z!>TM{86EMqU`R6&v0Sf@jAIm#_YMXbxaJ5v~Q71f9R+O7EZ?C8*DYKc2DuyXsJk3wY%xI9n*Um`bpW~6zcM7AN#mx zD{5o;*X~G+dkNNoKA`CX*_ZUT0{DLgMPm$wBPk@WUY~P{y{*Y!u35@#HKGj$t`NxY z!y(5G{9laTYwSPxiaS#~y&I2E>1*+QOu+s54Kg}sNtqCV3Mbd({)Wp+j3vgTG%#31 zZ(qAGq?xH&Es8fL1CbV@aYZpx;aamSw%y5Suv%&P0cxf0O-XhJ_#LaO-N-zhG@-yC&Qi+oTkEgl7rZJ$ zycX3|8M?_yu~1eoiDU%XHcCY%yazx)w(tV1x^Yf`hN;T@VoS|wt-0-YCfG)P?rGp` z<^0@yW2Z$<^HebkwMctg93QcC)>`!#BOl;z3YlXOB#b+zntmqG()HI6Q6lhxBB`h8 zl!O^IwjMl62#M!-dFhTJC9z+JoX9u$KNZ|q6Da&+70Lcu_4tghFb+Y~DoD-C&9eFF z-B-Op{yW})zaTkxeG`a)FG0G6LGIQ==Q+QU4PSeZ68yaCfTd0KKIjxtau4dvD*1C} z%IxA$hn_Uk!4ZV7Q~k__j*6$dVAB%yN$dQ!SRE(FK{D#&)O?L_lCm~xJ~?dVi~;8s zsv(4~oJ>QWS^gSNr0NLBZk5@4R#Dy^?eP~N6p`~8A|v-Hkfu*cc~^zs@YceOSn*ZR ze1!NE^!^Hrr4tb38eUL~UeCH5f--T(NqR}mnh*5(MF_^y_8t3C^;6jEH7t`hn6COZ zz^28O@9Md>^yCi0|{>|#Nqb=yg3e# z7n;Z9+&zkyD|c4}vnxeLjM!i@HPn%t1y;M;>-nZFlAhsSPK}&Gz5b3;VUJ4Ih(kX9U-`mTrp7;k%#)}BYwl~Y3s_#JG;W^3DzI?w3 zWaEnJsIbTlb&I1x?L9d{TH;mY=jSM^Y*x?9_#d?Q1g)S*begcO{7o58p#C~!>-l0H!XD?LXhYVWF&Ms<2=)`+K`}YDc+P+lh znoYZ*!qz-APU(4keCg&*|Gch?7=*B#clf5z-ilOjCtrp0a|o8oiNj4S0cFVueFZB7Eh1J z>$q;T93=4Jb4cwX#wu`e+6ob%hN^^xCQ>g|uJbE6r<=0oH9oyr~fMNo;G2FwE$opCeplb2&fIwx-| zr!U*H&ew@|>@Zg!z)M*AFX7`9Q%~MXj419gRT;ZXH>Zq7w15P&#+r7W!=TIB2C*!I z=9`YbCwgDSDy`09?YCvXzyj(8?5X6LK{&wki1@548Yy6q_o3P_U_N({s(Wr!*=~PT z|4ky?!0fg=*`TY&amx%M6v-X(k1Kpt-z`;_W^JH`?~ClQ|G|1v8fMDQ=588q&G%Wr zUGf99xV6bKm?GyuU8^|Nd!Q#7G_Nx;9s4mDssmAae>l z*kBwx$~FRvmc_G}RKzL6EEa)PoqoH=jKdpcy9ojtJl~K5*K@);kej6?TuWxN;9`wO zBfF_yoT~0(jhYnLTzkeO8VrBv?j>9P`RUJCFPXXA& zh5V+_K;Y}q$ALgiyWWei!Q*mj)+lr)eCJ(NNhVN%$OD-GUpqNdoqH_X4)H*&am9*Q z&((hE;bPtxZyrni@KuRe73oR*i4QRl|lZyxGuIIf=l8A}tZtK3=UvQLL zXa!72xW&8n3(DsFR}wJFZe_SR>Gwo1TPaFybED0lmV2^{IFrGFLb!Xo&-L0(3w>P{ zmhs3e1MF*;;04PW6@sK}IH4p!;n+C1)hXUjmG__WrzQ}X^IIeONRmo&GELz5u6|Rk ztl9ImQLKkT=X98!f+ESzoHq<_23-10?gNdu+=?CbWBe4ZzU;pe%Zx=GaH0|YqV`YU z(QN441AnW5ZozF*delB3lhA|n6SunctSG33xg$0yKvP~7-o!y$A-_Own`ccn2iJu8 z&Z~mADiLQ6u(f^^icb3^EA+rTy362th8%K~4Z^vCdsUhh?6=r=Zswj~eDJ-v4Fg-; z0{f|?FXU}ZGnei%)^5z+diYe~(P=htD~ub9qXN~80%u(fcCL?141oCTK?Xb>Rp7SC z_0=!D95WUoe&!g-6-VXED&N--({I24j%BfiU*p&x`xSQ3;TWQRp6#f)mV zwfHzT529G2GbX*38ht%1hU@exNC zXJT|7E50pJo5p!9TW|+!Q^l84iaHaAN0E;{M5m(PZe$$PP!1!=4on!?iOpJyEzr*& zg2UUkEy_R})4#Dmc*@fYk#5G~TB1n#RFM~?k|BMMLE&lLy8_%b+THIb2OyKj{A_c| zp;5ASX>8tV7B490hzpcUN-1R#c({nII;E`YeiMf$VdQD~Z5HB0e$2~NE`UL|E+Zxqus$GuWMq6fS$*6(mQFDk zVLWS>ei50W4+1;pvH6JZ4Lqs=GwP~qja*cG`;%u|J;*lx&m$4ch6NrB4{`ETDqNDD zKroj^qOdR|$y{z1cDR&^Z&kd)gkP#)Qq$5UPDU8a*=pbI8zXki=>-4IyiS}z_>$1^}uf`ekQ~pZj#6eGv;Tfm*AHV$!j--h1I`DUx^qk=`2KHSB z+E8vey#X}|req2s zMjI?596F&@bdy_n6NGQn;{Kfyn@%J{TvC1qvyexV;Hu+dmIuX`Fk{1)>y_Od6BT6a zJ%Gb4T7gC=6+S4>IxwIpxVO%s@7j%ff~V>T7TiEP9{ZgS)L-vNqy>VQ9mtsyWE=Dd zvvLI?j)`g(2PXdK?aMc~Q~^Q^N;oXiHl*$pUsyOO!3x#pPn{e%fc@{Bv@|Od`jGi@ zwxI@GnM5hAX0@j1489R-Y#rsa?t6-tqiPSg&;vDQ6`mLOB2b1v%gua?iDS?86V>W9 zXpEmAVXymgbp}%wyagxp=v9x?VAn$EnmL&{JB9ep!=RCad`e2x=knaB3_^bu)r5Bn z(%?LGzkD)y8tinxld&@T!yQTG{)De`o%nkVZagp0eEkUfVqkHqQSg{Ir0xgs)()6t zc;gmO%H+*<1xn?ROLMX8znu7FBbpou6@{Q!vL1YJ-Mvt1Kfln1a1jB!JAaIn5J#Zv zPm44Wm5V0 zzCv-|MDP`vlQCc$8bFsj$VE_IE#x{iH8HyXi`5lZ1;P-=O$^Ll&$n#2rewcwTK}}$ zl}xEF;l1tg2AP8y39OFrY*$`nRVrw}#1*D!mk)*F1k+X~&S`ejB5T|Th*r`g4Dcbz zbH-tA)4uUXgf83(6jP$xH zxzQj<1D|+Top1Vy20ji32%%8|$^knIyCrC==>nMNe7+bo@eaQ-!ZqPXa0gBu%&lQd6hYn!lx@eT_%I7F2av=1Jv^&?_#p#Zrk{#FF2-`amLqMvQA$jjyc>qNuybIU z^UxxA2!Zijju9KW18h}(LxlO?XxV!lY&C5VK?gI!q|VuJ*TlGj!XTX7x?P42JN-Nd zQGzu~!wm{Z(5#s|J88NK5PSR?a1vQuKzMz|HRiSqYTq|uRhhN?yBv#@34b&NVo%ix zeOY?7)KJf2b-Xx)YQ6KylMj<}yuiQ#h@{|WHI^t+oY##dc*OZAI5Gpw5nXhs>>MdA z^aD1S(ri7aJUC6&byg3Q_b}1gwnw*T-AW86<}_SvD3`q-EZ8InL3LpOZb|CXF}gl;+^htjP7q&*S1sWo{Qa} zqy-(ppE2dc6DEAcVoGjMM^<(aq$ZHrreW034od~}do%!x*+_5gkty=ZP%%qS!G<@D zDAnd-ClniuBe^xgeK!#$+lad~u#9_1By69^kJ?0F7KgF@uCUe{xW$Z6Mj;74xJ<+f z)5Mmrs2(Z)3qz`*T#`ktG)nV2Pr^jbY;zE>vd$ z_Ukt9F*qFJW%xUmM*Gc-;Y?0$J2L;FetVLz6)AgPLL)`(E5iiO=epYkh|S-wZ?9_v z-dU!vPz5I!wG2tCrZQ|m6Pcgp(a*!dyG_Vr$3>TPh3_^}P;Eo6K)QViYqFn~d#nwb zN;Lqip&MGCNFhkcVG%zC4*fbi7()~@$n9O;-r9$3MbrMt1K&cS2{4B}+j*MjwntvOj% zHk2e8lbvtXfn!8@|JQb4?K3z`HCEKslE}s)DL-iH2=n?1A(JHEYo>K%^ufMN#roT! zgOh!Gh`@a&_pfViqP3%cWPlFI{j!K?>!;4-%ae_23h%U$-Q}j*AZj_o+e^ZXISCMK zHC=R_6<3yomc}3m*ruxya6_#ZvTjX)n>3sE1JTU5+$=oSuod~EzrkF85PP^GcWZ7q zWgyd_*b*i}w;nmEUGhWxtB|j_(hqE~9R}o6|M$dx0byi!{KL_Jr&y~q_pB-kF4ouS z-`|(QX9Tz`p-CXYd(q>cmt_u@Y*)mm2q24A$DMzHJpD`Z!1KdI#TAp0v(kvalSr*7 zB4zrK{9QQ(RT`9X?MtRe_ea3V|uCiizu;dkdQ+NN~%t07XQ{_uKR4><%5qZpRwAR}#|=_OTcabj-I3Kfa=s%P}XB^QIZV9Z#;>Kd;=Z+^Io# z$g^1zKcNg=oB~DyW(143_RdH1lH?$rckEEp9kb$sJ=gq0DBwcuIEiY$ou7u=X)+<2 z3K!&#@7Id2J&(%ak9<9SlPcLUtT9UK^n=RVLf{6c)e4ONC@V@Q%-mCYo&4SYcPcxK zt9v+-&NUm=JE?YA`jEVI@Tq71g^MO@U=n!NNC{(+h6^OlJ8P4?bmmAu&R2hlMg%hn zan1s;JD$(Jib?f$9qLj2o?&G=Uc&_YDICj*^ z5CRi)qskRKndV`_EJLbME|1yiP5?tmff0jg5rc-mJ+Pw?6S1`(w^Cy}&*Z@gu&e(I zSBNg~hF{)p4&F?-8JY#=AX|9TL%?Ff+V3S>QVUv7e)n8My6Gl0FjgLmc8oiI&Bs|2 z))kLs$rt*D4agA&mbixMvm5e5VgJ5{SOCJa11ixbN-Jg3ygEjrw`Huz&!-%ROq>xJI#=J zO2tsO?&}Ate$=UiHKqhWH0dRsS}Vf});Vlh3%3bz;x1{2cpOkbf#NaF$)*PWQb63< z--E6Vvjv~*eSb!dN^HAvN63XS=Fiq7+wkIfB>sW=SR%b%EP2^OuJNVAXLywq-bnU_ zBH#x?BJ;e>;Nvv#nra`XmcoJXs~y;GXRmkta^^@1AQSD`s>g66B7RE#T2n06jnF-E zJAJ1|rS-2j+1e4%=Rpf#${1d(@&uZ56_kkyoh4y|8`3yW7l6j?zZn6%rEA#4@WGmD zmGr6<_7RSsi>=ZDaVaPjaVZW9Ii|{*q{Kw*+HfkUx~8ySDM&*%dJdL)&R4AZHid=i zy6Jw|_KPc{AC3a?(oX8Ig>RM?Nx_GrYoa_aO-Yuk%^0(Z`CKSMj*@}^{6+-RGN*go=Oz|7?S^~}`2G?g;8hG2ajPKrANd{t?$6LJTK(@sqZG;0=pu^{|yRG7g1Xkj-2l9 zy2XH69aDUG&?t&uub7CD_PDiY14|$#EkV**{{i}(tW}z9yT|5P^KGIb@EZ9@nwezZ zK9xs1Y)aj0Z4AGQzs(9;PA{Q}K$GaMiz`?5nUS=P?%X(T;UhQt3>?3p0D`58J|ZAv z%3;YquLPxfQo)0v#S2RKS9Q2mRpKG*F4?ue;!8}8>0YNQTOxndq&c|@8Sm+=oSyRG z_%K#x4vK7El9TvwFa;RFU7)pZ%!a=ytor|#uY?`~)!27qxDn#agZ<&BB<3nBc7%Ia zlIH3?!PSp?Z(FFw1~%n*%=>W?l;s?z#K*DPI8Q~!mViVFkPxy@^*;YLziq0_a`R1Z zKsK@&Hgfz#M}xB)LBT;j<*#IiQ-jGsM$gD?ga92kJh5tSs+NUrflP|=85W@pAWTq_ zp1F-W_bL!0gcN1+V74?Lz2SW*%FFMir&;>!pxxHR?&A~Q2L{0-4N)`H&F8um|82i! zO~@zuvmrB`JR!}X!h}?d$FOjct{i=skS`N~mLW5VqSYsY|&u_|5WTuaLxW3)9k zJ?ZcoP-_Z__m6SfXIijfVkD$lW`jtvaB0^z8d`OEu(g7jV1F&l5QKqoay5MpCn%PS zo%MJ~)cW{?1NiOl@3me!R~`|?EAU6Gocwgyuu};9rk+0dDXbYYX~7(Aw~jqDT5tR1 zmsh{Q8NM7eyr`0|^=dn`^=~(=mZi&!VCq#|X?ctS6c1OBi&xHz#qnQqoLK%omw5bi z_Wn%RhlC19f*MrurlZb@JBCek{jMiqgv3>m{wUUlzkzaCxg|QQVNwg4dXG7nkz;%L zOLX$AI@E>SNG5vfXnAyqwSbif-;#rr(HU8KIi*V%JkfxPb6FqBSZKRy;gT3Nul4mh zMcb*n0pV$*7KC9BNB%!FnY*pOE|03#jn2amex@C5>uGkXxfKicc~7G%eDreA;M5L# zItD;TeSp+6R3?JdxZn+3MRN70IgeTJYyF2O(+m~Lb2II=JujsH~=@!Y43#{O++ z*5O}pps)&@Y!4yD({0?pQ~lnJJ97%<{N|E+R0j42IG`NT@Zb#cV0V_OF+;nMq#LDw zw!K&!h1w4Ife2>Ji;R|^N*s32a+Y0zdhGry4CrQqOj|)2U)C`Y%k@)ks8>GzTUrMK zEBCXW>PHwf9BO(c?Ge}qA<^7EzRxzBi?9SID?m3TKFY!B{PHik|4%ej@>F5g&`kGt z^C?h_WU5lMjxi!1jY-v&W`F|)6hX1{b-?K0UnZvjbvIvBkV`w#!8fadf@d~Wt&ca0 zz31PrI&m@&uXkv2jcScJ<%z1+?4u*H6EusA*VSC7CtE-ONH5n!>GtT9%#F!;%#Dft zf#1yQlWwaT~ncORSV!+ z`aLX6zv#}JzUa?bZwVpYcYej>9sv?IvXruw8u=0zX#j}&JLryv>TYj|qXwb)Z0JAdqJ(rL@4$Ym$mEpx8p)V@56^B*xqSV;cnFZ&J=) zHjs_p``YT`8mlJV4qI%7-Gqy$n_lbhFqcz>JV*o*TEfWLxK!Jz{DJQ%mcu`z%Zq#B zk9(x{T4{|u#-nYc{-rbBTkqmTO+r$X0qdatrT0+gcP{Q2+Ld1&N1H@}eL%jm9LQ0X zP8?WSIfwLJ&YaOWV-%3`&4TCb_@E1NF8JBKMntG+u{&v)DO7B8#^F9O7=VU7vAQi7 z{&gU9H$2cvENmkrO+6hA9Q?6SrZVAsP<9NUZNBs&2{4t2IYRgv9i*x;o@l0}46*zf zuT1Csf}S?W==!laV}{K)ko;cF?rm^+XB`fcIcrOn%db$#qvLlX;HlsW+Bfl(rvtg&cy6Me)w|jm|Yx!pn+|m2Fn!K5&jA9+eaFXNDm>L=|9eONn5CHKk zDcWWU89)+`2z8q*Y$jp0uY_LZt927ec^Qtp z(p&y_h@o_{_RxK`ee9mwz_mX{g)L^{E6^m?)vYWnv8qE>6#C9TLe!C0*b(GAwrLOHW)ifP~zUV0Eo_2>^K7QK9csE(pxz9`V|;}_#2Q9xk0)E6i~eC0l72N<0`Zx_U4wZ7`iKW*=$n9R-_^?X!p;w zzL)vTd^-vp#53OxU{IDmS*WbxrRAw0;Jz7y&2lp+T!B}^DBnPGwVkF`CfI73PLLh~ zgVSTx%nK{b%A9DdwV=8=N1o*@QN2SqYCPAx? za+s0ie&eY9jl%I)s6*LM8$V5M^;E;aSl0QvTYaJP!@1vWTV>TmGfNI48UuNn^mB=c zqrO8Fxq*ffs7a+XOYkmfyu7^&?2oG82eoFZktFMgH~L% z%5rnh5N=djgZc6_SS;&Q4Fv z$^ePI`1Knjr&pIA2-p*>w~J4;%5Em~6=X8Y5ecGNi-X1^fhx?@3Zk7Lbc~~#pPobO zb}xl~$G_TC4!fR1;Mfq%0%x}#vj@BiH8&$J8A99_DZ&dOs^crDIqFL7`+<5}(*_cy z+O5H*-ulys^#Q9~wIV0BjH9>by=FkDt}dCO<%#>|5dEWo$f{b0dS`OtETu(LaHT~h zzx_{(T+yiGjs+Wq+K8szY&HTVZ5r}HBHo!UTuiG||Ip{-R`Z%@5dJQSpRd#je6`Xi zv0j%2hZph9BATq2+7#mge-F6s$Gvxn1&W&mviJ%@^O~g6+?*Xw?WqwsnjQ*yTMzq z!~1zw$vKec*p)!~&W+gh#&N~Y5j*S3(G-<+Fh7aHFAK)82U*!MQ63#z^w^Uc;ku5m(9|lC>1|?y4j|vTve}mSkSWXmf_V7@go3w2V&duJcBuC3EzDZM^j*A$@^bwv zF}z&^X(=*G_7aMWC&L7NmMyDxQjBML=g>()voSA{cv|ZC39F?Pim&FGj~w1|#DE<{ zE!P)sR_)GTuRAIpt?ztAjp{;4kDy#!A8^)XTt8JT6FozvHv;$RE&f2sre3wog}#Oa zq*nw&s#GL@*ql4B1O|Z|oO^}6Q!lLr!b0VZV+ks~yUru_UhqLMUl>czn?iN*K)R}Y zkE=5=D?I&!+qyjLhfQBZ&aZ2rmJLi`74}W&oStk?&WKR!;4m=!0+lcOMK$*V24_(( z|C*>V_AEOZ8CU7Is`=8>Uwv!(p@Gf-ysIOh5$*db)*Qwdr=b=Ru`5DF_Y1qEn=ZeRVD<3YdkGF&KYY*UBI}-^cxHKMgA!=szC1$6SqWH3bUiHi~7xO_9a76ofp2`?S~8ejP&T5fP9fE=h%0Nh(R5hO{+oogz!V;5nRo;@* z!ZPpmiOT7sVrpY%;OucxH2Pp@;%Foa5n83LpCvmmjIh@m9pem?7EECt;!^SM{)+nV zQO;!J0{M?X>_8XdFoI6Jx{YYnTAB0y>0`9)aCTfO2g&6UPLL$~9W1UESz=WS=Pnh= z6FPPV-{9CdnfS2+dqdA5kRX0as7Zh9%NC^Eb;=M2+9@N%`Zs3Xskx|vVjLu;Stbuv zB9a2aw2YULKDnkfVvE8eBl39~?i2T;3Q@HIZsYP}HxdleZVvzGN&4J4Md_Z~O9%Gz z=$v$@T7v1U&|n-y@~J4;CfUPKIb_K7m_l6P?Z0?gM#XmN9bfF0k|$NPfAx5%pzcm9nyLl*j}YN8;k!-@oNT+pSY=_>+pUQ97Gg@bWFFItZPZk(ivHNFP|x z6|d4*A-RFItD#wD8BoaF2bnRD)J$1zLr8)NE1sOFz@5MbEI0=rGw=>Bp5h!5{&GW0 z%7)Dl?V1!0qfiDW)Pxy0IE-qlahDD{!TwIurk7<8_0$iM_E(f^=>_!epZ4#U&k9dQ zCN#JCZ0?_;GdO@@t27 zAAM~Md%?4Fw67)-`Z1th!x{?XL0Wl`y|L>P2C7ndlIsN=k=C$(&_Wx$v6K3|@sYhr zFdCoVjpUvSfX)qB3O^`iy?jFCMLkT!oOtgQNo}tN4;5vMpFD2WIDV3$ zSZoR?0^PHhKc5+p*J~8kg@(hT9V#lz7;oZ34f=VrEvD+m&%r1a3qAZsk<7co-j>iE zPf-D|wUx|M`@h2*bFZdyve#ON`kLFk$}UwMglAh6-aDbwA2>Bm?dv#MOJn?cfmWZqbp~~7P7h^H z7e1WCdDVD_E!}s&+wt*N5;+IP(;c@w7IS$NN8&)KS7D05FL|nAoGYRhEg22bU+eq+ zGRW5@I{dV5gbv^@Ag*#NVMYz(zi0AqWL)-kKyI}ts%62R6%mKOSHhqiPb)0$3_pM$ z-&x6QXOS`|B=xz9gdd%yOqsiCx+dMC1l+7K{1LoI8j`P5VD0*&D@S z$BXUb%=ScN!Vp8#mYyPcFh)Ni7irY3K81Dq{eE76*X%0$jeT8P0x<8|-zM8QhBMyl zcQkCjM%XsVg}Qz7lad4Y`~nrN3DW|bF^#C!1#-xJ_W1#8ty9nD2A$9P&qUWwZCF*m z>t+|~wuSO_pTr*9jhwT0!Gqf!r|Qbg#eAvieMdH?T}j8EV7uqEmG zoxbeOq-xv*1m&Z_71_hYFxTaZX-&RVrG>bSJu$qMy+qDMqZ$A{AyE#MbdH$Zo7MS9 zK)K%Vx8jytueU#*-fc9?-HoHSIy?2PJxVny$H%ui2d>HwKjSKs%X4&9Hx6SDCai6U z6%_3~XP7sl0P{WO>#ql37IJhC&(kN>4bKl?G4|l-!p!E!529G? ztS4g51)H$<$9a#>INB7&kA2IuYW%zlM+f))A7 zKnYy<`8xb}2)+7%Zes7*c>XnBPbW6s$2$@F>_xfYi9_SOKuUkl9fgdLuB>>XoIu_` z;3x5M7amuryHaK#cHx87luH3bqfk^KOt4KIatd<+H$+(pb>@OMuoX-VY_DHsV4#pV zq4+fcCBMC6De9hhnuO@{+WXvngQCg6SJ8_eq`lg&^2INJpwexRw&&Og?C)rBj)nT7 zKAjk$UR$E8oQ3U}fj35@-5=bWLborq#NDCFwIJih%}kP*M6gTVzbMPbn&|3y@;|FE zcn1Pg$25$Gx_c0cq31n_Bmc>_7msT*$_@2>u^~*m23ZJ~dWT{~!I``B)=?8U&Bou+ z&mewJCdU~8(PqQxpHPe$l^^t_{6D8mYUMZ-iUf*kg93Np?#R^e8eQg|*?b*{EbvUR zFeZZ`hj8a5F)T&lyN%(AUMaOJEkTiVuJZ)94|!j}0^U=+RDYX#>ZDh){hPBsud5?; zKpGLgJSp~<6$!_QNr(tXN;MqaSgha(0msCc6p(cSN>?{x*A~f6t7b0V8|AnzBaq33eyt-D#UOlQSn<$BDRi&z$5yH4X)C^#+fFZ5(#7T{DC>%_ zQ8h~(V+-noSIv`2?_Ojp%n~wRmlv)nehe}ZLRmf#VfW@uyK}Q~8d>9Wn5o;?y^jCB z4*%)`!US_=oKky|kq^uh_yyT&_Z^K7(`JUNAcN^c96oDew^G6F@@F={Ghz-sUs4=V z&Fr$%f=tv3x~MuS+zzoB6V*n~_!&uE)_I)nUCblBS;PrQOa9}ySZ`Mqq}UK}p7Xje z7TPKsAOu{Jrj7#}Ke1Na(=@z|&fVm#vuthvoH~^r6DYUU`Jj2IM?dk#tza;fmLbbo zSQE1E{ERvybBTzB^woQ{v^vRmn}Op^Lo=cDCOXyXbM?fa5!FJnRw!f&ffxH1>SRJI zRfoI7Ybk2kU<~K~z*f*=5O6@Uk+0vLh$npY0M%^ExOwNan^@R)`on5j_n(>5g84r{ zqm!f}-jAO@aDW+PmU8mw>~=L;!XdY1djsWURLvEMJ)SIgG`|RA4fe=<_t_EZ*~#YV z>INTcmaL*K@MxEp?S{1>e;chhcyo_S=a4;9`qxr$1I&ii5M~ttNt}z|Nr!Ymo38cP zWY;-kptzvL8Nqyx$r#T~=V%aHMg<5U1!s?+tBQi#6;h0ZoEcJc`N|E0*0Y~a6_~<& zY9z|7cn(KWasDQAygC-JTaI$y*VZ$NregoX&3gl^s!P+jS=z} zSghZvsv|*9%La5relAV~tgm8!>T`AS75>Ll3Kyf^#rJ!7QCd$7pT>YH7&pAWsOy57 zz^<<37fye~R4m|&gr4xDlJ^4)G^5l9lQt<9K9ujSsr*HlNpeGTHkXAJW>(h;q?60Z z#qafv7?^jpSXc$EIKxpp4M@L9m}0T0Oz;CoC`}&Bd)7_E(7l~>gvRmnA^K-I4?;C= zC|yrhWgXzGcXN5+ZxByr*6_5JdFjMsKcdMgCqx=n55~6S`D3*9jvIio1cYtYpC;>h zINvm~nQ|XxkZqQ9r7%cpMmHqwf@HQqm)`HawEu~bE?daQ03MVymag-NB`O2LEm|r% zcrFp-_W45fRdKDJoHPUhfD2mH=0nU(` zOuS0Q+Xyw(5Y!6ZPItPZzL;=;C|g8B>2+d+f@8=MQM)3sVZLjxb}a@Z+u9jva{_lZ zY94g0;!e*k(mk4Nl(A4`G6_rls|Q<0eb(Eg8c)x6Zzd&Tq6r|aLN*f7FG;#Kj{L$+`lg&&%(eg_WEPHoQ70yLQ`r=w0jrhPut(0 z?_c+9_Axl^H6cJ`PZm1-lQ7z_G=@iX?+UtsZ~%H$fp2dQw(Sg0znFKRL1ue zZ7Ds@#XQ&6tO*%}yC6UklF&?Mc0xJ=b2w|a`bjVSSw$vXBv1<0fT?iWzTO%3W{+gF zOsVUMw{=fZ5j~walc)shkY6eytUp(evXC6vT1OQOU#NL&r$Nt?`ql2$(t%{z2sRDE z*aiUfk45P&_0V1NPAC5?a#RqjWF;`e8>C|w+YUK3;LIiOeY*2-O5Hdtb#8jK#TT|Z z#q{p)AR8CP28dd{s{UkJ86p*5=$TkSdQhLTA+YY2nxQ(M@{M}-OE7fpJt)&T>FL%} z{f2AoNE3J}KM7&2A<&|KMno}rKaD9_g3bq^$q)P{vB)+emu@m)>%ad|pM-Qyp`}*- z991Zcp(y1Eb|ti z5AN-}fzX9g=jIh^hg)h#!(b*B)E+L>J)p;lQM4Ck+2`}OZuy2xCf(hF^kNo24&)1q z{bwL5J`{Jk#O-G};=aSv0wk7@w|Qz^J@&s>I2#IQRdtzgA$K*+la<{20r86E_zwn1 z2(5X9cxdGEfNZ5Fo}R9pf>#Z}(s6d6o2TjEi!J^Oy(8NsQ8TA0cm@!Vm$LZ`T08Qe z2w=k5ahQ9DrsK#7R^P_hMy+{Z8L?v&7XZEwkc9#wO1j?9ce-;9vLqOx^&V?lscU5( zkt-zs`B&J(w(1&S_r)+(?e~#aDz-HUz7-++=f!B?VDv?C%Jv!zQ>s@R5P1RQ+)IKS0RAs)vFfI8y~7ui@AAv252l;Max0=FQx|e6$BOSazEV1o!6?`_d`Xfg46BS z@h2I(_*SgM-?@q<6F>6RqiZT+ItgvC?Qm?`OQzg`Ql|G0(J>T&4L^hzbxk>!GCXybnoP!7PBkuYN}1{rD!9 zR433#!4W@hz!DV?EPn)G_M`dn*@8Yzl3?2x78{`I-NVEyc`!)JftcBB=bL5!@I}cu z`8)9th1boNyaKB}U}8$ZdQbj-uuj~|(l+9Pwji7^Am&Qoy$Mqg4m>$z;w1~`G5!GH zu0AT+PXi``h5QiS|D*v!`0TA@TAwbhw+CGgZs=TsS+PIdS}(XD9zdf^yri zJlco+bpnIQsLq5S>|gIci{*W1>DcvvI${SS$@MD)raFVr7rzxKy$I%%3K|whaP?Sa zbeXB6oDPH)oxizMTx^11AF*%_fpEk#z|-+}3<)YSC52@Bw?6&((hE&<87M~`uUMPJ zIVh(`zY1zH=+&&i+cGC-RjL*oiTjfHN{7RMP|za zJyRf2b~_x*42d!lL%#j4_Tl_T4#``OFvcXgW-108^lrweLQc->yhPTJV*DIa?;JG> zMy44`1W-CawzEJDsovm4dcs40yw1rRN~iSpyr&1xTHXLt@=!l9t?|3wT>)@{*U0z6 z7Q-;<`h+=a^9MgqN6huJ(GYXwig__@bbD=6JSk@u8wL`j~TcoMcXy1Wm^77Hjq15p>K=hwYxNQbkw>O7} z*a>Js3?8e)zdMOT4b{QP(ks~GEVEo&!~i7y{rw^zscw6EAN{v}e>pZHNtfNaDj{8u zyoB*7G@bd@C@5M8j0J8442q_K58^ohaVMK&Vj=^=zH-CVL6E5zZ5wW0(ToP0^mo$z zf$2Gs=0~P2PZJuUTnMBNL9Rym%s(c#^+gP#J}77ahY`8o()*&50MUzF7n4EOc}mxr zD(&b2+mw^rqJezsa=(t&=IXLJMnP`EJ}7W4iCC9-{V3g$$jS}(ld3T%vITeZGYn7t zrclf(gT2;AvBdQr{`2p+y9i1RyCx@{tJG|zC8mA@xA=M40AvLW>>4;KAM;!I;EVG=pWxb}kBPe#3;< ztB{LiX~TnpGMJfnBD<&y!5NH5C&~Sk=ZvH==%tO^kBM|m>_LN7ofWqhO{~}l zVh91HU;>x}wbhZ-0-N55gk?5AQ+S<-jIzL}TZ!Zlb1)OX#H4-wHv7%9Q1M_|3(6pq z$sMu!Q1~pO>KO5uzv|!evSx6!p zC=xTYpUy#|+okO^2rY?j_AE<}3L0X7xh8^OO*DO3i4x-xY#M=$GbA=#GuEV@ktnPU znLSS*e`X`)3iDM9!XLDnx^^TOVwm$@e4`L~{T$(WIcw4SQH>j9w`Dq!c!%sI7DT(M z=EH_z<&XG$BN}Qg-SI&AOm=D_hd0hXlwdg5282#0bcLazU9McZU!~!id&Yr)%f@uQ zU2b1JJEEuYgtpN#0_XwNRX@>Z%_~oj#l?yr7QOl1;h5Rm*|Xw3i+_g}gJ#O<+SJC< z&3heo3?N@7#8kIERcC;#@MiIL|B!LoxPmJ*pELHb^7=~G#l%bXj5n=JViZZ+k<)KQ zMq<3WaC0b=`77*HaYA!~#h(cHa*KmzPLHVokc2*1`tom;O0WulmSJsO@9q9k-iGfV z23O|f%5-v|JTvmgSR)izqRAqbbiRK=lAbJ{Ajgh_N)U&MW&uMkP|m)>l*TnA8J^p0 zY?E{qV@6X)8Y_;aP0*#tK0sk`jsAreTcjZn8#=s#Acvt$ABi~%m7N4&pvpYkl*KbA z=oMKKnU!bik*JXuJ(313UKeJE7ME)T1rD0#3>6)*q~5x#^0pjT)(nSBZ&PSE_;M~t zVndrqi3Ur|C#<<*4e20v$Zaf6+~42@5jTG0l>y%)LP-EP1)cyOqXQH3&IN(guR`Q_ zF}67PUvK*%iz{Lxjzq5K+O2!0z6sYonLto z_Mw|Wlblom-p>9;FZSOfh}oUPx_MYXuq?yQi=T=gO;1PG6M*vs7r{2crxW%^@@Lb0 z=I7TtpKk7A9cP)y0v;DkaV$RuzrVDX%?G)X+-4B1Fl2&eLvYy!n=>0CJ(7V$Lc=)x zzBCAQR-%NFbS8*|L1DuqDkwL~D=>#iy@7~K4lWQFL;~AcO`}c(TxL=y*HC*K1E`Kq zrwe|!SNpDhKY(s=9G2Wxy2GtNxIY5KsiOd30+F^SN z=)h5BMU*@XbC5ul{82*qls*q)&z(AScYuY&Lga`-IPi;WBnbC)!h^k-Fx4^!$D2K@ z?YkG90!Sc}%qWQUvoK zUQ1@E{RL0&W%3orGsUZd+;T{divpf&V};)%hr(6lUyPyHzn`b<@+yck(pzG6I5lwY z3DL|#RGz_bW8Zu@0U_Owqsu#&$DM>mV92EFfg%?QyERm$+v^0C7j)UCVm(!X7QeO@ zlY(+_frUQ&T>ZvP{Se0H8+q+eMWp;c2ad#)u4z5FR{e?MnzCL3Wey`+5D&si;+Z!n zMy@QzA+$9Mxj+R4E;0-qm17X8t1tEF`w4DyBvO{{5E5zO?PORlZm+pG0f-wo&?!$d zAg+90?yq;;`noi76xo3aY8|A4;~vOOb>c12U62rTfx8Y#axE_mqxe zB0upMDh$z7`uY>Js=>~d>%bm|IZ;KRuvrwnn=KFx24qq*A#kL67@;Fg5$}1gK9a&y z8sTE6^V2sGVL5tGz}LgsJ%E=On2Vqz^wY(KY&e|$FhiS^Kwx(pX78Ws+=IfW^y#H0Qy3N=IB=9!;s7h z{<8=%D^lly>F_j(#TRoQ7e_~=aIheKJ7uD%K=~oUWaD0BZDfhkrLDRX5E$+-p_l*+a3_Mh%L=a#8!JsHnFOE>5hy|E)L{z26g=7(T|ezcTe>dDT-SM zX7W^;!W7L{MXl&Lkpy<2HvxjpB2*riY>tm4HqlDrfA)aN0#X3i#|0PZf=gFm9~?XL z0@nHASnypEVQ@(9xD+d}5M*9;ee`l00jKghaqPz6@h|Qn9Pp#`cTt1#PWWulY`x+@ zyhQ)Tf266ijF%|^njPUXCsKkKXjub2u|r931YekLyK`gv%L|6qV>O1>tFEfiDQ*1& zhUWT#%9=+)1ro%plF(~6$F-*Kk%Wly2B%S)J1}Ch3W)v@@@5`weQL?zr<$gjQgf{&l&z z+l#XN;kSV{Utdk0(eie7Ab~FUXSSLRDA4l?`<>+Z&$9 zT7l^JM5xD*Nz-e~Ppw~!wy5|1Quz3yE6|B!_fCDygUr~=axym?9W3)Yg=vl(aNQf7 zET4yYu+4XU4F*HAa(W|Iid}0dw6ZA&)g4EA0 zXYYa#eao%v6yEa#(qbnVVk{7jy0KW|){llc{-b(h{9k9t+RlsXWiE}W}(@u?GR2$la|SCnl)7o=}(_)RsH$1QD;!4yoe^Eoz*bgU~294tjdw1du_GlUZn@ z|By)}wA4BEPn59n#uCP=1IZ!=)&2$Fz*kB*&zd#j_str6fSyT!ZZxbJe99l|BgcT~ z2adC4Hj6uf4qF)80Pm)!!$N`WD$0bH2qya$`iMF9m^Jy;y=R^ZNDZT_Noc25y_V=i3HIPr^CJ%Ygh>SzsAG zW*1oSdqv`&oSRnaH-svA$TfOXZ=h7~4uy09Y8?483c{`TTxnY}0?_h^Ei;sQX7A(Q zJ~3@cHxy?=<$02Vv&d>O$dXg7j7L=nhRbdt%=7yT$`cfGA^@Kp*Bc`;^P$&wDOkf9 zT~wv^WT$^i5Hr zgx%yjc+$Yb4@nPM1Y82%p(jLi(#XWw+Nt179|yG7FWJq zaB_$QK%1ZBu!4xtcVQ-0_2xP>^-I^K>P;Y=5QjW;L+fWD=bUhpmbgBrIx-Rdw)^Fg zcdG$j60U!!1hlB5a@7qI5KucO^jySwj(fU+Fk(Z&Db7>SS~vaGjlPT6|&2~}Codb9zSORSBjv?3D)oQoLA8iz{iqI;J1*UKWV5v)ngqa3Zd zoY@uUCIBIGluA#V9CVPVJFpCsw9R4tOQ9qy_&30IOvQ@s zvM3IglAl##{$>f=i6fkS`vEZ?k{Pj=^mP?O2wAdqAP*feh zi=YR2NWn!1c7*zk)cd@G-u}Dykf1&;R(ZitMloZrqk(no+Zx$_69qD$S3iuiDx>qhvmD;YXh@jGq^=Q zA@G>Ow|fol{tWid8bF`|U37!$Ud&8E!i{CbzDpIuf{OJk>&r0FeoGbNqID_;AI=@q z^9C3cUri5;$ouZ{@5+HX#!ezn&!`8mt~?w%6+;S`mt}FW;)6j3L3uZo>omfBy=_sn zy80G)nNV0=m3DoVIFLXMov;kHM-{3bfS*Tt35`ejNgcX!ZI8EVyrTQ!mob-$1e@aW#?SxG9J3JUhu$*oR(tNDF<0Zx<_GC zF}L)i>>!ynzkt70V0~Yn?etMVh5jM(vO`p7@B_)>{5;Gs>AvHnm<@pm zL=DiBrHb&$a3M#TT~I-G7EYXa1zN5ultXuZ+4|gVrsic-XZ9eQN>|;;zx=+UE|#%A z?Al_?IP&yrmJ#wx z6SUMucE;Ux#S>HhFL>wu7UU;M&7S$Ug|_4OEV=$Q)~KygSTvLoX1HLXB~U;N@m@C} zhlu7|B@Jnu%yxrCi{dWu`^?>{WyU_D+1SspHO5BY&HTUqp!1_QUP>2aKc>%y+g7bF z-xZI-g&dqOA9_*7yW|1|l{=GnrSLf-P`lKUM75=@AWDG|*V*xUOn#XdbtU?t4@R0f zIL@^h9WH#ExOEWZoHOGkO(0`Vur;Q8a}&^Nu1wqh9f8IiyCx7!6q0U>gi6kf`>#}% z>1+9?lX?3;{k0NK5;7_(u^DvzFk>qQ&;fTuX-=Tvtkv)EYSm|fo6BZVM79hgRT>?&_#P1Ko zo%i4Iih5Kq1;MlrRsq^Rh{9F&BClbnZq3*YfFkzB*(E8#RsH;M z6OoH?Rt+pC5&CC8@G!fS+J|Ti{6+k0;LTy_wp#S}58Hi`Hu6St=ug9XwATWUG*`aMGVFY{ zJBlRlVB36oru-~4<~lYc@^Fi%0tL{ zXiT<}JqtU=o?d1#E-j=QCv}ei<_%&axUy>Xq-W&R zc;ZY|Gwjw3_zTwBkT@nNCf@B|An53L!w2iOI|g7p_(t3wxJKW~u@~Q=3u5IKOhSRs z%7K~KuZ2bNnaoDO2UJxjdYE+g{O)Igs6An&K+6=xu#cjmx%UrdBEvBP>F5!LI1iEZ zl0Ge7%#E6Z^;0O92V2l!Cw;!!eM+9s1TkWZi!(Vz|GPN>#n<)2*fd1*LbS2BSLZnk zA{O`+dNCliy0a&Q>D564E&zMQmp?y%GD_DWjF{)cK~0CUL_zXgIiM$jvxW5Rkl9Iw8WvwTT z=nr`oo@0X(ZP;-wbt&~hs<|k!!N;aSy{o?f99$r8A;rKt6*fKq$fEYeGtCPptV#@|JtEM5Urf4o7 zb0n{!48f&M(xOriT?pU%tFx&HZj-(}MTXF3&`H>_*oTVN@R}*k%K+mbnrN;}dU?U8LVTKdoe2Cfc>+zVc#4lWVHJ5h}J6_kKoucHMYQBsC zZYor2yon9M?Qg1}Z@gS2Z^b0yE`m{yGo@n2eXp@#V4#^aOO6Y$qAu{eQ{|WC)D#UL z-X<0yV!%Ooxsz)_VgmgRc>SouUe8nus-ArNOconfTSGt6;ayv8POmmqDL$5Z`Gr-P zeYe)sGHWmmqeo6?nfWvXjYZLEz9QytVcz+1S&T~@Ps>IAS`PJlu0o5kw&jd!ZDi3` z-o9ef;q0NGEQn43XqBusn5GA75U%@{0E1>=r=DhybK#0AILLw)cV{j14p`)u5!wr$ zQXm}$%Os=`G%`z4MzLckn3)95>4mekoko-T+FVX#S1Gk9ywMU9C0uFNj8ygeZK~`< zlO}YA^m?tycHG@2m%AumI~!sZ`fGzZ|*D|aREcZ`vr{htq* zr$`NI{rZ-^6nbjlkUe?z;&czoAcmovx7RMGw){GpXc*bkT=)0s(t!R=Vy%v*{toJF z0B!HGabYrG^o!={AX&m+F}6?4nJ~6yE#YOHoZ|M~Ff3pO?MHH=I|qU$8dwyG0kO*5 z2FuJy;zx$ru9;+PS@XMh``y~osi+E#MN_U$11(iJkG>0~{B#XCda_(+CLXcEirZxS z2ZKGBN~&JLZNg#R;LlUakU9pEltlcQBXJgM+W27LNUn-#p5+;yp7LW|Mgieg`A|4o zGbz0~RW&f>Z+xLW-5We|wA z{ayh87c=$_C!pzr`~iz#`0stITR$8o@E)i6<{3OZyo%VOHPs^9Lt55xkGGXHkW5&) zna2qwFnwMmxj%PtZc%>2jvPaNQ@zzQ362DGHiLuMSxszTEV8@M6H;Iqqn!NX&=z>$ z47bU$>=~S?#s~9(3mt+%*aqhuWB}Q@MuGtthImh>x^@S+Ng$K#;|tzg_{8K4+=Pz^)PjG)4_^(Ab+?rib$S&uvh8_@?;27{0FA@`Gw258~^m)+#iN-Ztr7=r9cY2zC0hOf^~ zwmo-krU;^F@#(@OqS72jMi|F}(|`$W8o^q)m=2xF!+za184X{N+fG~^qc#OTv~HaL ze&?~u()T#`qY(~r9E#Qw@@LW+g;xbLH46!lCz}lHzR}>K69?u2sgh#bo6}0QEx)oJMrau;5#5Oit zhCFmzjJ2`H$?XLgk-cly#4h4g?eR@c*{OzFWh6x0sYjykNr&Q^P2*(O!2S@B{nu6( z^aotoEZRLTID+PO0mmBvwTOLXp;GK;_7LNs>~x=V&<~G87FCQ7cGYi;<4~F?+Ro6o zaco1wdeVPQqFK1)No>zt+(mKoZ=eQ|ti4CQ$q_##;6lCq8=Ip^xl@jT+6tM$nK&7P zNHNmJ5d$k%LOi|@X&9eldBFi`JW4`3BC-I+MT0~$Mm~oyiUkIovB1?%n|<3=Gp1rC z$V%Y*Wa1U6OC^vp@9)-`FFe}cJ4MvblnW1%}h{6i$JNPVl>3{>6JRk+2evWjXg@sZcUD>Z)ER1&1E zJD3psX3PTk+q3%;a&a9yc|nl4d6{iCS-_D+g@m-p)NHcTe{Mom#tszCAB(+${fV}G zXQHD@;Mm&*bz$uHt7!pu<|6(JE!0UUrl&V<@=#HMS0WWHV9dNTC-sL*d^QL<6A^N= zuucS|GdzG;tjf;UDgOu428o1LqNvyP6RK(dW%wnqF{?ZzvgW{tC#e3Z-;crHayblk zRUI1RT#+_RMMvwsJP}T<(m;^vclVYZV5+6dy&+8`b>zyaEXbo9`DD!DAV2b}Dan)( zm1LcVq+wJ9k*jOM8WGYQQT$+H zm1Q&E6kHs7XfZYp)ia;J=|Mwr?bS7ykf2h#rI$Gvhsk92xV{hFFubpR86F`(?u;JU z(l3Mk1qWB{%LMV5#9eDQh6ToU4_7w1Z-gRb`LND}1;UD-kL67iDs7)3;&V2`NQoBc z!@z)&fg+w?p*Bjr;qgB%2`P_{^8Xh}@F(|-{AP?0p-;6Hp2M#BQ{pc1#LO76k*Q}h z`>}Lfu+}#v9lUURMxo>)20A&~RBjkC-?*ML0rZX)GnJCP9y$$43p|C_k#2mfQAC?n z8h!U+H%=ihZd~&FtKcIOX&j2f7Ze`|B*o5;9ed4A)?MM|l4*Pll$ zW1ThS+=+7#K@*(k@iN&a5W#%vTON@hnNM8)_l@M(wFX#5p;0PamHl@|SB0Pu^Kp9A zngC(vuW{ngu$&YU;2AnqXvVy4%dF&$0nrKG0pvVt)9?)HPLx{-yG_I))6JE8Rjw}C zYBkbWponx5Wzx*C@?aS~pb|hWsdN?g)$;mBbT%s%y7v_naKITC{wv&YQ_iz(V#UI$ zpKwR&$fqljF5&S+p%(ksQvRgKHV9*vIRS?oR}DV>^rr4mDM4o74L`wxytv z4VZ0cd>n-Q3PVK{2y(0apGu_i1{T+argOG!<4~#fOIuFV)sHuNtv8^M&}|r9q}8G+ z4ZA{{+kR_P~&P1OnwhI zE!~BMNQlY~u%yqq_$YX)~G!T8dwG@WhDa5<;uvE0VEZ}*{<;ah}w10We zer?e7OE9{f?#3r!j*HJfXy>0%$VOQlJp^F@#GXK)PjMhh)jBZu?f`5d68hwRr^C8n z`$duUjs+AzW7ED1xpVl-mNz6EQwmn+@RUbkYRE)zTzwlVd))c6H7`lu|n zj10e?V16}W%Bul8+ZgAOr;rlDyuD2X>>FJEF8k%011VrBf|f*%EIk?~Gqh1-1KLy7 zluxP)NLT#mS#V_UcHX>Av6?Zqe_VJE>L)^VKU zd3w3F+VAuj9YP3<1oYqg1~>2-G)5!KHs$X2j-vfvzMy1ysSKT*o36O$Z5=H;_qF4H zr51Kv7_wwPttY_|>l*{o%;?;{FDEHsxJY3Fd|^YE%BM z${z1IgfScVSenn=d=3W<1-0+^4*S@2J@5Xb?^TtR7I&>$EVuWnYi~rU||2jGn{R0TRejK{5K_}DsTj^}NH@Wg{u|fgSPwz~Q@6*Af zZe!V3IXbL$>c3B*Lc|VAX-IJceuj@){-noM+2LN>L($K&QnVBV(=;(7zwb@Sk|x{k zRqN6@Jk;kG-2$;er`XNjabl*)C@U3xByl= zz3c11s6VXK_>)cXomJiS)~k(bYwq&kF=dAw5b7D)DdtGhDV^!A<9x7K*t4t7N(j7L zwm!C?IaSu6Y}t<6Tivgph(uC&el57}bkh%&Lrh=C%fgwnbP@ehcrTGt^7Yd!Wzq)hKydR9zN zc*pe$wmcwyers~CzWuAmyoUk$-r8gDri*!}f-?$u#Q1(aizRE_!*Xi7a8ys9wOtLm zc*5zQ(NEC55CU79kwNG0$6hXN&T1JF<-d{qmg`{bwziN+o3VBg7!95{{C2n*J5VES zPDJ>HsUf*seRu;_|In5k76RTMVO7ah{f|m4gW6PZTwJ^@wx^*Z=wAT3^(_mXLTS(L z$4aOXUZP=xi1}F;&NHcTRnRx;-dTNYBC##+mHB@KX0Sn`U5UUfd<1M6gp;Ku3HX=x zG&!jXt`SvKT3B{?tv6u+kpcu{93<4u@;SsvOLFd>jeU$h$){hBGw#LMGm0*_-_ zUs99XC%%VMD=xi?0bUSV9RNO6jV^bb61gk_B}rOsd~RK}5_*5z?@)*a4&of*bv9;T zVWrzgsxLyB!yA3}-q&sp(IzS#p|5%ldSJOW-uJ1NL^u9eN(4Y(cOdAY&s_h_TX$y;N~yT6*J2Ixo$iCpr*F9-pDK>|z|${6B``=w(N z#hHb@*!V9)AV_u)oj7+pW|WkH+8#iBMXiD{qL#vjA{>kO9TMenDK~M(SGv7HHK6)W zzQm|vqm!6zW)Ps5lj9kZ)F!;f9@`-@{-X3bEE#2vq7K*_@%WZJ;f?bk4_P0h_|^1c zxNULJ?~8e7mY+)}Li^!MMws>2#qbEaS9Lor-W}8P3#uU{zq7&~H#~l#!K8w@dpf-7 z8annZm1Z(1!UsNV9t?t3^2k}0Ppd)AMF%lRjL>bm9|-`FFN-pVgk@PtTrIjPQvefLLxYr`mT;ECxJT#|;e1zfTpJOk)qtjs$n1z{omQqM51=*x}MR*zVrKx~Sxr`t&T&#AcD z&xckgO`KOpD;@#GBgDpQ>WI%cEwI$_NF%_t79*g)$0vOx2V}wxUBq~)!I?FpIxNDj zG{Z&rZyrBy|Hx5Rt^v664D!R1YeIdz6cR?0xiNw$B%z`ZK@HoO6bv>$s&fhokypaE z3;5rqS^COrw=wb9kz3W*7Ct3QLsD&Do7|g3TCvqzK7;91hR+}0b^@LX!fXgXx0E-M zrz8OHU>BYIDptfys_^@B4CQHLF-C!+2uMrnsbkhxiikd^h|pKp-6_5{2VR66!E{E} z(QQ3jvfXq20SC=0ETQ=VAn4Ca7ejD9L?7U`z^M+IKQPX&s57#sw^U4Zy(TOsx=e=T zV6|!{PFS+!8mNniH`M5+VEL*%odT~SxxWBN`(1T^T%uo8t6K}V)h?7My@(wqK+WrK zq;G%BY{?Ch_e+w^63C@w%{Qd_9BII@w-Mv6l97NrKp(`4ypGBvi3A@>)r#au+|S$g zAf6K3qxcZ)*r>aE$I%KfYTg`HB6nbt{xv-sNOPTw*dQP>-Y6)>6#+t)zrAwLe&eI2%~&bAkR~o`0Ibv%=wZ#HhvIHr^wa8 zvMvQ>-OvR8WX@{3K)HUQ^XdidRa6Do))mg`=`Bd)=7a`a_+kc>pc^lnzu?kIV>$oc zl^LeqYm<99>u3o#oZaEvfM%&Y*rIeAO(Q5BF`j629uE7bkof(@CeN$HAOjh3FPqj8 zPuq1_JkA8wo4H#c!my7wI$lLf(~&OjA&aC%);a`G)C>%T?G!V07NJuydAbIq(w2}| zBVtx#yWnW1qtQ%vEYv#li-7;xQe{j>Q#>_*o>~B@Q3qv4gRd-L{Ts0S z$C5#oy*nD5xfS`m7z89fNyr$0Eowz*(kHiu!NL*)EG$@wdLQNz@!i!0#p3;C+z4kq zs2RIBq~rkEbVA$PnkHh~lNQ04H1}p}JMgZQ)Iay8d8k&!o4jLx1glMjKFk7*@UKDS zPTFhxMex^VkgkB>RCqwDkgP&M5-e(dksEQRkr98;i>%lyENR}*#_R#0(X&DvJ%s~^ zYgubXvo_%s;HT94yXlve76>oEZbV5DB9~cHJv8ci%`kTYNQ|GBRO*8%&4a7Z!XtMc z#%Yk~cfG=l>>j{@)MX!H!Xf|cC~87nDzi%pC}C8E|Jm$S5)>C`-=Q?zMEe2i*_nQiM{kaE4e$2@E*2kWX_f`gD{f^whNH(52|ckcChH^1*eQ0mEbjC+ikKiefdcUtWP99}tS{ zkcF}mQhIwJdN9bt6IXetWJ)Hv@q&G_URxdt%k=kVEZx`aw4(MYwbV!Uo12Q`K?w7VT-{c>#vT6N96A`RW_*iQ->S;NLTwq zVvtr3#(#PjeiQ}J%-i0Vb(aK>^HY)7t<)x4R$0v0y{ne?`F9yGJ%?{;xIHIMe^!VP zldAQ>b9BuY8)Nc=yZEOe2TKMYv9Q5rJ@hUWqc9ADtd6ni5-IWDAv#H&kpOnM6GgfM zh@|W?n5@TfI6J~WE|OoyCosyk0eme?gZB+Zp?yE`FnSUIm>xg6*`C*K_`10QDkmZQ zD=$)aBr^(!!*(GLgp8(H@{9Xsh@cEhz|BY_A;>REhv(d{U{gnJ5NQ9QpFdHDB2S$T zO#4naSWUTNIbLz6`P1jQGn{a3y&P#i0x8CEe)8N-Cd?;K-DS;NUbk-Z*mP}YVcyR& zTwc<{JE1}VMn&4Q3>@bb5B=XV0 zfw%i6@$t!qTs3hrr{;&r7`Ka8+aZmJZ?6(RiC# zCdhC~IF*AV(H(pv1ie3Ioc73*_ZLtP{iRST>T|t6o^e4b4qFd3@1(FM(+p?VFBrb`9pP7Qv%Urh=*tIJaDW>JQ-?lknPV{>eS?oO z*)ja*v4_pe@jp0NUY7sH%1+}?CjXmp_81oCRNNuOVS}>eOj5O0?f;;}^i>tQybcmq zK|_~aN=~*sxmk>J0FoM8JQ?%X@_oyW~v%#Lmj$(Kr#o^8T@_x?gz7Wy`r3wzWbEt?uA`rbB3_?boSF6)0^jFT0# zYO~+!)xBNF7*rMKWK@dRAvhevn%m9pKt&DxJm2>}?drrz!X|~R>zbBba*w`yo`4`NF0FO^4Kk|@B=o(p5usZOZtzh39#}iQHMbuOv#!~2pSLPUZDML=B;PQsF>HPUXc{4H^9?g zGH?R48ucADa-c)jc&{=#+NtJ~#ez-)ANKyJ9ZxMikF2T(0vtAFvaoQ$Yd4rmZJ9I- z1O*VPtA^@z@!m`0T*K@oJKo(8C(uTl_ck*0gwxC=;xf~T z_Ne5s$S5q50u!6U?Ib;X>!gy#ITFYWi*svoNc!7+V=@))mU+-L`KDld^ z-dgcQ!$0m)c}3u23Cc)0Sim}AiJ|k!uN`C!uvF$fTCcid*BY5O`c97LvM|%Bg3A0ld^R0ZGDTLxp5i*a zwaX#1Xk|2SgcF<&vfRp30*zc7mP6}hSt^#3`Lw%Jo3z@fhqe|9P5V)rBZ;;*&@qY$ za2+-4AI;a)%kwlEeN$*j~5!S zna*bQfh@Us6PJwU7;ZVsUe*#gi=QK7N3LqLJttZ<4O0j(75sDxOhW^&7)PG`19Ht77Aj?2oA0lFbVO% z_fm@FypRWC}YF&9;%KKDs*&~0y|`)bb4k@2D?Z>olQFJlG?bC@SX zT{PCLuzMR+#;8?GIkGNqLEyi;7C`VCVC9p*cK8$8})=Sg~j z*@RTfNMz2r){JghGeAhI-OB`l06z?&uz78H2$o%rEC!?KsV|!N`%|AnJaDMn>6~1# z5)Wc8HGr>h(!3Jxk>+u)*d~y}_Oi)6c;B-Uy?wS4U1HIr1S%eY=!EhHFt_s@`8QAD z-jcZxFwq(EtdO^1cU3s{tIE_4Ut-rx>l5D^Tgt2#f2(CA@||8>fQp;*erj*#_2+*1 zIi^$trvhwG<)SGZ&rg3g`g9~pF(*3l(`Nm}ZgBDx^FvUzf&-c|G!o`xEdQ96K%r*pBSU{B228@yw; zJLd+O_MSWq8Buy7>=dMf<;=6+Ft}4Un;dg*WuTXGf2#6ukQt5%$ldfq-C&xugyN7=#9VK--=>sS)09?^kdM}g)FycV5AW>RWxOc~7Tldy^_u}z zG{1>M2x9m0pjVq|3WzzD^n53yWg;)IH28~@x}n!1@#*?l^u(2S zQ<{;nV)~?Dz-T&)Y)F{&TW-1)Na68zP=nh?SLK8xvV|COw9E0mDg}z1%#v2s%YDz23=AY(lBF~x$P_iNDrNVzm@N`70XiO1tH?YMngI5baKI4#AgrE z!bNs8lz&O%mEt2b6p;gnm^}e%K5`HVTj6lrOc&BDz^3ipquPI8Opl^BLSZKQ3Jmov z*gJi50V|H88)x!`3`2#ue0lk(_Dm_?ArJ{099gcC<9(z28r%m73vJ6@zqn`N%kmkqwJxWWfz9=;tl}(VtnYu5;Hmh-PwEaj@!F8)?cU=SPYe z@U63KPSGI|Z`?&5`c2~T+h8n6ZP3$uw~ERXaOMLky-M`QNmlh1K@WScoERHgHgkSi zy`cU4A(pZ`t@22l_^v>}7gcRlDINi~3EFZL#D1 zvx7HoNNTBUt!dh`%%%B_;Y^oV(tIsxRmIJ0QO9L-;fKPqZ&^|DhIwsDx>WaefAg*$ zpm7}2m`e{;*9CvoS;?LyuTm(#9n?cAkmQii)qVNSrEZi6tT4^aMGH)2TY|U~k#&Kp zJcLdBo`PRcM4%9rnd~f)%kFv-{qoPI3j8CncQA;-RYMb9cR>mM{37PQRxBFX@}Fv( zAFQa?aefhP8U+k(r$en67go!+Hf5WkfPdyqX*_%FSwtHMe+A+VFWl?Nu7gQ5nasqb z4m<@h{7KK~zMJJ}zApFvn{rn*5&TX2y?WYN5xRb<0y}rO$~gE~w%F0YpR! zZ36RKD1LR$aDc_0z2AJEgh?^4ARCEo`&smm8+{vMbF+?7kC9`douUWDDqq7VD$t|)QhrW@q*UT5B=f_xbd8ttSJBCF^|T6NZ$!`EHS zNCJgIxA@wpLcw@<6afDN?I2(q;9>$r14_cdeF|^I+3##t@2x?T(`p%=2%`jr*3zenEy1_fpueD1Rp?@Uehs*+F?vp0Qnnrx7XV8NItCL^;2IBB$U3@Y(%h{lz_YrPgt>$=vwaV`THnpvghdA)c zay;`<_ap&_bDS*OHi=*1=yFzx`wGbjld@0`-nv&GBWT%3j|P@*%!ZAu#tWNm5KeU8 zodi=TbqKcz^@S9DdEQ=d|~2Qc&^5=s0E!Xkel+IOtw6 zg4wAc!Yf}_V9y!yykqvUmogo_TC@KoJ{!L^l0(=k3vBfu2I>haZmrXFU-9jl=py{z zEI|gz6SDFAc;itNNC4cX5x(Ql(B^77dR+yb#E$V1W)MAf?EC(Jj!Nd*3SXC0Yy;T) zGaoM*mc`^Vb8hP^;6Pw}G0%2Qc#nHK&kn)BBx)dVO-lEE1B^Da(!$U;c;uw4vvFf7 zZ?+t};ovy)$!2)e`UB3d?}nH7*oidKG?07kMH$*KG?DlL$oQE~?~^9VgM%vw+gCU4 z%3}AXZUN_gxvl`vx~|yUv5XTNVVYJdB*;zgdFHjm=CyR~stROJLAf+cEC}AC)r7EQ zruwI)tJr&ha4w{t8=N=;C!JbbzCcG5Nj~~DnR&~Yj6*cCSIPLOoJ`5|$rTIC`rTd7 z7yv-RgvmXcO_>vfHBS1T7_+O)eKm0nGYy4$PTy;?sNV!Q^~*Dr0Wm=|j8GtkABZ-q zPKVwxf(;+%=EuJce25uW-*&0+;}}tY*bv=c=5azcNpKp?Ax0Y$DC8?@mTkxdxWOZB zXusHCLP2r)PK;N|zwhU!|MoHhxqE(bV)#f|5_|o21KWu!apm@(k69l52CW_hRe>{i zFmrWtF*mmV&&kom29AUE|MN$}nmbs!S&^`Du%(D((gK!s$87iSJ6HFyK`S!eV4+4`2o|t&b=-6QfmMNx6rz|Q zaX2#y1K?PUUkP-`?JyHh+N&^XrqC`5XgE?oxAlJB$+j7!z{%RYIx&A_14csYVjju6 z`n7c#U3~i&UD!(K@{ZPgEUh>Fy1HN2jfvIFQgMcbNEwBiCBp9|@S%@@%wiYA}hV5e300=S(pxuzUm8z4ATCq_=;Le->QBWeG zGgr7#lqhc0VytkIpz~a2p(ML>i|pbr=|e61L&S~Bgh3{ids3tmvi}Z)Nru9G4o633 zslGHO2CWY91X0VWDw#TbxIZJt93j0+L^&^)He}igwu)LJg%fkGmGXtYRLrD;9`r(* z1|X^`qi;tWtaGQ_s-ol_(1nSrj52|_I4;v%j9@{hMj6ChBuy33%tEVgV6jC<4|_AG3WKZ^X>nT!Us_SV(PdVV36O4*aBHd z2HGpBOYAyBg8Vo4U`R%yz~Rbt`?{(;Ju1+O-aAqf`G^ZmIx?8isfiTgzL*D+Jm$Di zGYlgNgMi!Y+Qhi1n^r&~2Z?=muZy&?Hp?5DFXPUM7}f(NSOVSfn*3BQ6wpEh_RA=Y zhh;1%-NFnfKoSM=Pd5xHyWQNeE&MO}! zI|);oN)|h7VgtnriHBDW<`$A_F_`HRg>!Xvf?|O$MzNPU`LRkM4dSbo?QgK3Fq19i>FNHZs! z`L>{BBK;WcAX)(wiRSi=IB*Dru+;71(>}D<>fcw(JlX_;@jCWkD3W1T#^j6~Kzcm+ z^+Ou3PMh{#=)bb+u9ql|0O1lcqmy|Q??KZ<6Q?ds8p?Bai_6qxK)9}COMmQ~NhC^u znbipP%anL=Uufy-6)BWc=zc4wB||7qa2)f&zc2_86MV{wdP^J>uwwQpBm zGDH&y`Pc3lM>T#NMTbG$%11U>S(pYn`r@R&J$2|qz&o*<1o=q<)g#YnXa<7Zn-hR4 zOovmk2P7^^;=}%0o=5Vf`9MC>_jg}{zQ3Lg`ojnABLEo)kOSeYH8L-Ras}bZA$6mH zZoei=MVknZD?}hMS@n3shEf@{!>_63+Lvw>BL&rDr<~%%_8X-^yDIpT^t(tOlfP!6 zc&)C7*AowCKPFy<41#tdVLc*m-+>O64dqu^Un=U5($tD8KPFKytP>WLwOyjrj=asbRDGw`6fL+4>5myoBP{0G`|Bpavq0i))~@YdtM(SEm-y>8;M;bq zG%4!li_Zrq6>dZ>_%rY~RB%s(c|}^4pP(^C%@h6i;lYZ(CT1b_vLxOZsy(_#6>_-7 z9~TZg%h~z91$SscL~hcJ@T@H2?W43_&$!0L*FsJh0QkKh_Xd`s-%T~q)MutWR=USp z8B@d5&ibA|>+|fy!`TCdl?*FsHV>YaQCHZ`aieVI>YZR0*=0 zMWv@dn~J5mz~;?Pc+k`K?Og%GxA(HBjA4E3$&z0^J7LoC;_rvXe{?J^fE*ikt%`qd zh9^id0qI>emTf4__m)QV+bYh;WX`KuA63DWKn_KIov&Mg+{9YZ%UUgaoZAw%^zDipK(K6f=%L96LOZAXhd zfc)E41T#bea3f^4T3A&D!w^&n{Or9F?#~$**+TJO70l&dUK?c#W4zAB#>2|L_ z0oZA|Ct!DhE-7_OWf=4}6*aca2AJ4pEGWoKNuJd2+F)M{iS&!9zn>llZ(&9eX^&su z#&59{z~t9cT1Ix%Iqi~SW{~5Jhm!2>@!a9eS89j3Mi2!S1e8RyUNEf(+dB3g+|fk0 zlZg^|ckm#yg7f;hxHBL^v={09rIyaI1LV})(e1o#Fyv~#9^n4rEt`xBGy048f+omQ{Q`xDDssf=4gt8A4K_P zS2~f@zd+)Nk#-wxG_JW~{P-`yLg^`xg@Axe`2}gM)moE!Jgw%~khE?jP16KYz>?SZ z`Vh--=#%j}iRM&rLVvgk_6!qraJ57(cgz>Q3pIN~G6Vyft2b9RigClk! zulAPF<%so3mrrf=cW;07i-<`^yOPH9E>s=NWhC6Qc+%lnY1N|3=N_}J%h`EHaNcfh z514dj%sdho8boF+!96^aZjUu_?!Pi{;A5ZpssE#PV`upvlN46g|0arD{dbZg zWY|w$)&+j>IhKxmOCMF0t3IKY7UGGl7u6&#jW+tPoAmyC2Gv(a62;Dcq^osAfd+#A zc`e2LaCNo3BD_9@TGlb+aKly=mBPjzi$*8!(K!<^{q5}OPmVK7T-Px@3EbSy=ma)1 z?I=@uI(NYc6Ys00*RB5n1hM|U=T5!2XloPp|0Fm4O^Ayg`Xgn&evOnNYgdBdV9T!o znZK(ry0n1SB=0h)8w#Tt)XgDu!jL$`A|9vW&k;soqZW)Ic|$3=hlYf1&Rs*rI?vnn z8&vwzmA}{L-n00;rn}x589ASuWfQ%NKY7^nw*i-Vu~_`v{tq-cfKG%~3ds_h=rCmI zBS@t`GpAnGmJDr_GF7K>EKkWm<+DOVtw=S=AFP#)t{%C|Y7x#@!QPf@Z(Z-?xRdn9 zO}=oNK;7#<%tBP8l?LL`TYQvW(mWTqceIe=3kIxzHPmXAiF}!1GIpf=TfN<}QHYwi zj=Pscw3H-czFyDTxW#s%}(GyU?{0!bn>q;0Pm53(_b2`oF9qKCMYg` z^^~jk8Sf^k_igX#{F(j`cUpU-g=%3<-d2&OWzEL-@#1H8jqzPsEE=dkO2P8;%Sve-0i;2}F}gMe5^^mqa@wsDa^U5t zqf)w+X#vUUOc)e#6|20Ij|EiP!!^PsZWsbcf`8{dsoj^H_C?f!=EcgJGi}sSfiR^~%k$3H+hyD=cWG9cdD6 z5@M~~*CPWNya&QnYl$9+Qq)RFw-Vn7-0NfbN8M_JEtQ>uophsAJv`U1y^uPqc z#QY)wn({sLbp(J0nV5_L!vf_4NQ02t9WEzPP6>=3QelKkB2i18zJqQ{*s7Q31 zRZB@*P?FrS;$gmW9h{oSl<|96Vl?be=1zq`qn+b<)Eweq(CAr`>vTOBLz;nw@ z%aqm%doC3sf)bAvb!!vV@|8w|4j~s|rIF|>VQV>w!%4&(((Wpf)ejt|L9Yl-CL*Vy zEG{6*PkiIu>-wK@BG@_4?rJU18^H4cGDBTOd3L-)AM0J22)j)IE~jI6S6*5u3Va$L zE2d(68g5n4l;RvV`ZXDq5KrPJfFCj3VcgC86>-;C{p4ML+d@4rsjG{fXt-sci%EMH zeu8r;H&KP9EH=gFZ`W*cv^^)F14F*oHy=>5Z|0hLwAiZtvESQ&g?8lH-wtDQv~-}F z9ZGH4K|7gGTX)Q26*nlb$>_WsKg|MZkmS>EdnmoOINoWy#my5Lx?l(okVd@dl*@ z@D@u!ApCg^E14`Snf(v?E?yDR?gK9l)1SrOa@l@S^=nXUDFXc@^_XN*D?oA0MQxSK z=8<585%VLnV%MdJ+U@2EP!QP*ttzzrc*6mcaIb<=SBJygJ9ty~vS8cE2=6g5uu6mFT{AJkWwO~0uOUvHwW9ypFgoxSU|Hm@vn-q;IHliV}O%xlI1Jq|4Be@ z2`bP@K`eN$W5MPa@%6l6YC3uxiMHJ$*>=x&RDg4skS+J?Yj>V)Q9 zOdDZT_9aqfAZS1hAjdjxfFd{?NaXy)LWs9{UaJWFXH!+Q0E?yCY(|wRH_z(hoTUGC zAiz)Bo~n_j1Oq_T{uXx=JmGxkDS2*egjFr zF7U-4b{Aj%!=C6MnB(8iaUGDB$J6E8rClAUk2kIAAYkADc*P@yp^IHITkN}T1WrmC zR8lPr>AU-f1{u9r-eyhlA-D9A&P(uL@-js_7{e84pubVXt7qzmEz4i3DI7Fc*#)yW zPL0`G`$&_5kh9C>JJvGFDxlo4Pi{t(tI2fgf5oVq4tZRMscChSxSLNd*1BnXif?BP zgosfsl*!it0CGp_ZuM`>6#eohtYq%89+~nYdB&5;FX~`4xxMa@d8hD#uukhEd2-)# z_u#yG6NPqvsRLnG;8hH?FTmsYGJc6-(f3yw1&sW0QVFj_C}58w0~oE3fHF?xr)pBv z#+%Mmn>WvYt9uFRvSG2&_+|c8buv?D8(gXFYYhkkwDA1J-f^1Q8A^{mP#G}%iC=oI zzgeDd2O}3lr&wb%ODw;;pIi5#FqiX})490LHhGbA_~$QTK0NLaQ;{B6&dE2@t~dJC zdLsbwL~SQC|AUcG^48dSg%X zW}+zva1KTqgK>Y%pd9*w@6Y#@t15j0hMMtI0re~i`o#lG&tKx@|{>D{-R z{=iZza`Nr6+h~kxbKC>L0PdChVla23*qWXxp&(_7Kir0G+BftANI=->=NOzvB z{gXrl`i9BD$@)0A)t-8jR$kQYGL%u02LQVJR#b3`))vc z0$@1Pl>#`ovJKAs;o9L3W5xmbV%Zg47dGC@&!O-@^r`PRZr0_J(C9+NTuB9j`(9tu z*8GLBE9MDq`DDyWqwzuDj^px%R6z@nqLP8H2Qx!f$VGtKspB$D{*-8s7pCqO@{(Ux z7u@^2?YTP_>O7x!})!NmO{oLK`-=K;Q8p7l<&8IH1X6& z#VzQm?(=fc+uY3NuAZ=oZSl8Uztva!$ea#O0Lqr(a`^6G$35g2LR`wLsFB&AC{}-Lj`H#{fP5T!_p{tO9&yCi7p#^OBEgY-d$2Nj+GU3rN z!iGU3_E-TL3#5Y^k0!HcgC+xdZ(3+1@e+iJn%y(4Jz}N<^s9XyqwQ#!co3Iyk^41V z>5hx{IkMT+2vX!Y_cQhTe~p~m>^~msqCX%rNg<-g4NH!nlCDYGBkB)Hs&P40w@c3f zC}HuVq28(7Dv|~zs7Wa~hGgwde}fdMQdf>gnTsr5Qb0e6ZF&O{XpF*b9k?kv{)(0U#fbF15npL+Qs3o zCqPGNP!UbSZ~vuJvY0wFQ+^Z;8F8f3gZ;J*;|6MA?EZkmDbv(qQ_#zyFPSR<^c&-N zL5)-fNjZ)$kNw(J);LvQ{GH_FOK&x2on193&-s$IV9mm~yvqWm6uM{h5lAn&I28OR z8ml(bmULhU7>|WsXSPy&`@?yP;tYV6}IcLfNih_+ zKC(WWUX5}(&0M|teQGKJNRSTx1%M0p0B~l$c?~}t**-nIzl}YFMWSv>h2_6lKd%|7 z$-2m2es;AiU!J99O8(kY91kwDHI5g^h50lE?)gLZcA=cmF`)U>- zR0)?M2>1eQCtB{wW!H2SlxD;yZdT%?k%Xr(W;w_%k0QgeyOEcKh)lnP z=x3`>65kutC!)O@i(o-2Zn%ndB|J$D#}HKA_RMQ%FV84iR6bxrGElYO7h;zplZL&eaK~>k0k>7Y91Tvu|Di&Cw}J83iI6T()Teb7+a& zGAD+}8SRS-;L`2DqRoAxIE>P*dd;pIOd(?Z;B7}XK$mI6tm=|oE+f6mLCqG9gt@bn zx8S7==WtJf-J;HphN`va+NnCoB^`v^xasK6$ri;8@O{} zYPU(NB<-16A|u)os=*II?5NlX2+Rs%IITy973D|Lf{5hQ*Y9X5QSZpz7DlwO=l+;k z3AR#MxMGwHbcnY^Z%ncLWd?01&Ot5n3~DOYIsPAjS0ss$mjORNA{2aNn8;!k7PT-@ z^!-;T%Q!?owZ~|vC`3vKRUYkWaq?)=Xb~q=XF?ABc@hS~c0Q1}Yu7?O_EZfBC_?7f z=oz};=pdzSl750^Kc+;~lW+rTy%V(|`V9R71-2kudN^;a@$=hHIBxXGNq?ro@NJka zwKso2-7k@Bl1?k4I${R;xiIQ?*z-$vU>0fij8`okLiXf%09c4+ig33?v!OOYCFN60 zknlu;oJPQ_>QP3FMvr?-{vX|0{gRW~1y`-Jj;e=E4WDZ|LC@u18<{qFY`+VDG>O0U z2Er!B%9(#ukG;M|!wW}G4Vxb*EC+7p_veoSD#JxRwwP{CCOcnk^txw;z1e{jA9hV$ zMv*mW`4KLz&y#mg2bma<`45A~QsG1;GR!><#gaX3ei%cU72>x*W8WfCj1b}~(h8TK zfpVfglxmR!z&U@^7SVkZg3yyhDLOhi!DzC$2rzTI-2r?Y1~RVS_1Sus2)rGq>eAJK z++Ca`9anG(R8p)2G9BrOkFTfO#Zg?Ca}O?}{7`kU%0STqOfs#5#6#E3UH;gUgOkpj z;c}4zRFUtwpFo9Omf5^UJS3>8dw2XrO?!>xlK%@BgT z7DF7$6S?Qmgnm5V*UW2I$D7?#ek|XB>st70#+@sQd$|v(CZb)u~`6&wvD4%{RKoa)o;ws#Qw(_dAs?VnBbymDQ>*XKJ7l34)creWQZ z2vXQ`h_6CQm3!x!}^2o}0>yPN_&qfTE(^z8$)agw9E>C%XJ- zPe&+VO3`d1Y26SiQ;D^LlbeQ~+~j=5oKGf$zzxM+G_=-gl9V?nl(M7offQ_bM2+IN5Z+Q`>VV9lp|W@5_On>v^g zez+Llq=arAwyC8XWPaFv^7c90HCbU(2?tb(F?^_-`!@&3e`dZrFF7KRwGrQ1S(kIz z?kq=?SqB<4p~LA)>vvDHLCiwIdRCh-oRHzVg6ohdULc`CW+Cjv5lR6T+7gA0U5JIJ z0|=XdlqIAPp}wpl=De>%7zl2nkJ0RAA9o?3%Sm><(!9vynR4k9Y5r7SJnEdPId%W| z`Ucdm&HTZtptjkfjqZRveAhrK)_5Gb#ITj@i%C=4--fKO94WDrRN)Pd9IVZwiV){ zxK;pi$#??Qdo)QS=EJ>yX(jUztBH?&T?YSsT}U32pMuhumS=l@l+EdSJT z#2-fuc&^JFMYWrL^7l%Dre1|?gh8XIB0+8?9@*C>6LD!iRF)3#?-4pSyH7rRg!0)X z*jm~R=4!8QgA7)}g7dZ=*SFC&&Z<#V^Cb)vjdi<$fP%YUI5EE!URPyEaJymqK^$29OG zOBR^YV*gNWJJ0!5yZyn1mN_>dQsfFz>eknx5{5~pmX4L0Nzzv*D)NI3(6zML?hIFF z?;#6sEQ#~j9yd4?NMIh&XS7O9CWAwB=~ZxCGve^~$j+c9TmK({#UkeW#j}=_@^f)~ z9Dag2IbKV>i$yA4(tmSU6)SczogG>P!?m1Kd7+4~>GO6!nJ$kRXnOCmyz|f6Rkei) zL0?V4BnrMROr`m!cnSjx;AEg0t#d~ZnlGYxCtKz#FITLiU?YL}dMA6OzPA+z+ zLo!}SN|{syY~jF<_2*TU=#!Pzfw?u2D+>2jmG8=@{A5zL&P?$JAgOyMSf|GN>nGB1 zR6^MGcdh1T8s}rMGq;v0_Iu9uMbP>n355#7|0?4U`f;lTA!7okk+t8P_%W<0K~h8x z>HlF2iYM7XL{g{$Arr=n+;%UCnZ{QE;>0N==2v`@$C}CRpEcV)y8mXWCm_tyxsVFN6IARYO75Ah$Jt;X8XiyTUv_ zL$y14cl7|yBtS+iyj&EY4sZnm>>U_jI<>OGl6&t1nnI!WsHjrW*4H$%p z$Atk*qp@is1y$^6zzApH4(;4a__jWB%2$Qw3M4dP1qhzvM#%LRNl9wNW@mlaLOjkO z63_7#Y~gn2WRfSb<(y0nJel5=Sl{HRYk}_crnW#TBzEl=YV=T421Ae8?+pG={3vmW zKB1Yjoy@JLxIX6Jtfk#9TNK8!LOFxRcUJ(5_?lf}^&IqT)<|^*xJETE*gPKW;&Uhtm&x^|3 z;i$*fDC}BV55OL@G$quia3u@pz4>K~zuCEKP=y$j^;XkAjvn=8f2A5bXHLa+9|53i z*R}Y6*g6O9%EE5V#;(}5ZQHi(RBY$Owpp=l+cr<^icvv@UH5kP=+WbTf8yQi*=s#> zigf5{?OTCwk_bNv8gSkDG2e+Ocq05B(K)G8R7~0ByOH=Jal#SrcSyALZL7Onwd}Lu zizKD~xxs>d;N4o09`BtSne#HqZh)EYes*RipP&DRS~vB5$!&vnN$Ico^4BG4W}z}o zYHee786`3+zPahz%cFKd;`(I+;NA)IvhEJzApl;&&V(0R{FicuHpKfHg6j^h=7^po z=Rw58Pbgtzo0ASz?;u%E1Liee4!hRk;m_>;40EfO(cehmK~);zPi>}<^PcvjckiQy zfS(*qTkICXLX%8jYIWYhJ90A8eTunSFr=xWj_T?+3>%T6)UTt11vHQUe4w|OC+-j} zH+jOn0a(8nF5OqN%d43d{eBOG8XPuxWGwRQUGCWR+Zhw)Z3a+ltD27a4N^+il!3&} z2Z=u2F{ee}v4mc-{pgZvaMf)7DbU}axHO4{(A#`6^2_~+-=zsJ3hqZh@rwsvAG32b znePFj?er^kSG>*Raf>9XCBSLPna-c*W56a30SJ8RYtF`@0-feg=F~nnzYa~pZLp4j z_CSe;xy%>a9kLF zfeu04W)%eq#%;r+wh=-ZG`|5uUO!(6J7EF&>-(|;YvHXHv6oX71weA>eJozNCO%U- z3_N$U(&+HF_WUOf(%`VA(lWVO_i2PF6z1-@tFROLwHexYvTugFt%?~@Yx(=-Uxz}U z>hwAe^>n&>u=2cywdtG@bC+XQ4r>jj>nL}B^8xzhuL2HL+a(m%$uAJ^Z(pY@=i{)j zI-q0leltn(+K9wDJHR9(GrlJ;A=@(HcT*>>$IKMx2RiE1UD9R2OS4sD1I74WEP3oO zg;)s7?ld+Z7-T!4{Kqqk#sY$4vFHnG^j#qi<0mDM!t6+`p91wCH8(AekNQTG+~?YW zjuBG{OY*pKIEZd!!oSh1KBy~1;acF6S+c_Et#Wv49~9An0dPpgw_D6d3nvwT@KsQR z9kp`b+yH9BUv_W@l%dRAG?wdmz2qv(qZEI8`v4R zm2L&U0Pg;O7wa7NRs|RA$|Fm+t;iy}`&#yA@UPq0%+2M`UAwR6Z{85umFAW|cH8Rt z*PdI;Tb3%rNIL{-)XP4~VSRypjcIdtata78wvL070CnxiX1t2ods;q`8M|MLq}YVf z8B-WD#_2G_oq3XI!(I8bB{94a3KQxgYB0PGB2(%~N$)TnwTPk7WoSHU&GEbt~E4}Nex{cZ26_qk3~66TS~frv-j^V^L7sDUZm#ZZx`Nw)-#0$<-vdp z;XrwV0TB3MhozCs@D-IuY@}HT*p{tKI6lQg-W!V~wzkA@8ugN}xe2w) zvMi4hCWTj<*t)@H8F3)WJhnved2H6{IEH85?U$@8as$+ym)iVf?d5Jrv#cDZ$x~H< zyG3XviJK{Xqn-Wk!RqRGUwQPec$Gix+{p~C0akr6>^3f~gId97w61oh6U}fJqVGqP zl39<~5pUmMBJq+{xtxvSOVuSro-GQYC8`|`SfmOxBZZ0!B?{tYI3~>o^{Pg3Q^8wv zwyQvY6o_l!oe-rOIV}h0v^P%j6j;KHlzG9ySAW%xlk^*M5HZ56(98|fzMEN?M+6@g zfL31<59*VO9QUX8i6$yz&S{_B;nLf6SpD@;R5eWf5KO*}S#~{R_f)ws#Sm!}gCj)^9psdK;>-YMXIG^U zX!4=rQ7o8dPe|y}y#D>5&8{ z1A1Mhs^qR|4BNIm*LpYeYuR>>t+)1!fOH39CE5ec<#!CUu1Ekz8giBB9OpN*3KDne ze~1}eJpVIhuyV0-|98yT(Uo%qN~89@Yu!k%r`LLPB*Pi6F)!#YzKb zl#9evWIk@&-y|9<%f$N=2SuTiW=(}I{%SP#Cw@5COM^4h$r(zY8pHBhEimPSoqfee38u%}_ zXn1xD8mW$AX7=&)cfCG6&HsEQlt>-!ISq>eqDs>k)I9zyuHPtfn9C4n%;xj;-DycT zOKq|>-u^O`ho2SsoRwt&lX&Q;Nm_a>_kN%+((vdtFcy2beB!*}j zY|J_?f|>_yB@iQ2MkAOTQYdet6ud)PfcVZ}tDCK?jJl|Fd~WWxFsIs9(w_c1;ZoSO>iT|htL zrvu^9n@SV>8%)KoyY^yfscHWY&Y|j`v5!5WT`5X(e9n#hdTYcu6a*NwUoh#UX;qCP zOY%=pS(Kqg2uj)HP&t&c_W(j^Z;s;e?3_c4kg>I@-;nls- z^cEb2T2%CamU06(w6aI4e{6G0boWimU*+M@|m&m-WzPnxgt!RKf zz}8Z|xj+^%EkBOsdfvFa8Rfqg8Mn7pwV!*toY{9dL>}L_;HJ#nvy%H#*1m*q_P6V2 zAg_V|oeeEVhKgz6gMv7bh&{)tE@~!hwc+|nsK7$6z{rr$21d&Jd7pVKgW&d0&fg5` zdI|i%Hd=V!l=V2sf*I=uiQ1Lu2~^e zcyrnE_#=e5UlX*wY&jaMzk$ATXV-&NWM~oNZ4o@+iZsu>1!y%n?>TE8JX- zAh#pZp?Pw@%63bkJG4niU(wg2ryh!XX}IXh5odRc5wcSGTp9cKRud1s=^iYbcl@^i zK3v6NuDg9=RtgY-v`*ae)(!;V>HAp_R8q+Tr08JfbKFvy z56+2kPRJwjt^61kCNq|5EP8z2qLj%H2rN`;;KMvo)d+Iw>LamWL-=Q6bSv?)3}2St z`yBLPva_t%IcHlTOt7mTsZOA968flsd&QVcD}U)CeH&*zcWw7)ll2W~z9WLCfm$*F zWlAq@O-f=tu3CWCP8uHH#!lPp&1u`F`}3}kNr8?Y8RJ~zE{frbkd30SJpE39hhBRZ zBVj{a4sUx1(4{}XM(O5gjyc%imQzqPc?OgAkHl&x;DvY(OX3g148&=wB{&ZtArMD$ z17uae=P%(jCQQXJGBLO=3%vY{90V$R?z3QaXy6{fg8Z+cul5rIJqHoO0Y-zsMKj5k zw|@^$E0Jx{vbn>`Kc|cAMMpgdqX;c#1JT-b+RSfde?Z;2=p)w3S4iJlFr*=t?x)j5 z3nJ87c7T@Ws)0c*zV;%-p0P7PZZRcb^}NLG-;8GD~N_QgHKLFU>J#*Y=@y1S9|#CvxL2ZnDq&L(?z%;rm>k>{Cnlr zYs!$A=aLDDeVLJGSw)O1!@ek$->h$&u*!&hny5|LFMYcbRgy~eo{b5BA_m^~0d3^T z`9^_s0j$aWT_OKHC_RxVY%z*Tz=Sq`_B^7NH$;MELpIM2Qx4xX6p3&2Y9+P=_Dfo} zXW#i&>*|X@CPVfP)k06#ALO3dA5agV`vn_d`{+%X>=O%8Q5aN_fiPgxpZ4p6hDPQY zm?0tT1H60&YEZUMUcHY1obkc|Xe1=axtf6!;eFx!Z<`7JuXV09wHCvW2gdZ5RQFB~ zO0;TKZcK=J^wl?HBGagf{UD+7MNvqIYp+655C||ZUnJnSfrCSjCkT|pR1v;%AHGZg zcRp)rvm22ZSn(1|`;N!2gMkG5+l->W-cZj=?|`$Dx*X23R3~G=;-xvpL1f?zA70x0 za4dXLGavvbL2MKK|`3k5UKFEv|59C8EECy9Wmh&2kG z$3UW#hRy9UHId+*_#iFu(>)a#HNjF%+oWWhGI~ zZrW2ZbGFN6$22Y?))7TN{@TEiGb7bMc1;2cczz0+)|P;gS-kCaL3qcX-?tW8))05Y zhuOG)(^Ag+HGyY$0H994Z6uY8_O{+HukQXkM=(#QHWCkzA)h*@RtdxZyUMMBs73%) z!LuhN^^)T<{HLn z_g9JE6PoCcA`)*%v?_!!2CM2y4w8fX;FmL}9?JYTM=uF>k_Yq4u|xU2IAQZPk_X>f zv(z8n*($F_jW`rX$iGIM&0$0|V4YdxhC)e$f7d8&_3_nEn-U2HDJ!^f2y|Tr64*-@ z4zK=e7ky3fmR|dzO;Njx8+yGdcKgFMEQmuODbFl*_24HAld?>aMwz5hx3yX7}+k9xx|`w$Zbi ztbKB2V_XR;s$Hd+_!Gjht|rr{|I1#j+i|B8@byzu+;Yu1i62@G!jydivzwC9f&cC- zA+23B^WeZ#Ahw!QqLr4Qf*>sdVPGw@-LC(aE28pRyy4ggR6y2Ie~Eu@=$b zO#L4rvM;B!|1j$E{C`Eh|J~zb<6!;2dP%tyAm@LLy60`VF5zQ%#`?Y+C5Kg4CPeoo z&-*h$N!;nQ$=oCq^OXGo-HRYb!G=f9Z7wJ>$X8IfpRZk@{;n?@+lK?ECw;XJH@9Dc-6vCWC+Uwp3)v;Crd0Bo zRNJp6!}4-IxmvSz`u4vMoDBeTbY1?swd;k@sJiLE1Pp&^aKdE#_}twquzHK0OX^{M z!oz8rJhXh!l%e?eENrO>j>bc0WT)lyoM=Oile&i? zrluE*T=YNZe?WyChpfn09=Wm3K~2L4d%Va03j0H5bkeaSEFxX^uUG&|_B&G;`yxaL zm-b2f#++@E?6(%=<_37_{cdd|hBYJ+3*jeBrO{ZngY$~8 z?+HQ3EQBifG{~N&cgvme>B=@#dh}>o^b5jjLOG;Gl>|ieg%hO3B|WfiW}-DU3Jb@X zt2tm*V$iwlGQHgvM&JTeT$&;YW=N&3N-TVKccGy=@&Ps)#!je?}>|*k)=0&J!=I*)eLnOq$nV5_Q z%VnGoo~NErLM(5k0WPrDPfFE)SO{gB2Gs<~j`vPXae8SXaHaziO4k`_E{u&TS#O0) zXZkM3k(Bfoo=V59>WeO?+;)mE;-;Aj_mQA7*eDQY4v^)d1;|3=xQCn9&qRlfvRXj|o34Tb@3*EOVnT+khapJ2)yoC&qeglbw$xAB;tZ63 zhaM7a4QQ%r*zK&XG}Vc$<8?t>Y&%xnzXYeQ_V3zXJUat)I1YH?OYl0$1m4 z9l7)ici1ts2VwD%?WKbxQ%?2?f)Ya+bbe`bRqwcnB@iRx7fkGm zK@0!H)~y1R2rYX%WAyKnq#ksND?9`vWw-oDiL+Hg1-5mw9*z)KpiQgIooN6SM|Nuj z8KKbycdTLJF8#gW8(4$*S|-Bi=9FriTk}J##FMYhgmbGS_Ili7!<)AlHS^Sg1#q`& z=Mi#gat!s@kUFZW7ODsi7-HqDoPq3k%>J`vIY(x-Tt-XWAu`43x}>rO8bSQRA^PJgAt_o zk`2&IwhliyvN#3*5=CAz z!0PZoEc&BjNj~>;PcR)N>W`p1_Ad)%;N?`7LC&?3{KNq5+SVNl6)_VYC2ZvWw&}@ra1@Iru5YB16{_6x>Eol z2e}2Y`W)yV1G11LmvGt0@K{yY^+7Hi%)Gbz7&hB5P)H1vlUsZE)3A=#~_*RZwor3gt}UO@{_|CF~FO-=guA7^bR-oxO?;xD;OgeO@Dm#1PumYO#QE6B;6= zW*&7W=){PYg;>A&5^W2a(U}vSljc##kke5wXTJ+r97kHV@QGQUl7*6JicGPF@4X2Y z7YYJ$EmkXofa3hYPwA4sWG%Q|eC|P-kG47zDFmHvu!`m**CAy;N7k)0iae{)+AFtL z#)*EQI;KdH@PZlbEwlD}Kh6WL-`WGWFayKX+~s0p4kgQR&gKmq zosOcBvfP;w*;c(*a3+>l8J;dFzX zz}z(y5fq1fD8oX$+*AQRm>X3X;o*G%4Jr=q+h$?i4jGU)-El5>da_;0X^n+%M4a*- z)z0(VaW-N8xYd<{fi0)Q1}@gb>-@NJFVlS#iJKZZQu*mx3Y|c%LXPy~#{CL~AV{gb zzB-R_+XG*tv7%b@9#So%BD76_6DkJBxKG-oX17xqOlRC)s3Cwj(5HDTy}PS0yh-3{ z@wUihnAL+uEJ8zV7Cc5 zC`vI?PZ%rIwZm`@lvJsSdH@BDv}%G$sg%Wb8J&PCo>BP6wrqlW!Q4zKoxt-Woj{|* za!^o#n?r$HAtE5O3HaVsuGRmi1>+`70I;^`MIi<93{5!*#%&t*Wsa#YT;L=%PMBgG zm6I*`f=rLnX2&ScQrlP#f<>G!GilRgF%WITU_?-zq7S()I`|FYr$(>!`D@Hy^bO=8 zkB`D{Za`)jBuo|g_>awRy#_lNL#a_DQI4WanQ-K*nm>RY?KfvRv+PpsQl;tsJy{+~ zy$q;2cQ_RIeEVN0HqNRg!oxwTFh81CPVID{ov#<0;zPZDbSR-GLfU#O__&~QR4nHx z-MDh)qsqa0$EdFlJO~Z5OJQW7ys`6SK*qM~wSs6X%pi|F$(^kqchlV22q9C;m} z-h>kH@u>p{UBKnAOfQH_y=o zaef?RpqtA}qR56#B)dG@z>0a-DoYJtf;*Sd+ieKI%H>d#vBB_Ac9Di9C@S&xE)*)m zcBW!N>H6yj`AfD(T6$X%;)W88N;f4%9aldUtQ=7grC}`!WUw&i&OOy66dM-9lt#^z zQXjOlJSQEQvMA*tcSlIi?#%5QI1IVod15kn4GHhipExd?N*0}~$3Ga|I(&qIMFY}w zC<6u<5E#=>St^G=D)#SY@?buewp(Mu&Uu170eo7;%}Vj-_~Ag)%yUaWnj)$KXrOHv z;bcw^6UpZyO4PImdOKE(aN+$xD~Vv`PTjPJNcqSa*G}iQQk-F9Ywy0HxG^)tRgP7` zROE3vgs?JJu!f7z4!4s!N>u3tdHpCp8!!Oe1kR+A#+VghPZA;s&n?htcY{!x541!* zas)80pGNF;)P+>@rkh{%=1paG#wMkT>8XV%=xUR9$>oO8)6t7yT(n3?Qn`%QSvVLZ zVf7%w+O5VT{QJ<67s#?53!5+h#+tq){;vp2?YGZ12hFFg{IiI1fJuE54HpKXr99w6 z>M*@qKiIaI_MmO-F`ZhEMNs!#eEZUN2=w%Gd!36QuMLslBP~1_{jG3d*$f{_Gao+v z^Hut~u%lOZ`DpFC^ok~N1g!l?9bzop>7gF3=HGFk5NWK$lc?1}Jyc%{AtI{kp3?-Y z%HyX6aP^HMVby)o8kyRze|&SFL>fT*b|^BO9p66cnzBF;liU4CiW%>pM6g?5>48A- zy`(y>z>O_?3$6cA1}gC5YkN8N^=<&Vy^yS$sLHD+G2u&nkX0{0Vphpbn$VFXFe(XK z-cuMj%};-1ExMIe7|au3*B%KjQTk6LDxLLlmzuT*0cMzV<+sOv08_f>;;F-}(BRuj zQEMgw9J3NA)OmlxdgY={B~&ON&Ef;Bv^rSZmOOt);VQKXZSAQJFS|&1AZNONy=UQ6XZ!^fPJTf6%2Lp7rECJGyNsHxK2sUxQ7Ns!)9gqpKA^_W_F(cUUQ7< z?j#(wp#b*!Mg6M~M);FbsVlv=%6N!HPzxr@{5!To)|TqRQYfT|+RwiG*m6l2HXlyw zXq54till$`aX%i-cmeuTL?FJ+6RU{RB(W<)b`EZK-l?fgzTSyZZGJ&9d90H}DnQLs zzMkCVdjbF*zK@#aB8)D@@^^RWC4kPzB*j!Xg5Udv2)kh~v##swM_&z_7xai0&+W7C z5x09iv!{DDg=ht~La$}k9%^c_?(Ycs)&%kIaL~@L+gK-(;T%0v4LcR|_)+PpY^JPJ zVetg5d!#mruCK7|yZ-M^FYlr!(oy^hebOh8?K6@5@!%6S0~AImaWm^rZ4jF{b8mc+?b6#0Rc z%^W5yb=Xk+!&4D{^JAc{*Z`CuF1u26?_@963JkG*X~3XN8JD7J*AKdTkiDFhZqd5q zXnfhIzuw{x*)zd$ZqQ{`&&|GrgitkCF!z0KZL=_?J^YihAEE;gKpdRsPDpOMgPs&^ z#<-7_CtH$SIExZpl|7L?45 zP)76X3-?1YB5xm49uMi)4mqGhBug2V+W24)w>aNc8>Ehqs}$-C8#16+iNMaw@Vz4P zt^;#bz^{}_?q0-JNC4`|P@sy{gcax;?#F}p1imOT2)FkWKZ~qg;5?!mVal&$s5KV0 zv`t)m8_;O7^S{JOH2p73*$j+Mj@~@$2bjQ7&;STts)@qgM=sBfatd z4l{(r^k?hUYN?!2&UY5vAm%SMt4nE-4Lp#@^?A-IBY|xS7=WC-I6EODxgac^dh5wg z4|8L**Ub!yP$+Q8ai@A>w<=;8wuN+1s&F$9hrr<4eHkt0WIzh(y$wM zy!$#LyGo#!$DNr#>}W)srpc(BlD}ucBA3v%nJ)JyIO~XG{SORCJqn32I3Z)%O4c}G z)R$ptruQQ6B7n;Hyt5G!JMLH?Eh2ls;7W4?yfZicK~^v<*PRgBPhP%t|AsA;!oHke zFE?SGw@yZw=^sCz+*JJ^_7K-txp@=6CLEA+>=8mDend~>B}mNkDN&npEz0R&Jf};L zZDd+%fyPZ$K|h|1;jk(ViHVpV(M$8Hv*SmDC*-2zNCWOMq)9NYz^j2RAL8QAkad8T zq9yr7;%>AguNEIIWA=C5_U<|=J`aBu&C;AUo`5rp!okLR!L=QBi{%rUY1Iqk~|4EH+C~6TWu1LXPXAsc~Da{-DoHufreY|VXhY5o0xmmN{pDq zXb@B-weDf%;&zuq)oEM;O2fB0|2D~iRXBp?)^TuO596E00ybQ0srBV02-P3d82E(< z`B{{!&hn|@L|m|4W1(O2))rvNYMm7d5~sw>n1JN_qds~87jy*T@vfaOpOTCSTtxF9 z5C!6ku@ZYhulvb&pt#?#`IYY5D}$)9aJou$jwev! zK*Jga5%~av&Jqp!*n8hD4%WmZ?0;#h{YB`bNpc(}YetuXQx|jp9FT`* zSsp~V@e8tPOYTqIRj2Hb#?liBJ-ry0_8h_INO;_M2=X*y=|sS+-NU*Ka0 zrhywv*XvUyIje6vjaaeR$_`b_{|;fxrbVo;EUd^$sm8QJKcYYL>-MRsm5hGmnMR~2 zbNxMSGH6RtM!i*5RzkN_#+A+yDY|`@@%sd2%$c=&(^$;xw&1bUuHM1X53r?{fVD12 zz*TpL1%9j?36V>!EjGlCg9^H}g=%TesA&tEC(?^e1?cKT5P=d-uHnjf6#B{dEv;Dn zG-P9+(rJvREj>bm$C!nLW&ijPdTY|;uV;u4R$9cE7mQF@bB}RzyWFLrO5v9J^`d$3 z#U`FAeV9sMZN!!PIkMSw3{X&Y{V@n148rSOC0I;Vs(M9WRsT{_kjSCzHd`{U>7&XE zHR)0}d)f%g+0qC*-lREe2%-4dvUZw8I`x_Nu=qSfNBhDDv$hPUlNbGG`!-bCR;%ih z8lzDL9NCEavkS#k+9a*V1_D;1FBq4Q-mwW!GVvRnj5};Wrxt_y9?)NgO+^~lEVN)m zlLV@eW+iGlc?o6w*8xZP$dQ?KAqlKVeLRE$7+RkMmu%E(p>&+}i z6T`=V4YI@0`@}4Fat5dJ z8z#Sz63E$1uTNiPbgdd+CAUf!h*K^YqVWGSiGQYQz0_8!4}dbfpF0&0d^8g>j(%i& zmihGp&7L%gsYAv_dzxkTG)Q45|D=r|rr~3useWDUvZeA(>bYqf{&O=sQA3Wvc0_rC*45r9uw$T#3JznA>RLG+lC0iVww4E14XXdkTK9O^O6Uy#Bzv!~YQ4iOTN zP|TT`LNx=-I*&U~Q7u(D7Hv96g0;~?8YisH_+{gT*?`tE(?TshaUeYg3b_|n9O-CW z5y0LB=JD&eTcU5F%aM=;4T)~bS(8sfNAMO4ZzM{J@ryTm0IqwyPdj)>m1aS6Sh%_^ z!A^gCePkQ$jgARP?OXkdmR8w$$Ro!j=iOml;d7v-w)ybzJhU*q=ESwG`3*jv>AkLy z@F1)I8bC1ZdW($#1g(GEQ`h&2x(1^GhLw)VlziG3+Eu61A^IJ}4^R3J`sQBK!WV9+ zI$WIfzIf)|+f|uHti1d=6%8=^z6#m8S|KuY5&nZ+zSQe}{do1%SuY24Q}N5yBu9D| zuh1UtN_L|j6cvl@KS&o?Ik{36&1e8Sx_XYl351>)tqmTF&c!0Czr={j_XYD%|(I~;aj@Ix+GFOxq%vJ;Qtz0 zj6Vj5XI71hCcLUK7%2_!2cCbf_Sb!RxISGlsHp^_%2>EH$Eyc-6aqppOfx08y#J5{ zH1}5LGy$(P*X18G4~ew$9RdQLG!xcYMj#ei;T8K6iX+d}6Ns3f)b0 z2mmdi9ew{S;}9CzRDhQtr*2W`qckPD3TbY|$(D)8gf%G%43z*jfpm@A$GX|feoYJI zCqD-9h)R)-5Q!4ePAaS#xk%=nNwWe9G9fmly11%KN#rl^0aO8yK(Z-i(J^Fs3UGwV z^rRK+ER<#{{4n-^U1(m|S9G`{pBq8bcyMOr5^W)gLu8bFBS2h*v5WkuFo*GE+H&+d zsC+$7Zv4U`M?*RcAlAsFFE)lD7bE_%=86#9jv3PK&dkKCiF_8w_3ih)%u>ICy~+IB zeP6vE%~c(i8J3qWGDq7EX!_TwQdGCX(WN7I(;cw3tnh^&;rn>ASJ-?K>EiQX$ARC! z*4$kCP_UfL43GgS#^SA=)JodR3%Qkb{6GE@=JS~#!>~2{r zAGf|d*`8f?{}7KJ64-NGt~w9ifN>HHt)`mfTEx6v2$M%%uCiMH4Hds%Y`QgrCOzC` z8|*c-Q^Q^$0tZXXn(Y=OvhS)W6v$YU5z=YQ%MxB$1Yikg*IpaJUPD#}N0AHSTNhBV zqOn;xL9Qq?)a*Vqo%7CkMs{n~*EO0^pHi_<^F*3850TS1N{Y~MN65THhmOM_wtQ&10;iVF76(JuQ@&{P!y1B3aMo@RGuB67Iaz0A z+bo%vQ9JX^Zkf8w!>gJ(`<(l@?M+vb7cvc6kCUBBsC4c2Ep1G?p)T)>LW+F((%e?y!iX9z7RUVmX{of|3GP?o`Z*3Gjc`}92zaE!QXSwy zOp`^u-o&G#PCrHB2k*k0*2MXA6_qh4X98MT^co0>`3DdV_1jd@Sx+0PMU4cz0n|N3 z(-WM<>m`Njx5qVXjg{SdMLQP|02%7hOHnFy9EU&)+Tp(nGH;Q#8n+%!c^$o7+ekXJ z=cYa~U?(fW3VH6_yN zXm7l@-TnM9xM(8G2?42fgYP&_IDL(yzMF*OGfcMB>FrjkHSRkOS&X8^<^+9@DsiEw zAqQ2123zZ z!pLd5Ib(q$mOSB|UPGCz!h0M>ni@kbZ7pRUY*SSt?aI@-8&lYWBszfZPnvpMDgb%^ z(Oh6PA1ruJf9yIhDq_!L3$e=^Vd^he0X@N^{;6bbRfX1zB@LMd$aMH_plJ`grJdUv z6rDV3I}9bp2t?{F@Dza!@%whms?AdHnCA$tTx-KPdWBmDPgT6^;YV6MVs_TOGEgNo z=rEHOVKzJ35nYXUMey1^F=W=Nh)WfiKO)V_udvB6yAH1*!%mYRvB-&1T=iX}kgmuo&WFnjZ^jFVN^>hb)o)oR*>N zWNs2H2il_8;};0SXz+sN_YjMVr4clXJVqUOqs9d0zw%gdFT|5WBEG*HCY6`h!VZ@e z^n_zVbQ>r(0H?pZj>nVFDKLi4axa5D2@{dw4>ZUaMx0&HMgoa~-O%(=BG8q? zSnhM>Z7Sm}_Ndglgwj>#mWP_h-E_W~=BFl;Mh=1K01(#B7BFNcsH@29VtyZwThW4| zl5L~fg=H-|^2O(^PYEr$k(FhCLeTTq>NGBILH*hu0}6hJsbwtMt-XqmVpauz{B;Ef z-Kt#jHYUgLD<#<0Pa2a0$+ce>NR%DPg_A!8|5h4!JM!n@G!jlN-GAT8hd*0~+c~D#zc^6)Biv}f~w_X~5xQZOfC8|%BhKVE#*A+4+0D`XEuPZE{ z`fOrABgTZbVvxa|?=2hw`I|oaJM|>O^DL68bE+qV?%-XqjtZXHkA0i=;Wu#03>->X zoxW5Bo2R^V&1aUk{xe+bAYALpmQT24CAA9wD6clO(*3qCr8Qf1(w{{Kkq5(om)gCC zey6M^mS46$H$LZ`K#m(RC{fS4yqk<#sVd&v*ZSp}YP|gEzd$aSU@{9f)i+xL%$Ge^ z*GVmmPbAA6(#toZ)w0Vv>$iLZf;S*@LLx~4ln~VoZn)~BnA)98bTEc@3RPA6>o;g6 z_MH3lf4FC2|1bOu6(Se=|KrcFa{O;eSg)>vBYr1J?|l6}OQ)0e=o>Mp8R#vpA{cpK z<`}G7t<;#0A0me zZ&lemg5|cAAGJQDV3;Q0gwJXFG*O^g)}-*#!BT{o5DD34E;do{qj|qF@A9o>W`eMY zj0-cf(CF&KZB1?4P}4@@ju3Y*s)j{7J>6KSfXPPsfXy*&>l!K5t#zUw%bWwY!C^~43?Z? z<4%017p0^2ZY9@g%Oom;`nsb23X4&{1&;9#2bWSYLJ0DZD>_U_YU`M7RU;lKQkO){ zYALP-`c_j=US5q^+g=eVstF$56w8!5|76dYI`0&IFQ5|Yp&8$J_5LWh1NfYs?>`|X zQIDLJ?uQUCxPfn<|IyANr=k}%5i^86WP}onZhUn`Go(qsCA6jU>P3T63rZT~Z`fL? z7$wNWSqW1N+Zm-Ijwox?wJzk58aIwkl-+Q@>@~4e5LiiQ6`jy7E?4xbx=RzJCYnAk z^p8X%@LL*AG}E2gxMa4M0zijXJEhfWXw@6mt`U7b)+^}t_jPUU)~x+gdH3PeefxMn z&9A<_Uq6-4K8=HUmNY-*uLE?x?~o4L=A4rlr@7ADbl3Li38Z*Q~Q zxcfZO*6x)*<+l;F*?dxd9(+tQ0b}N~rihk3_iFEMfhNlJItTx-yx9bVL$W+QQP~!B zpVSDth)_KOX!2(u;HRm>Ggbo)@6@}-v@p#jM9XjG{oiEjzb`sP=C#_5`f>&M;)jRW z{`9Ochv{4RU}tQ*g@p44+jC5lFT>E4p&#nF zvYOD7&aC8`C+lUU14x6}mzQj+S=E#a&{6s!}S0_zb^jofOkDyK+lgx!h_TU!P~j|d&Z)e ztMMQ4UBg;re9-CAb7JrWH^BQo{G0a19kYa%9!DEHZ@bHl8wuw&`9R^S>7U@vlf>9* z==UTp=siimlzWrMTi|2P^tDFa9yZHjZ$yb6A`R)~@G`XutS_Q*Zc^|saTjOr=E;0U zAwb^_=)8*xpc!*IsjuWu&7eW9D=gG_YO7G3h3EStB2$FEp_L(Wj4+yUd@JcT)L&|d zfBf*h*%ND09pteFx7Tq31jo%NtHBERp};ICF2Mn1k=$F4pEk@B;>u%FaH>ILu4fBL zBGlLFLj|gd+Xu}UYd9+0$)*ZC*DKU z(_2=~eId?P`E17YHaKNEB6D=XkbQGAogt3KDS>{wr+SjdK2P2)w_hDeR@A|gw&M}u z4fy03z_v+e;(7!7werRvbFGWVx#S3!d1I00nV&2c?|Fy(#7y&#dG9r+pnpXk>Lrk{ zG7DPE0WkCal%YSoFQ=V}ZjGFYUNT&W2s-2A@W&(+hqr-tu zsU(V6o~R~_!RWC13UjH9;Hao0=H=ptCz{9n{D%b>Yq*T2okYO)pS%J^S2@H}!EYMJ zH%X;>c9CI`b|{bW=B_)Z+bCTW*wY=&Mp3*`#|Le=d1xS@wLR-nVD zTX-_3@?XkhKX7OH`e&O&sI25=C-bsD z1JwT>Me&&Fy>#3)=?nUE{!?<*GR>y$^i8E27-rM>&!h@!LT(iju$@I}jHweno%r)v z&Iwx18D`96qKm8W<1C@Mu;R!wDKa&1wR7e%dv{iW@L=1O@{u=whs4H{;8cP2|GM?S zQrj|7#xq=sZ6(1FTD=9|1cLdaPbt-F}6#k zK~$E+hSueP4rj=sY*>yVLp(vS4f4&nLTwOkeKqH&yjUt|#|VcFGOi9=A>d<%kvZo^ zFlyROC@?(YM$WHQ8Mo~;wGu`~QkMpXzYKkkh z>Zsk!LzHEpQAy3&`{19#Xa5n(hvm=cv?9dh-{9ZdBhx$V+tvwU6|e+#&i>1ai45Hy zL@{UoVvh$D7~^i)X=iWaZ*#Y^0NAAFei6IPgLhO#1mCo}A{G-GIPs|%@k(cn> z!Z+Gn%kM+6WHJ*YF7C-z`^=vy{0KpR@VzcYRMF}CZA^MTslkR!G--@zP@WT$<{(I+ zt3WdxQWcY?k**K7;-jE3>&|mrJccMM zTZj=oWsI-GYpGpi!}EzHf~pDXt(Y0w(@bo|{^I&VMVjwd-pAkvlBS<|vbJkw(u{7*Qp247!)RzEl8_fNGs8P zD)N27|8AW{{I8upIu_giT+~t4tAK*T?`!AEo#}50r(|(v(8dT66k6Twe#MLn|#> z*U)J9lz*^T_hsxg!Tq@Z9B?Rfm- z>t!lEGKF9`WzQpL{0%UO8U40Pd6Xp!gj3Zz` zVau;O&ECdp(VfEsWTDT4^r%RQ zELV`@tz8FMnMkbO&8l}{5zN)67TBUCr=|u%ig=D*_oe$iz5#w8N%-DtiECY_noMkqc6Qw&KH)D>~Xdcb=#VNx(`{ z;T*D?Ia`nQj`Zs!esww)G)BVdCi}34TBcgMzcBVmvYJqJa$dEWgaamdE(=a%O>qf3 z_bORM)p1!2VAZ`1tZ=;YN*7T3%`xW*R)3@aV(@ba`5lw%!_FQKCvm@A7FqKn{j;lIpOQ<(#hME2uBxbHcz=0`5WSw*k z2`WwLYczRWdwxW=Lb=82on$k2S$TZ)6s=H9mI3xf4;8MV$(KD2{9e-^<^C>~U{&A{ zDsj2cHf9?~1+Og*`4M42enH2oXh9;7c8SB;wlgfZo-6YM{4Wl$+F-_p$ID+0E#xd1He8#GZ$k3Zqdq&j}G z_!}xUA*GnEb(uCsHCK~w!5{Gr=r=uV*79qwC%RgY*xM_ebL;d!fiYGRC=`Us-emL{ z#viV(_+TMXkuwii8^VAOSZ9hv%?K%krv*wdZi#oZTRntA&x51WlDsW`zOO67&~t8ukBF)!(K<=UhNPEN&HXP-mn=U+`tWD(g5eIgi%6 z?^^Q}=UeO`@ApZjC;P%6E+;z4-bgU%oknZ%BG13Uo;F_x0+}cw5kW0;Xjw<~N{=%m z6{*BcX$*frCTTci4*+!Q($b~>{OW+ z11tPHGYD7Nm(&w$#h*=v;9{{L&S7!OK#}jepn{tuG-RTF-W4?2hafm~k1}^C-EX zXb|)|^xJGLSvziH6ZecOPUcqjfu(a~EcR-|(#X%ffIJ`+>}wG~u5s0jGz-1k;-xYW zxt!K&XrMk9nA9&=sz@H{f4jDUE7CQmT;@)Y^GVgb`+og2io4@m=8ml%yfCVhcu5j* z(&hrPLYcLAUW)GRefbFyX4`Hmc~O@&BsN7x@_IgupC(X8-Mh7Fg~tuA_FiQ9birCb z8T~^eiHS+`W^Ab9Y?u{-P%AXv&!a=Ywd{7v4MV!+ZbRQuGMoNAd9`l6Rgk)ss-91< zh6uCEaF=Nw=GHyZZ^54aI}5ir2h9#c8OtlEL{acOZGX6X9WCD`96&#&G9kJb@wIEi ze_uG*#wVP8FL{SK0@`{$#G>TmCQnn7b+xs)^@$>U&BVvQkeLfOyyfXSxIGHSY$t<3 z+A?)I+#r}5VTS|jw7S+6HehOZ#|4JWEbz|W#Lz)3HeqmEc2YrYExRA3ETrXRtj>Tm zCFNP^@!l!IOU;gyW%_i>ZJkJJN)~XuY!}SZ(y^*zg>e;M1S4sbEo)|rU95cSYoUra z17wcJyGT!+1(IaBwNiy3v%-9xG~!EkuNB5Qt@9n7=6Qb(M4QA3! zwUB!0F8Xm!=s2jX=>_J#^;{6qF;grR#$npV6;^(yZclRC0LnxnGS^6ra*r!^i+H!J znd=|wy&y=;<gKN2m)*tv{&57 zO2SL?TKOUVZxoHl_R#9NP(i_k)qN5^*+LT3LIr}#?9#pkwMC?;5dQ#O&=Y@he-{(Y z`ZVDRviA#^HK;-?Pbn>n<*>SQL7J}maP+?iMlJV}w!5yZV5dFhnjm8K(VJSly>I{3 z_Gl`L=1yIQLd_oYu@b$3MN42+Qq+tNB8Zd0alwc{{oo%sP=9zNpHt`zT%@88n}`A% ziG4J++?7Y@TXPx$UXOy*X6q?>82n`}VjE9jW+k~zAYq46H7SZA*yLsrxxa7yxTsFF zD;yXKi3xTSxMWHkpZS$p{p1Yk4d;J*v2w>UgJv2~oe$&jnLMnC(B79JosDZkI<39K z^QdDfP9?>UMRZ485#O5@U~y2}YQ7ciCTaG_wSofScYO{P&VmeLRQ>(u3=shkCD6)N zB*A5C$M<|Ve$YMG7^yB1$mo4Tt}G0o)`77wL0I3mGd7FN=mC&j!hzYf@gksr%{&f> znmbj}I6T(=^}Ro8Fum!RtH>T;J44pTm8L*3M;LYr`G(i>lXigD)bHVr|5TDLEjf&S zjYe{QuA?`jLVp${*6b|*J7A190lTnWKW9U|#Y!TFFz~GZFaJ+QmpoWN(gvatuQWKY z6@Er-Aao83m;X&aMyp5J|HKNW`9>a}!C_JjaEAyRF)d55yTEOvej}7TBv}6{X}fgb z!c?%e83mVX*Twwj0Dt3`*8H;$sa3Ywnl!&tbX^tBa+)BhHYJK3qQF?wtA3jY<}>|U zB!*c}K){P9h`>rO-+gtZ4YGVNG`0sXqx9KG2&Uc$a;3kAw9g*iJm3bgesL~kQ^3(q zl+-FFlx?u=EwxHkume*|Gk3~K?aA2z42oJLb(b15K5Mj}vqz2ND6pH`Q?fb?!OgR< zwUo2^Vfh*KDIqzsySL5nErde#}d zvYykh{>UWImK-R-(juH!%fl+Yk@oH6v~V#txGo6ys>vV4FJ$5{`$0W|Jf+10R1W?3QkxA&*+!jRVLF zp2~v+Z?}Ulu#s%Ewj!q@>E{;Db*RP$yALD+W72Ut0*`3xGn_~t8r1nmQ+Xkb`}AZo zA~6N(+qS`mO@Pxnv%#?azdY&V-Lm=9?_7s`d)>ejXO5#?k)#5Bx65ddHu5)A9UFjf&c$n)|LiDHjt!<#t!kfJfxf!plxJN1 z2SMsi{MT2M*1OzGyT0q|0SY)kTRHSJuC%m#&xEG>G~W_)&6d4-yq!m!P98<)WmdLfKja-KVue6 z*4K6{;VbV$RD+p*WIH@q?c2hal`UTWMwn1CJ*Ua}vWFb}!F;1v(sGnHV!=%$k`{eB z+IHd(gR3R4Q}6Uc?rBvnchoXDknj?eJ8u2&ms8h@GX!2UD@WEX`;4|(s#8$2-3wxv zhau7cJcruT5Hqz}O*Q*Dt#Psdbnh#+(=j@BY*TT~O@s=0G|6-g^TRGfpople7|NPf ziN)Oy@G=@3BTJ_3@fV-clpLk;>95ogE?$P#HFpRkEDtFFa0-}GctZ!6eldc4o4#jd zT=bfm<&K|8Pa)an0=}QcO39n$asmiEGsS^yVzA7AVJ{TKwAL(vNo5yEg@R|BGfhht z40NHpddlcy^6Zxrsoi5MM-(}=ZLO@rTtmn#y+)UtW+S%Zm zL-?FB1}i2lg#hT|b_(<@FJlnJbx3u4f?9Mamsu>As~#;C;mRPIv6`d{|b;>jO zBdQbO$M#!bK=C6Oxy05wLYm!+EpUF|qULu9f!ON(aLv>$+2Yk_0DI;^CV89Vh>=u^ zMhLgkDKtaPY`+m%Qn6kM{Ah4g%XxfEg^doX_)z=)4Zu`i*=i(CeGGZU6+h5%4YNqm zG^CDX5-@v`Vt=!7NDJz@>KoypI81ZAqmTQ}&W0_Jky)J2%8wQuznR{*UsJ`BxrH`mm1d6|o*__&~wq=(3VMY%ov^WcD0 z0_)EQ|H8@Y`^~i&mos{`G%`%4o8SdrZzWuv>7*VGy2uis(m7vaqHQelEgGkR@ix;D zfr1Bjg{7F(ySP9R)w!-Q11vx|xHg7N zEbj{Z2OTt@StBHiQTrN-_y+3p@y-QT-^-+CJSYt37Yv_6_mngDO#E;Jux{OGFddmO zr7C$5-Un#l{$mk3HK*po11PAhj>MM#A`eLu zHU4)QgZF<~*|@pc|Fev7skh~_`EMCx#n8#2ga%#Q7xM9de45t|V9%dZo*Yhv`kT1K zR3Q;zyz$T1;}&$^?4aM6rathj9tagAZ&bhfc?r?^d=70;auffHQ_re0qR_YbAD8y_ z*tI$E%R!5NUbB{jcrI$ckm z)Je0Uzfc??ovEHSMU_)VSDCngtaNJTI)Pje^R(Z)mA8Xd;rZ8Jjq|mG@eJXV<;M@h z5B_A8iHN1UEpsyvR=s%j&%+Saqp}a5$GYGWJm%yGS13vX3zUmb%Ja-Wt&@xvc6VwF zi;CTy^e(>Kvdf%n)QjVKo??{$Cd(qk=GMN{lh{h$p7Vm0)u5A==bLi!3d*@(9TF3% zDU(nsSe~ShBph4t+NW3Cns4R#IO{O_8m>e>s40jGISr9On|9F_E(jF+Rg;p3 zp}(7M`KauQqB;0a$F)W%l06Qve*%b4ewI6Vpr(UIXZ9!AP2lb24+C1FH_~ralGck% zEN1jK-&uP>NI}`E%2bK8P~%X>CcDJTr1d{0v!CQ4Rhz7>`ZqKCgBDYaC6s;UBIxtM z0M;eNVO~oWkE8%3=&996uwUuivIKgCL6`HRX)@qm&}j4lg2}nsl-NTu><0TmE{a%< zMuFKfFLR2~3Drq3ZBR{XA&*h?X=IzZqj{={SFGtEh-_q-$pJL_v3_g&Ac-c3PHr$d zwfqH40x@2~miN&yvN{n}mZ4w3Yh>b~FZ|dTQMIH@v29lWHPUa1u1#fmgJ>UUm?9-s z1P086x0jz<1pAn-{bTrfh&73+bdG&;eNi!drCdoE%s5weEL`6r1EA>>F)FotT`RNy zNQj1m5OD$dAUO92iYVTnovQ~3O{sF1^!E+JbA2~$mrfz_w@@3=>DNfUl^9qeiVZBK zFZ8y>>pK_!Y{LZVc~YrXWcDV&OkN6kxxCS#iV(Q4PgaF&KkebaIY>Wq|EMuHIra}j zMN6?f1i?4YWv@{Y={{H)xq(3`A0mr@LrCRnBXwIO@+WAlJH?6?x5f-X&~Ur z;o*ollN-A}Gb|`#X_il(Ig;D6jaJAgyfg(~f;&5&Td7>ulOEPmvCyH*cU1sEknkr- zP4q9#`#rxgDlY#$K*fUYhP+QWeo?(49m(aUR5Eb&48spi*9kZxq{*YUNJX$%AvFX| zF@>gWG?Im~DNTQkp*-pYNKmoG5%syUoDx*q7!ze@TR;;aAum(<{|+T1x9 z37Zs?Iqi*T6sDsQ9;{ucaM4UKr1>l;2$DSn>@8d7tr~AvAsQV`i>^{wav_i6G&!-U zE-3&-Se}YGhT4($Gl%kYf}Xt&&`IKOXTPG(&VzW~7@QTW6P!U9oD}TgiLR&$pEBU3 zD?%@8{^X(_RDd;5`QvaaPZtSCRRJ((7AxD<;nlZG_+?>mW%y>B(;^DS+9C?d(D3kj zxoffikpB)XRND~Fp@*w;_-0*YZmKWMUhMtA2q!YiSRY5Wj7 z`!)I8KZpT@^zqyNMDfJ%S#A3Te=BuQc%8f!UDIFhnoXWdkyGh)j{=;peHLi=Jf5vL zg>9AYztYt1AW~>4F2K04-dYI~+q_*{j?`+-Z`nx;NGl7KrcR6;w>9ZB_ zO!0Okvb=q=%I!oig0K_k&j<^H@+O&ff3VT}+Os*1X7@-%%jb+d&Jgn{nf>!zG)|^c zlPE7XvnwF_UN`xJ*}?hyp2vFcc5}S~ZZI;s>(sU+$IR~M38xL6#+)n&k8`Yoaajky zl*ya>vvc8mq2r`$S8NX=OT}&4zw$MF=m8rhRbUvo3#ZSIt)bt zS;m>%ldL=kUzTq~g}xcc8;07}7#+GnPq+^qe@V~s$DE{715DBtVY}s46<*d< zJjDJzh{dg5B*+&v&!z!A8&F!#8K`JTy5S~(g`d{AW;L6V{C?#1YG=_Bb&Ow4(PFmX zv05NWL~q=cJB7tg3dabbfxMpfH3d0(S=wtS;B$7^U7|YK8oSQzNgP{33}60o=G(gQ zSJUFVio}-9@aS>i@$DSSU6ZMAXG1q&J-PDvjeLP)kd@X7x4;d$j6EcaQs;_$jp+LZ zDTpw$Nwu0>1Fru5!Q;;R9E8l%O*wtt9WEZR!Bya4)tgb20XozV8rU<+bN=^;2(&4Ih|{hn-UjCie^lDBc4AnUv{lO zL>RuShpeyyhkgQ$wU5P2*dqGb1XPQ_<`1=t=DuHf;Fc1DT%ojfcM3QyIF%qtjOLB( z--*CJMDfOt?)Y^W(fQ~CR}vnEh@(*8H_@7d8F9z`ay4ok+&8N4nOh6Jk4gXd zs6_`cl$9@^Jo-^+e*5ad{C)N_PQEA#x~N;`$M)Vl;V}z$9wo-&fs@|DWDbS{(LzV= z#Iu4CqBni7m`C#6u6@1@u5c)3uz=5NnOg>MFKa9K`mPS(Lb7_SJ^p`>iWp5Zy7LV%hRcDL|GFXeLqHFyfmZ=-YEHs9tgeciGNXeyC@sE=L zSt%6W2U$?Q>i_6T_wk<|<)uNmjFSCEC!}jB$_3j#HvD;lWJcB^zMRg6CKWRASxb5T z`&W`MM&}d@D^p0L90e}`5JV{P=TnvJ0J^zP_nxu(ujwDiKtTc6gB{rY9GXi+sC_ek zn7L?=We0yaxm@M%Edd^WFu%v*(Y79)K&~K)77;sAVe+@pz!Or1xHlvs5rqAq&SHwe zE)=6Pc04Wm`s03HFcjFGn=iH*;yGrc4~r0|Fp<|kp21=Y*F3r4!|_|#j?-lx(6H#4 ze>9{SW}*l3pk{VPN7yK@h{Umlqwy$Le@@U7QZPtRF1^wK()I_;)EUZx1fy=wKnCJ@ z_?CD{49LGUVnh&l;R*g=Sqf6lqSo7ZH5r*@#MAip#jxiMu0;{ZPu*7fRtGozk$Fl{ z%lk82+&p*IMi=H&aXDA& zUq;Rp8*PkK?Av;;>VOB^sP_beJE&&RwF~#0Q+)59{(C2L;z4iCefX**g-fPM9?q-q zP+w%jn#!k9rd%9Z+VIFcBtS=i>B~+#r`H#A{MW>d9J67#4`1HMy-0xsXn>}7GE-3? zWm+P_PK#&F05nZ^gIf{p+cnE|;veqT#>(X3MR=8we_cB3uLN&Ac@tIjUGK!W+^2Xu z#o$)?srWP2ul|X+(dKK}3R(WgTW8ORVsTQ!iX&xM-l@rk0nMNEVC{k96(Q3fF6p^+ zHV1dp$8)1dQ7wjY^Ot(j#F+D^}5cEx*$kq0*lc;K@^^cS9H5s9h zKQ}#;5pji6Lr{E<%kCrT@I+?Aj_8Z_ikJGevBv`2W8H~=naJ2Jy zDm615A-#$8XHJZW22X@%QWyN6r802YyuU z$&yR^x&uY4(T(dhv~E`6u~Fg0a2fEAo!?KA(;+W3xx#_yvKY#}C(Ks!#st~qEimNX zL;q3xc5AF_TIeQjaFjG|te0rvEfPB`iPuy`X<8lv;0Z%$rdVCNrfBi7v)p_&9Ph=~ zjLr#%5UHN~ZCyPR1*E=S9ItIf3m~f1*f?Ap5y@Ze)_+R@-{I0$Yx13hD?FTUP+>wW zVcE?lfksMCT|)EAPh|fP3AWAyp%(~35a_Idg`@P83}R&+c-`puUCLEMAjb#}Ct<$W zD8S*DU#8s|x;8~xqy?(|!ve7VkEI^~0PtVQ%KsDv!~LU4=S*iq zM<~52%~oY!n4EoQq#aJar~ImgEUJ+|V=itWk*48Uew*uX zgY4R&LMiR>$=e|0xXbFUy>48nYZo(fjAO*@JH3d$9KiTr1Ra%ZvtDOO&#z7$-hiLb zYh_n)?pA{#5f#>StgtJtVII3iEG@2f(kaWy);|4iZjo7B~s5$k+ zR!;Zor)Cve2U`2Ib)hRjVP`GunlJ zE@UJljR@f>5)G*ELfV^TD1(lEHu=u}F~yE1-d7oVAeKA;3q*jy?;{y*+~;tH6BrKX zxN@@3Kwp~*h_^~VNt3kYl!esqfKp~3s|wQ(`X)sJlE;Q0Sj69rPhkP0oa{r1;v1Jv zFoF%nN-livO2bs|1Jk`ebyE;65#sP2sf`FB;()j+8H(F*jnW$osRQ|}HqX+D443nz z%~!!^S%VQG&($Ew=LlG+QK!3EWJ8Zs@)#{*X=>5$OG)&%-&%a$C-5PLaecQ4tNQkQ zjNd5km0il_Eey??Al_HQ+Gaw~kWQ*qtv4m2qy(EQVWu7r*A=-sOy2FdM9?Ly7`5_4 z3tI4&$%k-u#y+Ej z0GSuZw~2BelH)#+)4Z_rf<^zE)Chn~TT^ocV>4p2%DRZ$-NjlR$8_AC5raH`fg%#b zqXbfa0!$?YWZvq-zDQ#e#e*epH!iZ-1%xOA{_%d zj5FDb--9tH8h)3@6VOf^_s(kE`3{UK%M{G^A-<;l8E!`+4Tef#uZdq@6%C2J&^~Ia z>&HN`lyx|7Gy!e|{rLdK|jPNO-p`ye}i+Q7Yq*!ot-k?LlH;6FjTcr+(JjH-VEXOngsWjzErNH=QV zpxpRR83wbr5i3hiS`@ib?78+kzr|LtIquW3bpUT)4^9(=#VHW!O-^{4$x?t98y zqJHRL!LIGXz1!W^#Wdj_l8H+Z^yk)5LtZ!AgN>z`Az+wJc-_J}~>-OF%uvq9VsoRi}AxsO9Z2Inl3Sj-@l@QQqRwB zHrzScLUlQrw0B<5NeUW!*7jjnLb*;)*FnI^!6nf*e8EP}EyQMX#a6iwp|JOa)S?T| z?_i_^zw^lx+(wUsAgGo6K3rt=R!_$JuLSvtZZSD`F$H?yIQ*e+3D)x z%bjTakJvNNRH%wOk)W9kdp{A61w)K^_c9yiqF>E$f}-DhVu*ia%xV8d-tK^_odj9y zu*{VY@_o+vzGg-QM}7#!&Iy$_KarYKK$WYNQM|UF3{P7wpihi{a66iDUSLZ8S%WtD|prN#i>E|Jm3a{Hl5M`fCMo zvCaJ0&nrAFx_3_TsF&O{k@0p79N|&?v}Tc1RZmtKBTkMJ7X0+lc*}~l%57zTDqJWu$Og_gFCT`o{W8 zh10AAVb*+UmMLpa-xfq3J=fg_zu!cxj%|dpdJ*^pAw>uO3(@imNPJWfvx?h@w1?tu ze6Y(Z_^g)b_wjh~4%0dL9xn@~!OL*nl@3Xj-G^@Alv%Y$I8DJ;obj@2L4E~ zyO5GMos|gulZFb4Gic&un7KDyv8fKJ*G3Boda(!A!y9*hZqE2GUonAS7Etfj7w;Hf zLc|ZKK%-oOdCkEk0PSwt2qw?8;O3Txtg+x1SPR}LQ1gD~m+6I?&|*Xo9qs|uTIe*y zq78W3wSWf<(GQ z8^^GELMZPWm}TB|n8mEYgWtd5+mBZxlP*%p1M*V_QYEA3S-`CQ5%*O|dhlGP$$i*I z-~UF55+Z_DS<4Pc@J~vZ9jbZ+P`f8F+=BMB$&4m{SHWzXM&g9M2sUNidZUck^3seCiNrw*zU-lXjDL4d^H*qHC~Vx$prdu1dUsz8V=Ker_TLW%&2hZ zz-uK%U#tC_hTfF`GQ~NR`A}ktaVpGE2pd#34ZLmn08VGlp-(6+&vU<NH$wBClc(eu46URF)^zFfp)Y=#^`kO}3ulU+YWItBe+d{{u?GqtG

Q1001|j06($EYt<1)eXuB#!~sQdopo2u zb)qEoID@DHm&fWywS|_<%m>N9uyGf0DAK*}KSoB@Fpb#)6tmNekXe-H^N}itB?-iy zL|A|=YyU}5X$>skSdbiiy#L)hyVTQj*%-n0U-<`0;Em(<86C(JY|F7YQz*?);#!2= zKt+R>t&{B|?;D$_y>7(~fNJX+Z^>>V7D8Knf1UYcdN_y9QvRryouH*(lmM`2FtcuV z6(#engEEzqEKU#lV|A5^xnB$vzT9qSqkHuYeg788(BhACt|Xst$Y!F0tX2x>(bW}x z9VhdQR}C9iEgE%+tq0kY|JK#anxQ&k#4u}e96js+;!3sF9 zqmsgm_Y?oTpk-;BRKpAo=Nguog?p_PHjggOJM~i=8n5Fb$L{aZy$1jKI{7K zVnRg@dRl(W5cVs2F9Sc2e(R!qawU~`Qxm0|^kdbntodCk1Apxbk6J1d1k9^-iryQ^ z{AkMwKJgJpwcj}2_|H3mj|O|E>{^cmShh8fUr`p_mV`UL8&1baQco^Xz7`(v=QzWT|#eMQy`rDO!c2BseJGzrEvMNfJ9*vqIgdpI9l z@NMVDQNJJ8g)>H=I4bR;zznnxwyP-g{%QZsz|x~N33*A+k+?thVQniKNFKzr@xa>$PT7|- z$&htI*nSWsMONdU=QFNJBu(}8@&{mR`^(CvLLYuMb!J0VBz#We*+dMEpDgp*JWDvt z{t_*Ar@Ceub7X0k9K2oH)FuA$uZ0b12!Dk}^zSP-)7ej>zF%DkdQhwUl((Uv+Tk|` z+6}IG(pzQgGad{76n*%nw2$>YlH;zTi(m~Q5gq2e*cia!HmB*B ze#SW&=Cpic6x46kr`^}3s*L?)PEdS;_l(57YwE+Uo#n+={&Wb(f zLiv5p$SG|1DqJoXLgUR0InHVetV*qkr6cRnyDX3%r7AsOUuE|Wo?)b|8Sf$>N_Let z%#rMuNqi!iP9U*~-czl~EgysxMS(;b94GVQ=2)Tg5o|0%s>JS!YM)7tpljGgr8ejA zHkw{32u)*%7Iq&)%Ff7{b3}6;?d>nx`%g4I0yY^^sV!|4Y-vi{5>8|F&sphJj$rqC zQ=MoU0;2V3tBAS+H%HMj`MYqqR2ayGS}60|EC72b&>VBkKoq+Xm;k&OG_u6v8akmo zMW#q{1vyiq2LwQcLVZ(l7k8!<=4ppd_mB8@@|?JH?MKR@e5i!=*O>)@5?3>Y_#)PD z^(HY*Y+iloXO_aZhTCf~g|#9c%1nn^<(-v|m**@Ti}@fDqZ>xJ1uX0MOxVb$0`ZW# zZ-Pt;9i=KCNol5yv7D*n4*Al8EM~~pbgPTsbXTa;FG_GcvKH-p_Tz4 zbAhr!zPnku4t4RhqR7G5I56KcWl3=Mc(J#_J}1UT>BSr@#N5m?k$(9vlKt}i-)gY{ z|0R+-$td;sSYLe!2&lcEexc4Aq(Q4HEXbJB6?_^k#c1F52rkMis({F5(WHxUKVB$K zij|&}n(s*q<8mh;aY$&7BB0`E?#FUK&CB6QUjB3$B8-cuIj)|qtqkjrl~GXR;^-~1 z7-x??+F5o9T~XTz@{yi|@_C+&g4xmO!nK>j7z|`&ba_65EcDb1b;s?-@l<0Gws;$xB%`h%$c&=S zF2CjTXZ+Rv#p3Bn1jxy=nRp}xZ1gw>w<~9T@3=BOqS2R+U_wpg-d35xXB^ECU$FVA z$}4NPqO5oD()p}+ul5+vB`o-AXq;_B6jNkAI(A1#Gn+Y@WUj#mwB7TBzwPB$AGk;; z`CF#zjD{I;ybdrW=*<;zX-hJoDx;;tN-KfBK_1vIE^8A&x^*&&3SWt}niSf6UBudW zinO=MA^Qa70k;*6i6DWDP$KW`ayl*cxOj7#%}^J#^G?uPZRAh3T-E*i_xsN5f^H^yDz&WAXS9 zcSq`YG_!P<>lJL{>z$wchC18Qe695Qf_cBny9w=GCH<7d_R~ENrLU6jyoSV&z!XKb~sgzMowjW$D=7HZ!?< z)buM#dAc7^w&hQa3KRVSIYN$%vA*po|THvT{ zTXgZxkpbmd)Y5&s^)$E|PhL4-Rv}Q&fJJCCUDG zW}A}DGt}G9;<&+!J|n)?Y<;DWaJpylAcYDhp+M@sjod||fS&}O<`2p8l8N;!~aW+!{(Xp2x-Q}-MVJ`z#bdqy*+P}F3 zYj)8J-EbQ%&3~tl@9VxH)+YwhRCV1Mlo(c^$l;K`?N^2sGch}cL5pz-diA=GQ)Xrs zJ}R19)@`hN@cTC7AD7J?tj2{0lwFcs?UOfOHYfM5*~V&<959$B8CFs}Y`GVmmqsu* zqC>hK7T9Tkf}PL{n5r6>@1fNxWpY*hVV5f42#&Zfto>4rB}~3U8419w7VvnP;vYR= zW3GF%lh)Kfa86&QLEA^ry6tQ$&V?I z{4IIsuERsxpE#h43!m&{`1JRdtVASO!qaD8j@i5$WKWcG5@hkx{Hjx%$$THow2ek_(*T)P(Xy7K%P1H02cNWQWBB6eSxQ8Qu0eeCpA2nY^b`^kJ+ zmEbPYp9K2d^6&ak@Y{zPdUP85Xt7?aY0#)RdCPe5PFD;Q0B-76A^X)4&iM(%sPnQ% zE`=ilC?B|!D*1!Uv@nOV9#xXAOz2H3PcVEGS@^1;mX@#=M^{7G^4*Wj*f7kr1~tE*U<2k@6`XcK;rhp*No;NRvL<`8 z$@sb6PVRf2B=N{n0kIX^y}-J7U6#OgYhU!f^JQjxOCCa}2_m z-1+d+d>aI2ZKXN;-%^C*f0ZKK|7a6p>2#n=z4PRa7WBVYz2cwh+f?DZ$PKx^jvHo4 zuIpCklf}fNq?VB$Cd`Srstqo$=bh2eh8Pe0#|u=`W<=n-&h?$Eqo}+$oj{Y3JrQ;n z=c5pF&GI$h&x<7+VZFW=Ex?Tak;S#pl6R>cLT}aDB=E22(`Xhj&-d3RlW9hZyF185 zzy*JCEL@qBaS)sx)Io~U?exnxGNrQf2U&KQQpc~>{%*`kmnkxuucg&hIA#7% zYtxO_G}bQT96*v^>S!0k)^z)>%Mnb7~b>&pLQ_IR@o*_s|0yAtOK(v8U z_xHQWpt?9gf;^jz2ep>Yy8H}KHOP}&fUXQ@7kOgJc6y#&6uuMB)6QBeJ@jcU(uNQ!ih1B zs|`58-A!BVvQ-ZyXSP_@ zo?=RSdw`@uOU6nU%uM$oNCgr2wFKuqY*+Y2d$4sXA|#b;9se?Vdl)3rE-@1317rgr zD~Vg113&U)s&N#6s*^=#>jwg#BZtRs}u0)UC$4OL76M669+{R`Je=9QJ=xK`J9mf z?;S++E2$wIUnS&HcA~$LeHyXt&NL02NnNiYSwFiiUcYQJ>FM1Whtk2@it8yCwVRMW zGPkKr-BsDo-va!Q3!_g4D#$UrHjhoxi8Q~8$~DDT#av2EqDuBBEZX93oX~o`$uR8m z;xq9gisaY@5c?G@+(BK~&PUW7hfgu$kW&O;D=G?#GfulL)NQ zNNXaABh%PR#I$B0S?1Bh)pj#ZFT5qVcyj~}T;2luX-Y*Ve>}7Mz{jMFZk$7)lITSf zdG6?6g*3;UyeLjWVM*;Gw=5(0$EU)>=a%{g;iW{5cfqKVh=LFhOTx2UJFtjnxVa-3qE^83Th}U{b+E8yW)}x?(j5`aO{{ zz_=|b(2&Grua)!sqXbGh_v*Jop~2r|0uTMl*Z;H$J%C9H{q+cH*e~Ls=s~`1; ztV3ho%E8U-#;i(W!PW%{u~PqqgWsc-8z=qIe^9aMh2qFN3#axsoyi2@Up}-5GQF5n*B~+Bt~JMS3Pn?t5d?~qO8UI6T{u(t;#RGTT%Os z7%pYrNcl~i)Uyfyd%cMAAH^wB8vQ4t!dYIC3q)uy+nYtwjZ4Z%0@SeVQHUozoH`WI z#Bd0ya7FEU>)Q_w4JYM%EL)D>=H;UC%3{TwB?`KYE=k<{Apr>UQk5idCN*0-$BMIJ z`Adlr5zru2kdiMB20M;XG&?QI2GN0+4@PAA?>DtP#HX9lgorO{@J0=DEbY7tb|FpA2pJ`%E1Mg;W(1EE}1Ie(W& z{yRA9xh_#jp9BrcI`BN2>x1_<=(rZ+E>@xe#OIZ5K*hgS1DY8w5NyR7fXAD6hU zS^cGGH<=4DWmno_T48|m{cE(B79T4jzo!}4%5BI+6Hvi zU1MGBNqW_BWQR0PFvuAn&`VEq z*YOXa-ems^m^uS|2^WQRD=<+wPPe5?4Hf*Z&HsRNGk$CF)YG?O?4E_hEC;VZmK+J} z492A~Y&Ca-6~0!udk&vo0P0&hSigNTenpuDg71y`MTLz3y&84CdP-)Z8A17L)#p$C zI-J8jT)beA{i$D|OUrTAj zAnJ5gSYZ*x2dT~fE;BS~9_oFU>;4hOgY1XwvS>Vc5)i> z(RciAN0HNQ@oPrQN7WC$uzUT={ZO)g=zxb_D38tp1CKVO>4s?@HlvZ?XHI3p4) zluV?sifZ{`$7AmKe{9`Tb8c<8E$Y~|ZQFJ-V%xTzys>TDwr!8t8nJEeZ?1W=YS*gj zKjAs(cU5cc0Z8Tn@)iH~YABStunuQjJ(zVz2Gdzt(c43x z)Kg*bm4owcVdIM+RPs}rG5WV|gh=A*Rh@eQUqrDr$ zAT5Ug!x~vwu(e6-qX6X;U}Dbpdc5PL-iQ=?d}5l3#tLGp!7@OEASwYM z6>FOao^@^J2179_AUKqazCu$$jxFWC;2=-v?jj3XX<%Do15qFJ5$#s2@a>X3nSrZ!K8CHO;MMmM7o-SG*qsLf)BzgX4 zgk6}E@qJ(PreRFR5Bp>YWGef&{kI+1G0(b9a{b01iQ07B2@|j8f?e2KGCl9_jNJz# zI7H%@!4rXNq59mOjxa1(Lc0wl(&F<6ViQ#1{WBHbg}$bGE!o_J!O)i<(OP0Jk<-5W zIk5N9aV|hi%03=C`!H7R`5 zoMLn(M&t)@zRb0)GI&)iRAKLavAfSOXGAxg2R2pmGh`5)>~UOlF6w9%sAh+tUo1~P@?z-d5t*Q$X4d zg#%!1nKI1%NQ~jF|8gIikA4fk4XI)DRRy6}3XT0%Fm6=0pEqp%qHl709)asB&na?V z0=H;O{n%q`NC)xqn54w9Urf(!_S`4~b2$6}KY`RMko{SLYi_OzZv=Af$84tr_4-7DtQhF65(0|UcbQb0~AJ>QkZknj`@9K%y|0^Ee&$v+qv$g zpS6-Zmr|h~Kp-EzZ1jv$Op|l-l<-Df6)peTqX<}e&D9ts#e!VFCK-kplj8ta2)@wr zpOcqFvv^e?fj-{z)A-JmEt}qYJ+~Y)4Ybm+zf&#;Mh+6teN=u?h{qWm@^bpE1K#-a z$7j>uO2*f1T7yJyxd6}pM^qg8YJ7rc^Nrk^Iwy5U6fxy9%JAutJ?rgZs$93Ki@F2R zLwB780g9lP4pZ-rWo`8i`XV*_h21F4!8gYV$cVl2v$pIS>Y@L-kL`NlU8kJz67Wri zHJo+{4Ru476MClejc2g&0nQg-TVXBBHy5}v5Lr;a^P_`eFdQK)co#Aoxes5MNKc7T z|9f|`{y&T!7ItQ?|8sX9>-=%R<^CU^^+`#BC``QREhEPrlXYOutdVy&IXQSt*%r9z zDAA1a{Z;2GO?&p{BApBp8iSk4UBz@wBfh>$^XC$VMf#V>g{FBBHZoy{Uw_9xX(Pw~ z*M}k$mfB%_od1aorBmdLZ zwP%~&9X@_p`C?wQ!npR|3OC?4yWU>`Hnzp#CloNF?!j2SVc*$TUT?|2!B2Mpm^ms2 z+t#HOd{^dM_pPJPxF+EItAH4NUF3PERP@!P`}Z96pi-lMSNA(r>gwFoN>Un5(aXg_ zoQa}Y9-6HUX&(?TB9ws5@47kerXB#dfffQ?ruqDA)<2`#2AaxPLH9`&ONWt_z~K53 zu>S4NVZgB3T^3;|jdl3&>QY8rj?kB)0z1zxy@Xnev1>weu~x>QL8LRv8Y0tq-Np{8O4sdRx6+8biV`H(bTmSK2~wc-oA|LYTANbNJ{OLlGJb^SyL8ph2J!_`N&QVKT2gst)5#=b;q+e z`7zDC=mA(rA$52tx4bx~ttTU7s3v6!sbL|hXzrEvN_9A1-ndZ(`Em{NPYGrINc67H zSK=OC;?x&hy?_nlEvXNfrK_bp;8PJyqGP%dyZ@FY^k#h~qqeOhIJCVGFd#^)9wk`3 zn4^IzY5mM~_<7tj$fQR{iMwd9?6VRfNC9#NHvtGyO@ZxFqU=bamhxeGU|f@UQDZrVP<$Vi^pm+LgHuY1<_+YUVXi$QxY zFLR^%v1bJBYwSn~F0%&CE2YeS>@=2CU3feAA8_q6H>CKM&<1IZ zTQRRz>qe(2Q3XvP2Gbfo^e;4eC9w-3g9(tJSkhis7C|DiwYa$SrdJXkZTHADh1OE1 zV^SoFra2o8S6*U;hEJM!krXPQIjDaXsRq}+FjMAR^zG|5@8uRtRi;oadxaIhW|lxB=dt!7Yb@* zchP;1`^!`4Tlg1`;N@&z^xo1Q^?`|1^@dQ4vCHlgVavJLRYTR#Do5jqg&80|Wn#x! zN+UYiGOj(`^dXbgv5e}Nf!SszUJk(i0iCihcCe%oxDGtbc&j>}&oCPS@~Ifo?*xL~ zje~EnP=b8KCIJQk z=id`0YBAH7c0+~=m{Nq8YVd{@3z~)oKd30HjTy*S?5lSbC zEfeZgdd?sf+NF%d4%y7cJyj>#i6j$3bEIBt0@bb7eH`gjM=Q?Cw#%w7I=8AYUv@y1 zRQ@BIt3!*lIl>@BWOM0y16VIo?i6q1X?GezAiknn;@$b>59MkH z_}ivk!X}F)!`qKj60rWp4l*l%s9kgFWJQogGNnSrz>yiA<)`^*mD%>4k7adcCQNDf z3x8NA4`h{Q_t8FH&^?Q~1PB*W4=U!l(}ls?^VW>cZL)5e7+T4g2QW4IFbvN_#~yWW zVheiireVnW{z`%S*mMS6BOL+YlY`3Kt{cyxza;k9T8pU?W?9MP z#GBKs5JtOd-fC4fakEmVay_R^K-r(6OeVv1(f7OPuq%)$?AAm_$$A&E6wa~}TGQp8 zv)sC{uYcfbXDndO zPS;E|>xOr@Q!H#z+1Y|+Qsl3ZElIz8f3UyToiH%n0hqDi=Z|4O>==J~$8u%XM(yo3 z6|0#d0fE95<$!3GyRbzbPFPPDrn_=2P5B63#wp?BR+Fzi4oO3uxny!Bx!U4IURE-P zA?8aY`3Up(AL9g50U0@7Uj7bOcIN3O!aZ#(1(IL_?S=XD8aIHRRJjrg3Ly%n7#qP3 z`uwY&1>A0~s73{Hm%-||SA&)4`|wf#uTXhmnhXuw`t?_cN530?_iT@{eCpgsM@wRh z3!Ko!G|uM}Pbu;N(a@=CpTxj&;!kEZzOQUTcWUcU*X~hhm}Hr? zBdZ^n$spl|trB^17{;#M;2wZiS*2pH8mr!G1BR=TwPTz#wZZ+|d4{+hxet>nBoly2&QsDu@;E%S0$ddB5c@1&8Ei_<0PDs@aOZ zuq#~xbuXfw+RnOi7~zJJPvQGw_VmZ|dhisv8XMBCcq}~KM@78>NW0cQ*}2JbacfRD z7DDk-+S=iR@y7116GCA*tzD4mkB=WXrbxf8W7X}Pc7i1Evx5fCddv`QU} zx0aE<#0QKH%Ff1?PMiu%4ZzX+FH>~C(;wtV!(~F;fw+$_mz+H!%_>)3yL=*i4=S4{ zwoEh#WN7-l=JD!|NO&Zj#+n;vG4r{;wY7DtcebWsoH{7j$l`1!mWUxz%kinve%ri) zu?o;NtE8U27!=XmI%z>Hn?!jPYNzw zrli${Uo_Nq(a-MImCA+rZPnL{IqOE7p7Mlq_I}))tkg$qn6uE!{fO728B5gCFDhTE zDNU(H0QU$rbtB4{##S3R?+djX`G zETw}M1!m^+2dxtGmqK~K2=zBf#vdZ2S=Zk>1+SZtFAf>wX)&~?R{_+ z-`kL#$Y@f;>cFcIww~?QjI7kUd z9LWZ}LzUgpJ4RSC&QH>@)(nTT%@bKt1nh))5)jz|HlRzqY;ZA;_zQxpZVJrvg6FT= z5w#P=4+QamUi3pW0kRThg0zvr2NX1iK9s*Wve#()6{PS3)hJ)&lD_qRjxX>zqs9U3 zVtSoYK%h;v6Ho~(&tcJOGJRCuz?NZtwV%I&1;(exe`&Sb`CqS;p1bp2^5(ygOj)Zy|6DKf8ma*C0sy~5fL?j~f zGc@W=VB`U0f_ttBHYe)W898wwX)~ZW_$$rzivs)SU9=?dabA}NIWXM6U!-jJm;aO+vh7za4_qYC4Q%c9f7VD zqPcEvY~(|RF-Djegi)Ow?&?=Mc)WeZN8aG!!6Rh1KydceSClm308E`89qwMB26(N! zd9TY-5IjJ?hGw|T7^~~Ot@_TpAP=yt8vd^Avgn!za&!xR^RVl6G6DCT3kcVfQ+&JN z+X%OgE=Ncii;n>2@)mO>8dFg8o2d{WXeiwauOslRe4&hXY`WBQ3I7V(n2j?M67bm; zU`Gd5z!aEi$p3)OOC;p$O;Ax<0Ki73p7PwhJ9G8ygQ~@beAn?Op2vPsjVvj;iv;^V(S$YAJeTXJybX-JqTS_R!%h_5a*~omR&-9_uFlyz8Z}}RKP?U$k z9mJd8pj@Pwaj4B1mChV@CfOh2YrVqXTgexAVxXecec({bSS*Z~qN`vV0Icw*F3VJ_ z3i-DxmW=H&&>8zDru|=aBrRt(dCu>U)eB&qJ z2Z<3o$?UG=OTEhFec9+)PiTjG2m9k__*;LQFlYuewI%2|H6zQ~pZ3s$oI=LXg33+k zc`tDqmg-;{o?)6zu33mX0*JwN2BjctuK4kH*^f#tA`-6P;Z{E>Mz)y4J{qieUj*^d zptc%j9Gh>bWQET{-nTf+HwgK;5$37)h4F|Dfw?W0L{@fq!SoQgxFIo>ykx zRZF!V89jA%=5gi>RbabXpRixBi7cU<@4fUHKcv~7a^)M?!pJ~>04&dVMj=A+(F?)< z%%mg`ncU1~E45$yK_%~^Q^V)st}8Ai2n)QheLET>IZtE=esB(alUNa~sgqBk&opR@NX)fY}AjV`EtT zGtZ(h?JQdp{(>bp1GrlL%pMA8cdRwD4%K=<(S$I@>UoNqFA5$+Fb;bphNbwgvPV?? z?`o!K6z-84jbunm9;9b36-pk8bwv25yKrcY-pmF$4y5ris4FG2B11+0@`D#qegAu?Ub z&wVQ|c44U~Y(`1%2inAdwvMi+=(baVZh7d@;>)uvpk*j2?EQHU%ZWp)F944_K60Z)0On2q(XV}it`ofG()amZncY?;R!Xc$(U!G#k)W2B3Y2T}Ip z$`X;0hJ0mSVM#V56{*cqDlLI<6O3M4aldR^IxUDm4V)Q03SAZ>hL?WHP)`95R0ON9T|Q$o;<|aIE5BRPnU@>YQqT`*M z%55XzC8c2NZo0kRWB9Y0m5@t6JT7syZlJJqJ^(1YMRnWdGcX9dBwz3|BxP(bK)^tI zMoowaT+E1hNkvU$R`J%W?6@*hDAS_;Xt=72OgcdaMXHNiS(U4QAV z0Ql1TF#VFrOnsN3Nrs`$f1LD6!%^eg!4y`NA*RVa2}K~>sOq&L@@I=roObzg0liO} z9-K_`?(vBOF_yk3`7j%UUnoC=ROR3;2Us$bE-RD2?mkMX-v4NNP_gCsK@o^LTgL_q zzGg>BNY3yOSATFmtIR`L9jb4>7Vt_`0FJs!OC3Mz>~L);1 z{ylj&zYq?Y#D&mm+?YVAtm${J}gqfwJ~FmYB6WPKM14GxRmllpgHwv z-)tY|**z`SbP;})V!fIbx9OCN29>a+2$_M@QRIs}pvB6UhS(R*tZZzF1MoFpd@lW9 zWvLmj@`b%=`sK_LR8$2b(~=`}3eyF34qBEmapj_orC(f`eJNe6%qGxHtv6Od2GoH- z>dI}D8Q8vq{5>qsLSIP<0!NtCRS@eNOJRD<)%vB{eu7tj12ry$vvFUSX! zRXNEjX^ySMEsEhqP`s)YW)PT2n-X1lRDZp18C(r4=i!Vsqd=2)TLCa|3{&|S&-=&Z7_HXVf{J4sj&+SxEL&ij@ASGGea ztn*%9Clq{(Xm=_C-+}ul{0_n81;M~VHg4(ks7aO;n46s}&`WBn6oGmN0Q?5qjQjti zj?$oj!9ZBK{>M6k=j8sstfTaW0bm-y|4>I{?f*+1^*L%1(j^TH4Q#@W0;3rI+YwC) zMQGw{3$0;~V-v{%;9%-~Ux1Li@LhPko;Ob9&p^3w42 zXe^yZRH;Iv{mSsF@SxTRIVkl_+J-0qWe}Hpe``azC}Oq-L<4ZMK&dfF2>~vFrYm$` z(^-Rm#Roe_VKSv^9J1{!CuSj0UZJ4vA;>IwY-cIV)Wj`KMI@g2E-*#Ag<43%rmQWg z2Q)hHi%GBB4FMVMVQn&iI;=Fc1!NjLRlP^wEIYpAJ4m|q5iw0jPJf@#dy=?tFz znK=K%Fygdj!|k+(`MqMKjiIRACexU7-t)x|(Uuu{;Tfz>IN>RR^78 zUv;tB)(*DVu++CGT4hMNKR#&*lTzysqK57(;?xtVv8uAz%DADjhe>~$W2x6*v;#OF zF4~|DYh!(h@70C@VTO~6gC=xZmeK`;GrdkU)f)Bcm#@FycBrfM4i4?zD<3<FM^`T({{iF`;FNuR0qAu!1v43OTJFq7AnUvZGAt{#k7^#y((tf zyMZM-NRu5v9u9>CKF4KYJMvu7uv;mBd~fW>mmht7ZLc{C`v&a232+KL%d1#JM$9;# zcZ}KJy`zdl_{1FnTy6FNGdor)$iFE0vmn5%!+IF z?|t>brk6`Rzg(QoT7T2G>~7!O@LznK+Vi|_g?9rkXTJkDhKu{{{Che-%s+jwV(g&8 zVvYD6>TmAo+eBWSgL8LHRKwNRMibo(lo>nI7yn$F-IP8zJvj@OPn&%Ko03q#8Eum6 z{{`kxDh@53Fjx2(KG{Rm=+3^j3%R5_%Y?XfB1%F*-bChfQ8lcviWMn#ikfn^wj8a2 zC`kgG^-%p0$8%*`tSBB-#!wZ}Cc_=z<(UW$6FX#~GJANc^L<@%?;du{?kFGuxkI89 zYZV7pl#y-}YJ?jli?^52QH-V#MdGn6%p{rjkHbj82w@t$2=1yhf$G5H%$P#*K%Nej zj5U##3`8aa%L&HmqjXC{@!}?j83of;z}^J_I{-h%LgU5M0PEYS!s^T`1n|I{)~{5^ zmtzk=Y!`r4sYs?$#W#Kh@TzF~lboV)$xQ_e4%?gR)*aGYvhwLtexgk-B=>Op@q}sA zCi|gK;Ve9@&*hq03nYO4Tb4!_mJjrGbR-M5*cfKs&$mDv$NQH7os$rc8s{WJFoO!1 zDxVlfP9C8ADZ|5=AW`u_97Vdxf3k&e85+Edo zLzP%fo+UXfrHAs!TA=n)4dmjoYJdmuPUIYlmeep2b}h^j;zu$JX!YkCEHJ4HJq2dz z!-6FdATF}-U^k7t(!U@>lI}MRp{h1WO7p%G8$h;iB-xD!ObVomCQ&@)sFRL^EvuW+ zgl!;_Xt4D^Qs>UPRbAA~lDBFq8OQ1Zm1=Y`i?3TQB4q6{U-Y#0FqM`uzuN$ONhhb7 zxTt0nOY1A6DhmqTJ;HS`OOXKCI2tH4$ePYLnF`0z?BirI(*UbSp~;Ak84mty7RGr-qr zBoL6Oi6=bOfJ@`#O^8ciQqGQ?pX|G^J>t=RyudV-x1+q`TM z8WDBHN|s;>ubj_@Sj-NO;ss?GfYMMIglWed^;+@+SQ|h8&fa{agL{Z4w6E=3DuFR< zqP+vXwTsz!;dPrWB;!AjrW`OuHq1FX?pjSWilmt#YNcn(j!_mNGZQW+`zZ~{Cxbj7A3@&F`G+!l{QZDA z$X&7ag0cF~)CX^S2*=%uEXLd}qv+A<2f@}A?zg`n4=GDdLu4sW7nT*C8d2wa4qH$= zgHfp#%h(js3X9e8)1Ql}aBl?Cn;T4ud5FQr(>zS={<35IKbz>i zQ$x1@By}jIB#t~;UUTF3C{oW1p3%o@9@Gw9*5n(sL?#ZNV0PKKwzS>E1iWa>> zd^-9!zq@*W?FLQoP4)dvL<;zRT%c>`#J)=SMpeg|1qEMd@}TLzz*;QD6Kb1H!J)pE z|2>?)@y&Nl@lXTCAzr8XsMi{}-{TJls0#taRCv6P%!Pu$(Z#+8opJO}ohI#qN9&T8 zR91Ob-L)>R{(ggNmr;{B05ne_e{E;OV0Bpyu_fvnkJ1dR+ZiA`(>-4fy2;-X# zj9Ux)?{PH$`({QL#`w9dU&xex>*)Xc2Pr*P1sD>G86ZP>u(6ut?Bag%FsZz{4r z5_J@~QV#p~?g{DUFRK6*grE5F?eA?fpSZmY**HE=U6)%Vdmel_?M830GDW? zwr!2oukVj`lig|W)>Ve|)@OIGuRL4_w+Du5-}^-HS9yvi#N zIY=o@o3&7&3;ja}NKuw~zjac#7=0DDZP*DwprhcgL^m{TxEx?nYP4yRQHGL5O`*(q zx(@B{dnBc7X_A;#R@gmb0Nv@TAig5f%&Yr!29PJfmyn*wr5ZSFEhJXXAYfMGbiE{z z^9L-u9%rZw1O8nqXK?~pFDCiZGiR6XUx}}8&=P+1Y%Sm_I=rXPZ%Or=@Uy4xR2jk2 zdj-8||8gT?&Iq7rP$YDIb*%d>uH_*g0_nbvO429zbWBl?Rd45X=CJ_cm^+dvC)6`0 zsWk=ERw7m3*XQ%RMGLREB2zD$Bq3d+A>g89yJOu9cz(&%wllixPK~0g@hhtQOl?b) z!DFjliLdwfe1@POwN*%Fk`{PQTxmLGG1`=*zQPy=OaoAV`@}+`dg2t~2EU{#rK+J( zQ@aK%UBuN~%Zg@9Nzv*D(h4Fl19ot-#c@hNVkfpVC%&vRTQ@sW|aKyn8?H-uQuQ=iDC_D5&JWK;gS9X8>jzIx}^B<(Y6@V#&NO0uG!|d#35ZjFeegY23B2%yi zx;ZC7@f@#$leiRL?h0NZ;CMitm}5cDi$)JV(4X%DF|+Y`APiqtr?L43{H<_b6-P!C z#mTnWMPMLQ(?uKgL9r<~$`IEZ82CA{v2Gj6K`{p02-EGQ0A8d8ypD1&u0opIS2>S$ zbU^J4+|gg?65`OQ^W_f%as6WR1OXfy(u5}~TT!eL>`~>n@jOz1{nxu73_($&~jnF^;xGNZm%!>TQe)K-W=15OPCjbjY6p zNI^C7=t+t0JQdD+oIW>1P5ZR0GdZ731ArDG(o=<%CqCvHJ_30Xf-~HTAvgTLkPZB= zDNRlGC8YIL)Ewp`8fT;8dh7X8>qmZ#_=*nauAra;GAq%P4~2~TGdlZ%!(kF0L}~%6 z_e7${eNf4kf;p`=aVzSZe*OmPoG~%x$sp@LF%;q$4-4TE&`VOg4NeQpP3wC3hJZ%l zvFnEqC4W@dGSrN8aPb4CRvn%#`9Q&EX)fEXe2m_bR&VbvOj$9EjRg<8bOiQ~Yv8DY zkrN2t>~^FaGM70)46*^!2?kxhH?k{p1z}Vif*sPexPiVZM#Poy2JMsLS1Lk}5v{y_ zljrcpy6q{1*N)+EaFkd#BuYerFMzUCVG$PrR-myw{w2mW>nMQp&pSoM7+L4Oj#EHu zwse7M!l8|J(krM=&y;Syh((mz4>-=O$|CPU+|5wjJ$6m6*RG0En}5Q$7HMuka}vTe*jGM zrD|LD%#mGYTzs3pa4GR162KS!SG5#G1Y8Q#l6jG5Zwjzx#8>K)OPT|QWk83)B{qC` zso09pgRjg`g&5L#<4BYowB&?chs$z}oc{!;*QUyUjw9wazv(+{(pOhGo_1&JfM2C%$aN`RHI6JX=LCay#NPgi8RMZtB9&DQjCxD zO>io4kTR=QL}Ggi&NwPjchBDW=@kepIAox+N-S8_e@Q{l&f{K*>f`_i!v|Ig@_FX_ z^e1kCk!O2`YiS~{m81DgemRK5m2aK-9%k%E#e;fiw}@)`3V2#r`%;1X^T>=kahQ(7 zFI2oFvY@51L?|*avSsMj zQnQ?+#6ZyCiqa2M_68g}nNe&JAZ6k_ZTV;A%n5BOgp%aca6|A+q;V+ctFUSZ`-fZoN?ujkY3ANSBKhWd+3amw%vwR+RVSoX&TR3w_0VmXMz!)ZG>6AjW z$)83PrgeTDPDXamzaY2PykeeX2+OOat2i7f~ z`nE(uSb(ZKpp2@!-+)R({XW5j{*s2wasGIPHOO@APcPpnDFH_S)rXVATyD7D5~oI8 zO$Se+Ax_&dL?-;3efGPjj=Y!+-F=Y1>CLZ_OKu?9kg>Z z{X>*zZo!s>$%`jkBKaut`3C_n7-XY_*EDTj1pr8vH>4{lT+^uMO~^Z<6xQCv-9Snl zg+0yn9#U@|e?!YzVU1AuneKPuo%I3OA8HF5qjBAQ$oTA^m|iX6@z(9;$y*06HktpH z?OB4~oaPnL&$sd&#_xNkEf_}LH)J7Sp>WxSl zA;7+2Q>?K#wFn)~1G27Odo;>66X9(;J$~EJ$sumMm(J=}gJJ)!8b~%qliI(%FB!Q$1NFVIW zPRRl6rJyRi>U?M$)|e2?_6$h5rY@5YHH84@us1L<>(UhsbhrpWe=dGj`|y&83P9pF zSMTs;Qhss|yzWapGe?92-?mGC2s4_FQ?j)hawE(znCeN!z2{1zb=O6E171oelwwM_*OoTkgC6ip zT>INs81Xyv?adPZ7~rwQr9cmE1z^Zq$zaeQnZAr)GSqpxT=WSflhgk>_}B2HDP-mH zpt=7?W^B~ZNHHh^f3pZQC+a?TIJ7HNKCI{#AXLY3X!~3PQK!oXkDm_R>I5ddJ#8R? zhjHLS;YQPLFKs_o4(t30mDd1Oe(MW?>J(}MZHig>GtFh55^MYAyyB@T3$R=yGYShm znBvwCNMo8|6wI!i$_i#P9I`x{(2RHq=AYd1HF(l34C8mT3Y z)S3|$w$nA%Xjd1XIr#eOuC>*Tkz_oMs#P9Qn)JuA#XeVIa5rTB`Xz?Id;I>8t%UfxH%5v>Dx#V#i%?j4}e5LV<`#%3f1?=leu zToUQ`!X|_6M>B>GB#4lh^#o_U&!a5A9uo{%l`QDdSchAs8)b$D1LStIkj-$(O9P#}c2t2f4y4c~v`2 z_oOkNyq9P|U#elVBq$xhMvkdSE2!SR6ed;!ZLsUIUm>D{0qZ&p@7YbO!FHw(;1>Ml zA@JRV_XwmeuNc-7or*YkbqqT8q!%6yK*j= zzHc8LrXy){kRdz_lXdhlnp|53r$=w@Pt={lY}y*Cj2ZOMB{6I+>|b;)H0f6#{}xbh zyK3G3tSsJ%_7)p$>!mDlC+KW%h=h#1g8U8ibX}|X0(qk87 zsk7&@MSbCAY3?i!tvUvvXuarqSE8h^*sru?k9&7#09&=?Fwl}6)|Q)XDI2uH_B+XR z=yTXu+w$qaM}YdfgQJ+1F*?YEe(i_2>HV#2_0bJcyO;W^YToeIxxP5o>DpbL5SFtU z%^u>JHE+*Q`_q-NhRau!7vPP1ew{gW$7i^ZADq3*zv`K$OEwN50@;XiQJ{Od>ZLFo zH_1qj${r8a3LE4Uj^uKDRPN2)tbFvlEQ%4>Gnn+ z)xYima>SCiXfpt~mq9)j2{}D2ME|to?vp&tWV>m`pRqzdHU4diimt}Re1g`we=V;P z#}{@Rnx=U|sqDt5fp-7GP~DCuTZRWG1Kiq5V*G-ZS6S0L*qS{w2@&?%vT z)sQg^k|&onLRI0S{gYD^wU{=%{!@|yU9JffJ$1mW zs_075W@?Bjz3PkvNgEmX_4AqTgAe}-GMo^@H1WT5c#{TGrPMj32t>G#K_OYGi=U!m z%xFQtcLC~hg(cNZLz#Zd)sDY@@se6n4#Uf#Q}AW){S9U|F5|j6Kcyrb?Mm+63#V!! z^0(vqj*os$AJpL%gn`p@*M!yLjvRIQmh}!vX-6wn@nTexf@q7~8I6*%AQlCE zU@Q(Gvm<;g?xTt+%=FOV+ov~|e$&xHH^JCGGEHTcS)Sk`hN*zH=+Rmbk0zLYsww8M ze*KczX$OOh3r(}t5BD9|E4jgO%y(h##qLrovz)W=7*Y;74HE(i4{U%i)7;3Ms}G2> zVL`omzDoN;j)X<`9>)HZz;NUIua83m+q)tFtA`ET0>9bdlui_O2bz@f@AAJo(Lrz2Ya@otbWUCsJbtU4!_rPmfXoa zB7}ja1*OAR&59WIa^CULX!32o?=dS;b{0w!^ko1qS`uob0fh)q1HBwYl#bTZ>DzHm z4px(pCoKPruP{%3sZQX0rmsiWAYBeX85Q1pD)qmO=IkYI9jGO2q)I_C$gGOR$bi%X zHm3<@C>S&sQwwWT3p2tCO$7XnAsWu6QR`PcwB?MS4@Z~Lu#+=NI51%Z2<9k*>b#QT(J!W$7PHmeFlfCYgDCk(P2SvZu=(QlniD}w2M;NQolIT z&)+kze8M`2AjO(!>A(8P)1G+%EsUOKx{i@MTH;jf!wDnBv%`H%ZVau$&d&elii$N= z1E+JyRFL3~8W`uRANn|EeYeO49^I4Xiyz z+DQhO6car^oJ5z$#mjmE6#OuhQy1LlHR#uKaQnkARo>*vQA$9WW9>p(!vjgA6>Dba zL5{{RodVzQz|S3eQJC-XIMP^$Tr!4-`I)CUfi}(ar%j5c>^|O+LY2;trjU_?vN%&? zXPCb0BPGBpr34hFH0_(o2cttRh@^}+!Uz-ulR+s~=6lGj?2K*ztX}@xaE=8AHNoTK zBAp2T7&$`e=C;Yd6?@Wj(2U~4ny!>b;rEPV-Q&?6L72@EeF_i)U9gUkTOatmM?*O& zOyEfv9OwnzUW|mB(F6k>DwrHs%${Cw#zv0KgNHKO&9`=mx&T%ZZF*!OL>e{7hgkzj z;$pvB3)dOi$UF)JP#=UE>+d7W}0aZZmV5}On@MiIFh^iIMcHx>!@>K z4%wwjt~4kKo~|_0@h#@O_T95>{hhNqdTgeN#MWsy;AOzZ{&cGKdL(Zb| zv%H`fZIyU~;j0IM2j{1v^C;J4;)IzCM+9CKA|MZ8jN9!2gmhpnivK)usiWn0oSUi- zV!wdY8w%zzUZ$D@l>&tgB|(WQ7@_|Y>MoFrV9qh>&9g9`J43(9{~+^3@*o3Za1nk& zp)6kG`c$XOhIw_$gb#R8v~8mUviJ9mcr`MssTYRItnHn~;htCGA>~nOzzYKNdWkoa zCzgWl#OHbhAO;eZx`4+kQ0}T#PhTRD{T4tyFcRSao3`tFY9?~B&a^%Yf{+W$N`NKw zs6H$qLQ9It7#=u40jg)r-$>oNT zDiRU`>F3{{D{Lm@KaifucMs8c0e88Cj`a}v5n#;&cHWv};(-m;DL+GGteGeo=78Yz zp!QGb2Ik2-a_{UvKd+VuYy=nv?)K6Nn1MsWtZMud9|y=g0+&I56Pr#y`2WbNDe4ua04LF%chbvUwf10vbyG38duDD~<~(kMDT2 zqx{FtA}{gGAr!~c<8k5Mp)*tnA+UwqCC^+W4o?tLFuUs4Z;j3YmUx~SjZ*;sA6w_x zq)EUo>9%d#p0;hEWn2Qy56 zx9=N2#a5zQ@G)?h84;-(L*S0R zthE~MF)xP3`7_L6_W>O2iAh54d{krnSzntKwV3E3{I7-}F=7G>3R%xmZ_%ZlAJ7Zm zW%P-A3{JjZja<-{h@9peM`#)*VqdE}w^&w~{o<>&-eU)e>ccFLCu|P9`KM6SE(C({Y61uJNdLyofjEGa>ELc$-WdEnS#CNvmIt9O=bB zC#LU=w*CF$WQ_z8c~d{cvgZ$gBT9C>0fAzf7!ew@-v!?viVZl%CwIuxQsY^d*RL?+ z2+oXQ@rkpi^Lr`nkZvnyMmVuXGVil|M4OAgOrCe^^?hGkY6kd-d>zi;M(F`dNjx7r zYV?0|%j5>fFjHVAboUmRruDTo&D=s1zefQeyG^6{;h@H5H!5OV=nrTB(OtdjMC_V0 zDkM&DV8NLH{G5rX0h<`nk>EQ_4V1GLP&}uYhyut}q=jOf4J>hyY{iP1ZUQcnUWS-6 zxOkwdy(R|3U&b*ebO#(P((qbnL&Q{6D&9jRhb^zYntgB+B{7VKJ!&|6*??C%7}Q&* zf{3@_+6@Y|sRHe{%MNXTa&%=PB>K$m_MV03WXE(GGc3Xx71lbyFESNARTD@Qv*!w2 z2mWj3OI*_fomSnBj=QnG!vmXv7`_Atn=Z$hTfJ)IJj?pdw%zOf#JVclmvBxv6G0yg9$^uipKTKdG+Md7NvP$6iD7g!L0mrx6A-a7zj^VbXhfp;%FhwaOQt=_SNkX+1SLw95P|L6_ealcUEGn$i5(nM=D) zYxo%F-A+T*8f03NJM#*iWaB(b1{8tN!3as_3hg@65J-R znj=0M`(HjYotDnD7(}S6dXV42Bi@oDbK}$iL-n1m0#2RA0Ib#E=K&)gzv_2tRu5Dt zuU~2doY`*ALs64Tyh>*ro>d@~w)i5GiwcG)-0T zXIS!Ye)W|}-qrg*g!xiB0eXQP8h3kKHwXK|Mg1ELwg5E<<8TWRB36bbl2`BB#Zo zpKzo<6X}|br&CQe7%tX<+66a&?qrOWY_Q0P zPty{lAVc}gA6uKfW3WePtXKv`OZKKUnm1>DFZe3(Izro^>;WBBJ8?E6&)<(41Fk-?&Y!?*_AEHdEaYs#Jq)u)Q`w4`V|TRhx;;1gV!Ps*3B z1HY5)xO(1TCJF3xy}jh>ye*wF8*FdYRO@ObmSi?mWlvxDJ+#qZJX~mNC#$mgxh?Pw z1wOdc-?X(eT+*H=)o!`;wjVm^RsoVFe03LWC(|gSya!{ad-4SYoE&tPyM!q{KFm2l zjgvn7n)k=$ni*HOUm`~l9R}Xyn8Vr&ClVbV>vw2m${O`G`nu&ODehpxDfQT66E@j;+_nA&(%n z}#Q@sIH=>fb&0aGK6N0wBU{c%Y7QQRv&ZxU6$^Ao-cEE?q`Jj$uqS(~Ljb=;DqOz+xW$tO(N*u7HI3LKaW)1f(6 zc4;r_>ND)=BjR%6Ca_wIJ7jkI$p$zCH(nyw;f9)kgqNYjJ`_pQNx-(-pm_UkUsFE^ z3fkY7G+QAG)LKH3+DT{Bd+3h=vKO#?`@pj}2^zSiCXTcmXTeO~=7pChKm9_3tiZQ_ zK+MHLW%I$$6zznKh9%YjDh^C-P>Hgfm?U>=N8FL7Wg{DxG8@aZUor6 zRi{1nE5u=QgHUs=M}X|7#LSlET83yMD>_TkYJwP?fM~1sy~F1s<-!LxbA!jBQR7LU zGrT?-LsmzW@4*{%appOQTX0DxL6?$C*DqvQZ(SmZSA~}`5n_-j%)}LE;IRj{xtcnmbG?c!Y|R)Ys}5EyguCeJ5CA6rQU0-{BLxh(f>Ve^iEIHzD;k zTw0@c^A4=_>2#6nvtvwB9b31sx{$g)$9|LAz3qpqAdnO|2NO!C^JcbMArR}zqUQO<7)PoLh-b7^&dz6*kxVi|nk08vb(w3+{T9=9m|eI~b`rf< zEYvhmu=*CRxHzRor&LyBQ0};)23OK9o>1&DQ9*2m1AKbs2lbKac~S|}DpYoIE>I#_ z0*ZZ$hym$OR=^63i(4m{E}&=YEbW2e1`~`&5D77}WlZ8^(fnBpl4Fj7BcoY*W6I7s zB^wcwD~l;EGMvu ztfIJa2nDY@0Lh||#Ny+uB+^v#g~!sOcnnenV?ZB0Hvy&II-YS3d_R0JX_g5>UtF3i zvAE&B*L@rkcN4OHy;(aLoen|tI+{nv7qRKU4(dI!y4z^7NOwT}i{qy9L6_>`nQV!3 z(~#JY&0~Mj7Rnlbq5N>U(M;UR1r`c{)qHlI{m$oiSiS{qJu@~M2)8ZsSwni&^Ud@J zB4FJ*Sn7zd;=%rznr^!$MHF55$4;ZS>uolhu);WRe|r$*dClcUiT({D8jRyi{^nV_ zbY_Ijc|7@u>amtG`n%mU-?D;qGwYVD+1I?xCYMM-l7W%VN-DYGV9+|Y)a`SFfO zx`~UBQ~MGn6FsG(2%W88n;)C1efv6`84#K#Q6g5A6KI7fGQgw727WAQr3B9JWT9?H zPnAAFB>tn@Z8e;4z(*mO^{xy1co*I1T2#Zn4<$J4t9|~xCq(|ijD@5Pyy99ZWHUQW z5QJbJ&DkDj17U7reS>Mmp223$@K-D)u%hK8dNBfN;edY9<5qUA!BMq2H=HW z3EjkohC_!sn;9k_syLfDVmfcY5j)94EK9oo`^J@>_K(EQg=G~lz?^n}|M4iN8tMFt ztR$0J^+bz?&PkP&eXJ2dUb~GxqgVW<=-w|j7}uyjtf`wy>=^{I%;0G6h!!7DYJSH3 zoyYvDeNr}o^Ya8dk+gf98d}gb5%2~c7))*0J0qCrThfJ{@<77I4sa9v(0<@I7PMCm z^(@ViLx+in#hcp`lpLCM?khk5!`%N#M4f1y2;9&kMmd7Y?^vz3iOhG>SGtS#3;bPf z!gqiFDQezo0>9Un0kv z7ov4L-=q6{MKa7TroH%RP#CnNz_Y?|;}vaWR|VXc9X9hd$-Uuyg~Qs8y7;~$xi1N1)n{T+%e6~Tbo z699fOjqFc)*2&L%gGS)Cngqrc)NgbDV=3dJ)ezxgJ=f~!3O$y*DX>!z)wc5h%vOG? zLj)-oqBj$_5dJUt5uQI_C&yWFtCY7zG&F^?E5g&sX*n>xZ~D7opL|pXjXfoDPTTRXFZjhz)O#YX7QeW9k3@nh zcqB>x!3|GCJy<|rZ>GH_v@X(L+Lmzmp;8qlY+u-6nGQ@ZOGt1?X0WJTnbRUucA`B0 zwdCS$InNZVpNn8$h+4Zhpf!OvuX&oGA5z36jU@ zfg^`q`6opS2%t|v!8M_zZfH9OQ7lS^iRsmUJ{8&om5)|3lk&sm^TLWDMxuPGMbOzt zjh$kx8dV24`-xc*G!hAW1Cggr?QoO?^jt*#DXsQCHtKy}uz_EoEe@IZJ$8`t@pDU? zs*)X2@|Ny|iF4i6YnaSePVLeQ@hBPxGqQ zK6+B_ouC1pASs1O$=vv0te@B`n*H!QN3tCMg(RfB=gnM<32+hhB zZQ^PN5uh}5uh)z=pW+|;7JS4^WIBCz73J^AJCZuy0ksakjSBshISTV_JJ<=04MC zT)Kt%QOFb0O0M-I4xtz|O&AzhuL{S*+L$|{!K9UEVe-$+=rg{V?1kgGI%ISMYqfbf zUZBmO(04$JONiLt+;q$<|M*Z5S-u*jwBI4n_MVbrL+pY|FJaY3-t<^ZPvMnkj&NvV z2P7r}8+*QsADbdk!TVLVY_>@Npe141iCfd^*^3Xw$fJ`J7hUK1Y1%X z6YG%0LkpGQW!aDeQr#q2vSq@%JCf?PZN{sem}#>xm^bS_2F z;*a|VOIrU-jObHp#5l>|#HGhncs^6!*$!jF&L_}Kkza(}W)KxczG8IK&qHPz08h6Q z%=L0pDsKgZ?zoHuvqP4MxWJdzyZv!CB?yx~%D7)G1;S5KQs!vh`%B}GkNog;asaR> zIU>O9^tk6w(B#=zU&AgR`-+%ODQuZJg4!=WYQ^H=`Rd|pxeEo8M#`A~H=%5A>R@aQ z!@z+PLbB$_AkQBd%%a^{o(tKs3rA3($Nuhl(89pC<{_JGvw}{+fgp}U%v*)* zoa>Ma@vX&2UDMj;xx0fy2 zeBSmw7c=N<-S*(#p!@e5bH}YTtkws- zlT{bXZTq4E-@8_SWWSz;)u@6*Z`D5Fd+tJhq-C3|WZ(MVXV`~j+;UIgV{fFlEEu=! zWv`SAak8Oz=;NwOod(R$y5{S-(C2houFQg3YnT4v;NM zS$nzjTp}~L0CW|v`?MOm%**X6{<_6%u!Z8v$g_2z&j506aYj8{5qNwj-cC}*+cMB^ zx#i}(J?+R`jex7e>l#dsk(vabZ;6bIJQO>6L2A!Tp|w{rT5!Z z9@iuC>~QrOvMvrFp#OLBs)&SpdvmF>c&nn}0K3;-0ybMA8p{ouQZ_n76kN&z$uR+} z$D3^Lr2-UByNI&(uA9e7XhIreg_Iu3bhLQX$x~w6n>U>`+TZ%m`~9u1j~#+{%g8Sa z&rfJKpmiG3{m$#qGVzvdvVQ-6n~K9y2p^?i-~V(=lwKm>ouV@3^j0Q8u zg)k}5uj2$jNGac!Kkj#l?I4bQ7u8+c9+!gMmlR$WR)Fvmb}xQiczy@|crKU%(#+ilu>mn~2EZ+5nabLov@_ zLK(59)r1a+awWU-bB!5(d;EIT)PlZ_$tCQU#ZwfTD|H-HSxgGGU17P5gX3>B+s5$PH?la4Ko0cc1#ll78_(ch+?$NXkWBqUkL)< zS<{RDEoerrJI8lko3ZspLE9u`>4OvgE&9S1r>|AI{uW@v&YXv}jDDDz^Tp)ROgF$E zj`=U*8-knZm5})~78Au6q9011+BD&3ODqOUw@xS85 zZ8D(>aQE2icRI;d4|5rmr#P2KKc>7gjU<|HKGbVL-6o&f4&u4PVA(;pazB3VTx1H0 zC^9aS0ux7%r*eltl`L(2v@B18;OBC~faw6RG7S@gIs~`^TgG3Lp+*?=7e21JCS+1+ zWzn(J;A6yN0EMS!IfW)>0`Eh0)`c{%qc_DkzoJX0{f(wPf!ph2^*1e3Xe~-f$F)6d z3_#&#y((_^&MC`;!$`pvy0JtTyjF8}n-eIQBJK*7na8h`IVn#5gAa`bz=jYe21^Af zHe2$pb!D+&(|~!X=HPyI;4N}GHnul4$^=34SWk&UiY<>qbY&y2H z8`tr13_6LZ-?p}VAEsF_$}r9gILM|1UB2S)*hTp!w!icis-`GC&<3~l)~6LQA{~ih zhLoL3&1%Rl;Av{u&-@TBqQy`V#!vym16fj|&ZknM;qx8cP$!CDp6Fz;l=@GyXcUlK+$3YE$8rukMbeOyfap9_$4+8e2 z$J9HaWLd*BR=&oeP#pfnqLljG-=ooE_~Q?a^OYXM?tMcKw=K)63bj49HvRwxvBeRv z1prD4KO){2^mF{Lz!+(`cI|yMF(ndN8F-zE`nEhM6f25?6c4P)|;JNm^yH3 zsU*I#s!!-5%ewj2H;M=;Q=ABg-WdI{T#~?l*=a{hF^{^MZ4^(C2u@bRu(CdX3DV}W z&0VydfDC5^ZQiBqLRWqmwS@s(-j=&XibVdji@*qO8vgbf3+bQ)qMiJl{IJRjiT_?_ zXU79-^|(^+v*QMfc_4EJE9jDZi?BVjr!V$3hG79pwgkdIk?vb{6##3s91b?6y^8TB z_{&}L+3#FqvkRUzRG3$w3mmfX<*;u}vwtD7NqJ~A{N$tr|K za^}v^{WU}jejxM@g`k4FkXnaZUag_{M|`t@auy!g^pBjSPtj;aVp>@MLq4O1zny%I zVkA45&3#9?(!~14^1!E@mIZVjp)f;hk`SvKNUg_BdjQ3Xb0RuP1y*8;&>1Kzg4uYK zF(SkQ*#Lng#WHj6o8JlmwZcmo#(ZG-sw~{*8&B|^Z5;w{Y6V4S)X4q#I<%?V`b#ny zv}czy`qA2pKNN)tM7+=I01;1;p+ATFBGDGsa2qbQ?Pe1PROu|8|i}w{nnXOvy(6S^@6Gd7Tw@XjEXj(TLlCl z3-<}3$&JvKP*gO#V{XcQo>nXa9RV^-ASYuX*W}j3i(CZg%EuhDjHX5R5N7DI8icQ#quHP$*cNu@h4k z5B1>=7raZ*9%#!sZ9+72nTf?x!IuXQVG+>eFlo!zP-qL~?p_(zWJXIq1i>3gH$=Tu zscjL}!b}YC^+GMer$afC)%C}NajXr=O5WNQrl&Xl@Y~g$iR#3>ym?#To01W3zSo4M zv7npX!Jr7`k)sKZB+IBLuEJsVxu-hR5?5fT_DGO|9l76=0<#4EymID3TfMHh-xnU? zZ-@v>RfA8=@Z^tDf5ED%+k(< zGnPPtjUhB$)R9yZbl%Tk*n&o*9!Ey8d>PRCtJGl!65>d3`odv+z`R?r6y79YyTRAI zCJtcTe+ut!=}rkRvPpRieBkDj{y2NPBu}~{qOycagl$GZ(Y?|>?j+fE5NvLe9!E&7 zRaOS{SR53VT(qYNFS(O^hSXI5IcMHAw)<-a+&gK;03qW=o2IC zo`?`Pz;eydUvd9qKTWm^u+Rr$Ny-$KQAL~~X*Qo2zL^ZC+CztKfS<8E*h~jFo^9~qe%=*~(l!V{V4H`kVfzD-v7eK} z`uNG_+vPUWc-Z!A;P>itO5}0o%C79|B#BW$7mXOe?|!(lE%Be!E2GIri74^W!fhVr(f~a3WfXq%gSCO2gp-Rl5}>K5$#zm8Q&c1N#9DwBk&I_Be`w6*MB9-QJuRde)K~%#XwUV;=bw&j}C;! zg`!ptRE&Eo6EX;D#rF^?>FtwblOzCqXmfQD38Bz@L#u{=-B@FKDAmBNg#of~POJDV zj@GcajJPmv-(T8ZLTzYUj?^2-n@1Sb!e<^Q`0CcXA3C0Nxj0k$uDiJcn?enN23UM; za&pJCy;e+f<^&9M*jw+78%KX!U-BHY-xwJEC_Gt=T=K5_6UmnwyJC~NrmFxQFIKqH zgJ>D{JTl)WodSQ^+V(~_ZbwRjCnH6kzyMiLp-LEk*%#d&rkt^6(rfvESaPQ2-kK9xc1Z}WmNMPw zaP!5-yJ);RH2%6ejELCCQ8@sBbqoPqNiQO)uv@j)eUjr^OzrPLCNodHa7%F;>{z`N ziJEf`7PKvIt-wDv9fx!>v?IP=u_050i*Yint*g16G-hK1ijTed_Jt zSi6o15|HHe?o4^M7Hv?SN#lho-dtq&0wGuHv}o<08V&LOdFOR7bPxazDS@>7qmA*s zVAQy~9pDaY6p=kt)bnd>bY%tqP##^kXMZ8r$;Tx_xU?U|7em;;KkT+V#{RI8gLI*j zyd4&Bq`F>`VACmjTODu1(SsajE@=@lMGEjBj+W}}3D;^E6!*|mWY5VL?;MGk&jY(G zR)y{#OQg2|2YwCoH)DW_B#fV_h|Lo5C^c!U#TpA3{K}Xn#-?jC?29mG|AY1*mwfXC z5t6LJqG|dYWhw7ec_pv!UsdS`9U6lTk;XutO^X9H=U?z*hUG5n6%PVcdUXlGd;!?) zh`6BM{6%QN*nwo}o6-E#0T+}TiRgt_I|L9F{pP!5bh z;IDIRePc2yC`$x{OTF<>$&#~75qQ8uz6!a}Ct00T4zfhTa-W-o4#5#|1oc%8xL7M=kF9~})>B8l>(H~$WS~pw0 z{DzUflR0fq|8NHQkC1m(4&Yz^RaIWrmT@2*Mee!Om`V(qcJC$B8VpEY z3-FW5QIqfVF&s)14Io)XGaLMVeycoPXW?U6l7>P$>kId;?7X~R)=>L=mPW$^6goEi z;buCPbNcXn-bZC@`TKnu#Db}N@1y&yX?c0y!MJ1a<@~&wUFG1fS_?&|X%(H_IRIWN z6$gNslGNI=jYh1xeSIBWy!pKI>|TkhOZk|5F3ZmAeVc#HTcpDR?Z1!gwR>ru{h0Rh zXd7kOs+&PHdoJZoDfk`lRdQd)rQYqkU+(lyxtGnF_?2~MJ*TI3T6H|ORUD_=CR?``;n`INs5(-^#SaGd zv<_Nx9e;%DiA3DK^APg#X0bo02H{#`{oKRLNbz4i%hh4#bt>V5m+X%uN`dN8#IV6-oGm89mxDh3;mk65$s= zv8b`OdGQs-_-9KDvHLoGFs9!Y9uW*P%;|co6Vj|Qdn_=j{pgSVXd_+}HF)AxFg>yA z<3Wg4T@=|c_L;BTQ3vYBIT$lrIu4nOHQ~NTStd24wnx0DZFqCn7XRRC!~o&PpHb3~ zw~j>_X+KC8C4s2)v6uQW~ArPO8i|A$D@savE4qZ(xGhK zK23`HZ*WW`A$QEZLhYlm2?Q!bDl;cdEKHM6&HS7S>r!8_SO_Hq_hkhR( z7)D~yLa@dKg?B_W8`fM|S^&$TXpj#C{2_c3<^cI`)1z!J6j7%t7iwCz5b+TN#{1%U z-Ev*odj_!`g1iWzSh*;yRw%g!E4dldZoOT&lxyu>PQa10sj4}bYN?|_x25}}YRs!t zBS%Bi?G-{&*;OT&1MVi_?-8-4UOQLen7DjCM9Ls566-Lpc-Ih0BE)j( z_OWMh7^5pwqNds2E8JAW+!XD)Z5=Z*^uV}JPg1H_q|`H2?DePob6VhA$c~wpJQ|T$ zhZa!sTzC*(5qR>(6l7dfj>7~rnOKmD651-ei$8~-Z}Ow!oy)PX5gHbD-m_xRK2yZS zw>`+4q@=D&|7WecB4FPuYztU2CdX|$@T`#)^cm+UVdxM zvZuL1yyMltN5Rw@o8%UzClr|5z;s0%=5v2pC0u`C#STW8Zs=;}k?QX}g>c(UU_FoU zyp`y*h|& zr+kQVr#d-gQEy$=wcXerg!S(N{A%0~ks5o_ z-pzv0v5tVzpaC0PBg1qjBuj2jv(!_=p`08@;9E9ViNm@Tq+XqPF5STYFtWn6ZAdQH zC?}O(Q|Md2;N60uhgP+U7Xq<$jZj?oZ!xsQa7lb07OI&Swdcof?bP3_N#2irpL8ZR zm5$AC{4D1Z`JYfRqD3BGaOPuEUVj;Dgrj8I-3?vxMy5=k4-jl0R=}vf7B6jV?4F?CIhtxo%^5tPVP;95iD`5mbxLhX7?~pCN<+B%32o@lGy6E0XBhLwvA=F3tVas)nwB;KNnubAqv{4;*XM+t|h+q1d(`4IQIs}r(ZWM1QIVJ zh~8?-EVW&7=475Q_AE*x;9HsyUPBXPZ`{RSzZ--OH!TFrf`$trEHQ24lht~d5Wa6Q$5^6J zBlIdC_TTmLp3?EIiTRhy$vB{l?EAs^b9?{RGCoq9kPgNyG(P71gCZS&92FrLkdXB+ z8ir;-HtVh8W%fWU3b;IxDaYGSlcOE)W&+Ykr%|V5wBrEbwW7hf)EayEboV6)?&3hw zdrIBxD03Yjof%z_r7|DEju|EH#i1~4&w@ZF#_l6XoUCjb*c?d-Cz}&(J)zf`m<2!` zqP(^4z^U~xDb86vGcCvaRvxw9Pd}nDxZT|Qpz&CetR@=gw$-#*m;l$* zqwp*7g|(2&nTp?~N#;mw=SvG*nVIPD8-JES!sJ(j;>s9rpm|d|KRjE)T@Y3hx{D2h zpkAdTkU%3WoA345jk0S&5_nfHL6f+72;eEmk$kK9!uQ&tO6&uo7E60BOUAJ?5ovB~ zvTkE^!EVYsx)xYsm!g26X}LuJ)PS~54v1IGW}BbaaD5r->;@Eaw+>CAzxOzX7^l!vo zK~ZT6P>GBv3*>A54W;X%Y}zpPFuw0+jOQBaMtksnf#rWaPvJlX&SX$Z2>^Q(Gqh!* zZWY~(V9Wzpp6|i|Oa9emN77#m%HTZ9Dym&Cj^>(1kd8Vk&xFHR{Hm7wgYTSb(#j4$ zKog$jd2=ExRZD+~NI=vG?~@j=D3Al08x}=&Wm_UurNv6zeSPQPpwqN0Q{o1eZHvV7 zAzE~&Q?78%Km{?|2ryPp^GpoUDrc#fLxT#GqKV`z*^-@1vWen!-k)!cvTL#}rLBi2 z{nN9^j2Q|~h{ajE6|l2vzG3qcYJUGGp~v>$e$W54dzjgoi2h6G=_$3_hcKaCy}_iH z_TBf_+mn)uS$B|yg6jV{Xhvoi{`3p5D7K{SH8J0b`P?vPyyYN^toDlC;IZbk#v)f` zEx(?p)R#bi6ixxD=ytx}u5Vn@$nDvZM3>80Dqcc>A0((lql^Fl})SY(nRRxr`ejW15hp@3!L}PvL-iAnIYt1 z=a(QFdJM9b8uhzC?*Z2z$w0A4j=p}TEdKQk+)D*v4WhSfZM*>VM@FLH@N9k-w?n zIseBJV`gDVCrbSXHq_pAz~w;kUp43-?Zk|F48}u&f+>dIBA5daPYT}w_gBPcW4n;% z(}BqP`R-ZQYfmzsFmm>2KN{Vi@?~kH$q|MLrB2YKA_=U?U(T;6m?o~uALgqn z$TxuYt1UP|p^~zsE@+-(osOVtih5hRHM&qHLqZ>h3q$Xy09X^T<#mG7@Mj*xnei%b zRm2L9Q#%gekgFKdn5i>ErlmMRLM@+Cb2-+=$V2O{@r23W%MUXodEjtI#Tf}#Wnjm* z8@GaY9*yufLP){;%yL0}h}Zu@?ow(1AKxxyi@5DR!Why;A_un$kq9NC2J*P4Qroph zn4oJ6lA}3{1%O0SaoigIfenO;AA)QIQ~RV1YhCJZMQPHR4NiHe^R(mf7vimfidFdCELx@Q-phZTo$5lP>4+b+~-- zy8gNOJUx0m4ap(jk@3Uyv-;VI7!vLJE4x=u-+mx`VqSN!K`aBLnuC3{a=};%yhuM> zqi*0+F9Xo)-;40bu}?VpvqR6WajE8u&-KIN3wWG{1I$8##Ku*7MT_c0ql55=9lhM7 z>vV0JBtjRU2?i>l7+Q)Gvxs3~m1tJ*MVUH%S^2%$q(BQLFoPk9s*q8!mZ4$GD=-fi zJEMttBfz+NC_=STDVk!?*&u|I4F3F)mK}&6XzSXbJ6yg#Hs;21L{!?3%FrgmLR>{t z16aXcGQ}uxOwKxB5_%;5gCjxQbGtoIzbiuhMto+GlaB0K)0u zowDZyP!asnhbn=0u4!4xV&`jZkRZXSrV@d8%uAqsP_+UK zC|M7-5u7wj?1QNy1QE*QBx_?pB*XfOQhlVFzji_QbqhN)Q4{Y%!c}aZB(>CpoDJEU zu83`Bkd+q7Whr8Kz=kgD!?uHv0HM%Co&hsR(lter6CtC?%`Doc+!17Z6)LgQs05Y_ zt1oVfIYLo6BhEgDNbM$m3bUm+=}v3!3GD>flz*bP#KV<eJ-UKcq`&LK>tLzYg0E~W;a!^lnA(wi&XBf)7fMWf_M0A8NvuY(Pi zn2@}D9`cZpeVpSBnIcJ1se*-_Ym}L0j#j}{XfPFmKbJ5g~;b8SA zyV(fFVBO<~DT=)@PM>-ci4N4L_L0f(mv{BQ>hz;sx8XFWC%KB}yZq-lFFst`khP`zo0cRQhcOljjcMtk=8v_X;WEgJ~)Jy~@5vhw%rVe->W=ZwG z))Q9wPp&;i;i=QZot3Rz<>M`M4~h=A@^bzl8c#_;vea&qojZ;^bN;)^_PjK-`mLbo z+ER+BD!0;l@BiY9ZrVsMUj8ks&0efQA;OcOiGQ=Y@4vl6I97vj1W<=`t^#d`|DYQr z=x$nT9rUfqo4t(sYUYpsBuL?dAu)b|$8q`dmzq%`|IR4W@a}mEF9_90jf? z;K`fK-o?mU;fUUZ2H-RNab5N{)tD2mRYb2V8XR||FB)Ae6$wgBw6+f@*o6y54? zP&H7L8>6Gi*#imzuLf>?eGp8L?YAZdF$t*!3Q3v4j{!|)^=4)EvLp&&8DBw`v6u8& z4?I#D%v7YPW>bH|l_n$@8&{;@#TN>KAL;%#TIJXAzn>TY7&QN zh?)L>-MV)S+s$$sFo0KocV;;vijH^SU125s%Nl&)i!uB8#v{SO4o0BTjnC4ES-p{e(RN9QoQ>Tzu3w5lC5L`Rvq~!UURd&;*-=8g z)$o>odp1`BWZ4-8sZUi$N6lhQ?mlsiYve;Q;1dtla`gFDjf)Nqk^hW3#n7>pCenlA zRDmUs@TJTI8n4)E*XJ=2F{DZ;$8>K6ZiU$T?5A~4lVupn&PtP4k2YsZ|E0VsD?$0L z?}5Fxg1VOqXGgTd*2dl7Zu$y~Sxj;JW2eqY!1JU9;PZjbCAG(&E~SjQGTiy))duS) z9!CEChAMH>oHy{KjLziIA5ln@nD)s*uZag-_pSit%mrgSp#XX3{aX#@6R4dI>BFKg zA;|{F11! z6JZ~4^0?{MN+$PVsnua7@0x#rq@*w$3Jj2T8om|}7{NJ+B?Y2&j z_v?XzK)EmRBH652i>F63le5tR-8f6VXRCgfLC-&LrBl&Z%VBl8l3<3v=VP7$nOliF zy^Tyyx15z)xfO75B@C5Gznh!tt@WA>yn=hSqe|NBUwO&a{Jrwb)~pX`x2v*aW8Yqp zt80Hw^7rSYU2bUn<9gVFdx?#fn4)zem`Fn%Vy=kN-}mWjzS{r$j)z@MrYc%2Go^jX ztA+|iEv4z@ltpU}=5I4CL(^FLv|#U{oLsE8&g<&yl0IO6E8E&fuT#p?f}R-+kH1E} z^Y`lR`Uf}vWDvHnJmdo0gl)1Y-e;`u;moGwS1P4#H>@lrg6FR?lS+PYvT!~Rl6=T_mKll%XETp z3->POUsy!Y?5iq;v_^cY*e3^Lo?72N&}wq)B>-4DZa)S13Q~f;Iz#PURJ8W**lRYk z0d`!|(BdLIWibbb%@j14+C5Z2k2Y3VxnrK`n}zSr2#l?)@)#rA$Ot*TOz{PcP16yJ zVW%GcG06Cv%61?)@@n_#A*>H5I}`*Ka!RwYbqBXHyZ>MqjnN3y#YkJd-_4(!OxPtN33e{@fua_LG{lcuGzm^!d%&MQaym z@(?qpjrP7&Sdsq%6R?-omKWbX+N0hWuZOdj_;`~%vALVYamf4>)n3>_7_kN$_gNX> z?`cG0l1Mq~T3=6*-UMFxr%RMAkOYrohyXs4-b1<*5Ukz`5c8Qyt68^gb~sS@zO4N_ zPL8jRIGPZ_5xxnn#Km%TDU6~qAt`gMZTQYgyW0vDb_{AVFZU3)LABMo3zzq!b1mHi zgea#5olLyOFbZVnhOnfX{Y{vZ!^(=af$v;7UxQdZzyj04unX!Hh;P+Wa0RYh| zZNc9#@f04sF9Qb@ck>@zvvDkWp&Z1bMUoD5SI&I>9{-c>*7@|Oa)#qpBeMg2Nb zUcPWk%%YM*d5uBfVK68&I#7B3JT3>XJjw*^>T|g2nO$%j;a@7{h`aj`rV1a zkU6)`ljPQ|zT+`3OptC2y^xOZ7XaGA4Ya^ur8OP$bB-<|*PM@i1PX$*z%NdI!0S{W@E}eadU>?gs5}^+KuvUNR`=9=IzOt4MZ_Y$!loYbnunX_RzT1VTdrgC zX6>3>=*~9$R#Miby$C|M?0jedu2Lr@V9tI%d=8;g<^eiij*~`ftKi-nvco?1z)Z`a ziZAg=@qShW8l;_(#UN;@04!4!8(nhFQKzPQ5cC4bkyPf_JlrM*BWk~6%vjv6_~qPz zq!=hmp(E0ogJoZ)h)SSACt!OlmNtuNsk%X_ZeP$qMFz-=`AIMPVu1$m8IfhCqOoZu z&=B=^oFpOL?2$Q%B{yIci^RbUJww!}MH@%kgpJzp44DY#>0~97#3q?RYL}RQu4)uo z-K!6UyTfjUb!uCWFTb!JLX-h;enuMEK2`Ho*Fwvm`WFc2-|Hxz4{-nbh%+Wrt{fmO zUBDhPEK#X6K+pmy>`=~Atn^B%NFeWt%uy4LAm5gHtxqoIFX@pZNrjewXK+rEOqM-D z)P%{!a(Sl$HTWvRDOC{@NY)2&=3H<6EL2G);`jBh2*b)jsbwiRnr!Vu%iq04Gy;~% z!rYJ(l|fps2J27p0i?fhP$xC1E)p<&8h#IZ7TI-5{Ui?-tnJV7y9`pXaKz|@_BQ?k z{cz*+VL}f_Bz63j+jevnQjV0(Wol3@Of2Sa@INk>=Hw6$D@Eo{U{n3=rkHGoU4E+i z^`2wif+ndoX$bkr1MOU4s4nsAgz`fDkbtP?CukkG83gCXj<3u*$#24q_e> zR&Fg_BNF{htoBCCHc3WHi9wj_vHbg~HjCI%_QLIKRhFkFm&I2v*}ea|_H2_CI%o1< zjSY~6GS6Hg52M9tN$6DYioNkDdpfDXv-1`wj26;d2g(`cXGm{CU4iNdDMIb4dkFgN zx0mI!8`GU)44?$}_sgLkS8CPmaerTaDK<`02$$<}2~a^wro8bR4;(W1#pe=n&W8$s zTO`Rt1E*%2V3$PaW@DOyM)=F@W2qyqt6O5W7aA>+3*oB0A>Z@q4V46TtcunX)K~^8 zt<22_q!NA+K+$m9jL3qcEsx6w)jE!ML6MSc_Km4bG9WX z2@ni0#@NYmDEbw{+Q>AFAR@tlI1}}+s@28kARqA>EJvO{7GbFI9HIB|UTMzkbO4p& z|68)DmcKD6;|$JE@DKJ;oCqi><$IqLoaOWL9~-;uWP=wQInb)w@Y^`8)w65-1FfJ$ zd6qBELx7F6%fjD_bwNNZ_AXs+&#ZU?(dpSR+GP6mT&~0m2Th_C`#2rwhYr{pT-KXP zz!w^5i>lA>p!nTMYfG#LEd;N=^BmH|D@)&bmeww(^8o zi;2r7J8hW+TbZ(vu^d+^E)M>szsO;=P}6j|HeeMTqRi&Dg76HL2Z6P2U*td-EYL|A zEvcBwCxl>(U_L1uhPQL%DfkxGB6j8lJ&CBXEv{(ou|I4#e&_Tx8|s? z4M5oJ3w7Fbubbgp#<{;`u)z9+RP=hnG0@dS$HvWG_unQRnuDW+ zm{x@o#!ePx_IDuShaK+slhJ@K&rrq~9{>Sah^l#kD)6W2OWcpJBqox<36OpPR?o>@ z64LYqw9@VnBXys&z<1LBV(Xlu0|~n}8{1Agwr$(CZQDu3wrv|78y&M_Tb-oSLC2W> zX4ZUjF@IgvMXkE3daKTP&$Bli&VBapD)O-SaYmmT#_ZtCLxa1HtPpy*`?}1TgB0VJ z!jp_Hd3I*q_Y9*-y^75Ni&1IVD0~f_Ir;qZec!FTIt_xBpts_Z^d`yf2c!FJe_7Zu zPJmJtE(A(ruEd?B{QKl?RrQKR6%gtGPJ=Du_#ik&hS!%>|1J~%+b{X81iGchm6@|D zd^Qw9tn#=3fn{!np5>U1T5b_L{&C zLL;1vLhJ1LNI>Uq*sC*sUF;jPlCJ^zU40qhD0J3_u1-3nANy*1^M&r=rWfC1+>#bJ|RWs(b^Z(%j?`xBKm7C(bQh zCrfGc-n;W4-S7d-sC>-cE{75518gdya4c6wP%x+mQTmKL6fWnAxxjZ1%4d%#3mR;?r7h>@|sB|e@>&hX3oyM?r&ty#-9urRbO$) zEzm8AqS_?|CLZoGlBqDO|8zFe$Z`*sti*e+*#$;h6CLHv8P ziS_moB!gJI)!B;J(i(qEW83qa&86+v)j1;3uakVTau&@+ENw$Sv-`gibHe-kpeWDT z_qXAGDWOmrP?$WpIm3O6L&9rZYltg_m=U$Qx8G}}2>$jrrBB+l1O6H+;V6!{1tuYE zrg{aiHDfrD_c%~^a^NH6oCzs^bGjeEq8Y}jU|C<*sebvOxBn&Jz!y-6D`@gsYF|FI za__89-cXNZz#aFe&Zt_iOeScQ;@l1`KA@6k%>4C&X`d1Fap{K{R^+*9si)=>>aMqP zKzOG9FPQMVV<%!e3@D{L|0cvHQ#0EuVW$AAU#*{iw#yr+T}q{^{roT9*D9MXxWP3(>1A9CBu3rBlJ0s@CL$tzFWAE9U2gDdp=xBPcDQlKATA|>~ z1pmrhCv&51jod31_5x>d$F+RAF)IMogi=VXOFnBhM;a9x>~e9Ie?GnLRaQSt_mj;~ ztUfsFcJMh(0M2r3{S6$Omp$3zK9tkBdvPXCSaZZWjc7X*@dVfK80otkO>S?i9c(-H%wrK(Tiiv+5Qpf z9tvlh*?z08W80#(JQ=oIiZs|EMIhF;AUT7XzWjGmxG|n*p<$aX#!vx&t!agE)4lkj zOx+BFmwGl5hc&u?%4#r?6^3y@vQR^Vg$kxpnI(feeYoW?Y=k{N!y>~CQVxG!M-}Ga z<%o(*CYOn&bNajYxymn)1Zx_o=W|`?Vv$pUm%;GnDPfZ~2xxX&U&0q`*rAc^|Dm?$ zX8mt%pXsm($pM_`Y`Jc6qXo=sRoNO=)xZp=gWOy4c~WNI%F{lo*KqQkgwSXo=8$5h z#MEESJ8=pB5?xHN^YS!$`~l`-Q-ZuuskBtN)>wf}O2{G;7WZ=g>R9$7%_dv5P zF846G(=~-zT{{jK0$GMxDxxV_l|^amuv4~k7G*;*xaPa zT}EzsjFfom^`R0Q&A+)9%b3R`J@cB589J((_cVeELs(fnp5eG+-ot!kjV5HO5=5(z ziUdOq!QCP9_xiAR7gZRtRC3%)bGMHJ{ zc!V zhUIJDN^b{v!d)X5!M~4myn}lpphFjAoj)yakjialdX@4J%04m135N1 zTYqN|DSWZMk<#2yz51-uuXd0#WG>ldG71u{;|?;RieDdLH${V@H~11}t%i1F5A;0^ z-Kb^Gx9pD<`0BhkGu(&LIX49qi%>;pUZg!i=GfO0@C}J1lB@p?$2s(~L7i2=2G{c- zB_^|L@SCHkccV&dKnz-9E#&wVHEBLSs?b^Y(HW8$9^$seLMq4zEx?r|J~ukuC^*Pn zJq-eADYwr9;8>D|*X|V)hHO;s%kV=ZmSyIRB=sWq*4j^2@r!>7XJH}V=2m9jkegrC z(jzp))>T9IosJp37OZ6+?1AC{>=|>bms2ZC<#xosMXmA`F6r4n>=J`fNh$Hd&atwB zpsmsBdE4Vg)}1Vzr}lJ=N6lgIH-bl?hD=;Qq;5jN^9k{v5qrWa5-5wuLzih}8@H?N;5V)f44@ld$Tl{~bBV{6{bc!DNx&T%ntIw&S9%W>GbU6RN!~*aqTK z1wXO4F7+cndcfPtCi{$0Vzs97_rVi;+wIo96rUd#QH*O9^M07GIz7aJOJPj5zhkL! ziC5uD>Qcbt3rseBhq8+z@Y{YfZRND9*Nps`p>UFqD3k_BXGFR}d4k z`w>uiH1O=+Z^5Rusy2(k7DCICMu?~^^VLmu-_GAcrX%K}0ZbdL0(P}s^91TrndI+* zjsVk`q`1bZE(KMW=&p!NTdqS%A<6tO%L}Xvm6L~Z@FOSF$k86KsdpsgzVMT2z%J{e9dX2-g?!7C#!2(wPNMH-?m=KszoA7s*g<7Vib+xx}8dPH_ zsfD7iEJoHo=A3S=kQ= z$0C<~OE4_Yrt1ZGiC#@dgioW6h5v=6et-$hGRN%c?>bY=3Xyz`HF_P2;O@+~u?KRl zc}`v6DRuYG(pyH0iwk8Qs3Fx%CaL}&hie^!n@?yx&!;=s){F(APD8X<(7=>tj9r2D zT+Qvq%^)3I7Qd!G@u6w)TT{4%S4LhDFj{Kydr|PdQ5pb-eYjAzxtzaq`RL4iEIC)X zttOTuU%qo^c#9q$Q)i?Ya9$8P?x(ShL`t#wes!!-oMK!V-l^y0Klg zP_RgU>2~1WQdel__4Pht*6*#r`LALf{gIqP#-@O^krRebM2sF-a4!o?Jfy>>KkdYg z2#{p@1YKV|YSIMZuS*S-^+}dF5C0yPCSh?2y{Cv9%yqKV$6g_;t}Wt~w*AXpujr&P zT@uFvGsRul79;y~Xfu+7lWB(w|4)y6Ov4=^By39RAR`>|q17Wb4_08Z9t^sSKjuZT zi3NbcN4kT<<;t z)-CK)1i#+AID`!9^>cPaTCzq$8oWTbs|?T|&9(>YwFmzZ_2OVtA;*)o&ej?~A^GF$ zfdAo-gXcfH326TbGxPtykro!_|1hO!0WAf$EpCLqGp%Ro*=5=Ra@oFen=4KSOTPFH zww-opNmF`-hl6DE%7V`qNNHNT@eREcL;q&#ebnO-aO1b@!{fj7*<~hp_ueg?+0=q6 zaS`fOlca_IRC_)TY*~_NDP1;zG9_;-Vuh&qvDtZnQK&eIfriDPG?6?mY-nLD5WB`! z?K#Yf7fxz|{;Q+_ik}iZ#BP1%u@-EtA~cgVw26hHd(s58{J4=mYA}+hyV;O=uEyiy z-{)aAgNb{bFH`xqB`!TyI=hBQgdX^x_EUJK3m-o@~XHAV0Vm$laV((q>y3@@8RJU z4M(lwvv77IjHex!N-vbKpd_52k5)gF;7E{)Ur{+aTYN4`MbGRLTAY{!$Vl(iwUd2l zRm^Q9+M!hxPxEznCv@~2ZaFLN8<;MOog2DX9--2b@828j_3OGW8cfPRw_K`whI}Bq zw5@QiJ(-TJ-d3|}3_#&Bko>CQkxh=jvknMbRFRZT+E8nBH)bQ2KuZ@+%Y}g2PhM0E z;nPi6*hK6a7Fkb~OBo0Q3?>BCx1?2S;NQlXwL*0;D_oM0i{aa-H+}h|-@qVRaq;D~ zf?`c21s}2>ixA;y(p*L%GpI|P{sbz+trK{8dv5LMhPW4QDa2|}sIg*9h*O&Dw5@f! zj&--`Oe4ZXJsI-4`P~~Q653u#Ea`Of!GMEd5}HL9A-8+Xwb!@<;684i0-a}+QKlt5 z4ja!$w5`n>wT~fGsQCzF+$M?;!tZ0vJHjdDuTUHd`ePB80uFa(W>Pt9NL1dRxZ9YS z#RPXm<38^sU1z`rv{z-38*P>=5OpdFm`5bdW%aJcOLf`b7z<|iwCn|U7<_8CcbXQf zKFu_2KVSKBwHT>BGKojbs=t7UW8-&sjEf;IVs!r7rNy@5F-6a+d;fgk;w>0j+vXCJ|0w|EGPD@S zj{_Zl`xcx9QXuAq-LyrF#q5PtH(|gOg3tCvT$eIZci3nk^GYso`7ZkVF|=-sdcU<% zOlgKvY58Vy%af2+=j&{_FQGs-1Y`4{5C$>*eF$9eT_&qM841b%225V&nSX zidr7d|BiC8asD4g?X}*P<2Na^fHN(GCZ@?y%hy0198i3|N2m$Yc<$IfoDdPU@8V(q z3X?kuqk%JZuJU4f3+vPkiJ$;wrPj*sp6;6NU+PM9x?5G0-P_)4;<;+xT(X%zT zltQ-GLbWIh7z^U zgy~T}%pHn3m~pB6bU0KNn!+9>Bv2e^(g*iyPL&{$T@3Ei_3u^ z!kWRv%WRgQeM?mnr{K_xO%1N0RU;}3q*yYOib$t7)Fi|C ztuCdKM|oV!aST*?)1sihA;CvM*>kt!$-RgmQo`jnNg)QP+G1sxQrqPcWQa|-I+|}B z79~x@K)c9CkA=Z`M>Gj%Rr}$&Q4(Y&W?LReqgzw^W9FK((pAeaj&S}VvokY!teHIK z5@}gL1N0E$h#q6{==FGfCJ|Bb_l8q6mg|PnnyJ8SlR2VDXmDDC6QmLe?kcE=bpNUX{D%xH{S7Ob z#mH$_r_=ma_2$xTXxK=()OLkr^LqJU&-v;30u=j5ZXeMR_-d*T!6k!`iy*BjWHyeBk+C6w6hlv&$)A*;Py zxntCQ(?j(f46D>t1zUFTuT!t>=g9F`kjOxf6j7pAFEBwE%WTBCbAO^VUE#Os&ynp= z0bH-7u;#>{8L4%Tn^25v4#64BIYi`-*y=&f`qgjMjg0j6ianj!3gFI<*LJjCyxRxx zSI}pbln*PkHK{=toKNSeG5BAO@XwBG-QSvX8sZPbF&t%J9%;Zwg0JCjnx8w}ev1<^ zyA8aM2f7HIET<*jI#+Up0BsHeJAVW7vdCzm^R%CZauw``Q1!73B;+*D zzA}DX#f+O$@gz>5v(9Ah^0!4Fu$*G``%CjbM&)&`i?SmG)JvRuO?{7>pv=K)4pdh8 z9hDQ)O%VnnZcRWUDo;v|Sj>GyxVntc@9oi+2d^fzEeGWX-7l%PWE%xFggO9Q3!J+` zQ5?PH@jDoz-YwF2eZ8*@poYPIFLGO=Z#cVOg1*2xN$pG(=?3AvXU>o0vH~F}X;m@F zmnw6s(10Ndb;on}(Pnh_z-lr{LOMd7Mp_(-&UKHx!lDKtxzOi(P!@ZV4@#*PGA18e z;Wc&d^(lshyM9DON$P+uPB0e~0SIIQXnw(9N`%Fbib|l8tXfG>6qlr^UzkczHJ7An zFUr)Nldrm{5imKvIRI<7W&}cx<6jI9cS%Hx0%vfUl3DpEk->jCM3I_Zkir-$xeA2w zMV_7)$+C<5_z&i;4LyOcTfff$kLC^i`mb$|C5gAd$NQ@oSBK2n`-FjRVEmqIsr6(H znLF2nF<$I_NY>!dL9*b89t9DlLCYQf_x%Qcp#x*X-uKiK3VLhT+r*8=fds8wM^+-E zLIvb~^yFOb%^wS_(8M*-G0|GK_0!{MXHR^B@6%o3Y7&+pad6v1%Svwf_L)|sWGy42|?$k%7G%>4^$8hP)Yll|SH z^<*)^mMw+9622H}=%8VeA<(h=GoS6RObavm zmo)t1U|$3+D7|x7238ZK%8aDe;xcxf`F&t}w*L2AubmBBfgXLveFIG)qF@>0&@0#} zv1u~QOM?8vVtK`k`xkZTwVj8LJ<3!U@7JBk+l~8sG5$Dc<_LaFd4i$c@SvI0rXNd3 z_{SYaGvl!rr^g#v*}(XCsKJwFH&k#^LU^@uhFSTalY|q^?i)+1rIYU1%}ew24x_m$ z4kQ_9&Ri_D9baVd)DKd%zC9bELdJQmquSVw4`&671C$&2M_S{{K3Ox${1@XRXoAOOy}<4U6uHoVI#v8}?2 zN^2W3@(=9VY^cyNg`((yQ(vCr2d*Fv>c%4&smOp=(1!5r>R`O4C zdypnrjFBb3P6;>mMZxTP%C$_V$_a3!7L6oxTW+)O*x+oT}bYvb~l?iVmzVw#BdD2#R z6EuM2ipS@(#!`TTDYsmDj0#L5i*1pue)UPllg;pgqX|GF;y{MkF< z2#N582}y3*R#RjWVkf*$76NCvI!@UV4OkhX(zM#5Nw#(7^Q=jhqS%G&zafShWf( zzKcuo$nx(t;8J3d9&bX-V@i$X$U+;7`ru3jUBW~-lAY{Iv)W!5S?yCbRajTeDN~n= zhYV%=F^Ejd3v@k}|1?swDV`H|;u@&wb=rIlIJS+jZm_P>Ra9bZ*v{!()NUi}xsLbV z1Mb*^(A?6Xujb8_@^c5%V<-Z2_bQj+uAVoq-S}=e+yneyp=$SGJ&yn8WoQ}4or6)U zFJO`z$6X~&z_X=c4TfWhOJEmIdLBE2;4?J#n{R@87Gn!d+&cvpBfXDN`q}V-2}N7F zRC{G_2Vmf4wlEcmO?_q|+ssePl3JrR0#)A?MPaQ;9mt1&nhjN-L;i{N{EbIt_c$Zd zDTMdR6sBTPCW0V9gZkaR(VXVB3`0*}MHme_tqO$Z;MF`sdK#WTJjGbzkEQ3offkZNbVG>x5fF}vBS2lWS20?3(ou{$NX_CE-VI<)&A#3U1H;{jH| zeUhB#$K^Cl=AY_D{$)!2sWf@NE!Q7N#dyMeETyv?$Vbe)Xzm^u+W@~x!yKcr*RyC}vCiX9IUyBF7NXCD3ScsG}makKWKMTvu z1XDkM4eVVj2^W||ohqbXpECYUB2U9tUS%n-Te=bqx$h8ad6>+gl;Rqeiw0tH1?X1F z_RE8<*3*BcH)XbQ;|FGsLLI}`Q>Vy0JECbiVgv9;5s5FvsX(WxcDVAk!WxuM+tOt$~b7 zI|>W}%pgEim_{%XH0sI6;ssd5DjsIu$p0Y(F=US>qKcMD>9-xl9|AFl^8=E% zKfP1`+~;JI?D6)MAz1+>P3#F<6@}dXM>#8q90I-ESunSHsjU%JC$+CB*skD@X+NUX zls(ng<3!cRae0auIllozXWhG$M2J^@-8ghHOKItlIhz`qbWf3|APS)O4B_%o-ziNx zAxuu%_%VnZ?9*p;9F`^rqw2H@23*WNg_B%_OOf8-ie*b#VSL)I&TH!@ zS^vila^zFWo$o)a;YCrJOqqe~>8Ih(CRHprof_{X-N!8YR*69=Z5*b6iS~4Wyohs@ z2aQ3B1!?BUdfjkJdF){JQ(WyQ)F(2zBrJ6a5p36S*f8~SoFWhsc@l>0(_oBepa?Rh z-maUME`Z^c;j6TPj+l8vcyNPGglig(?3Y5nLan#{~MTxMgOJlQ6tY9`RJQ^t%K5!s~fT#n(H z^1*DR9=?ted^WTLc(@;=1h|=JfK~nOLFp6YiSG5h4kmpmFDf#%v0;_-0<91$L zbEt2$X@C4nv|KNNu_Gl#GG`JC zfnh=LaImqax^PngaepC|^|w|b;f@+eAR@q>DO_-gcR?6!R(TpHJRYfw#R= zyYGpO?aS^$-xuH$*3d;NIyZLwVlwLja2G&7ckn^j!0&;PkFB>x;nhcg?^|vT*foCK zwLsl911Q#N`zeS7EDux?UlfwDz0+f6adSNz@MmXlePw-fb^Ul}|K?{rDBAE8$dOmX z*Xf!4FY{{Y#q=%WbYb3#__HJBh3S?LnurOy2z>A`KcXwKE&Sz;C?vDBxt0gy_}KLK(O;z>U!)M0mOvll9S-#$)a5XF> zJlNB$zZ6~uWKmIz_y%JO^1+4Yhvy)S0n1ZkaOeJk=XWQ33bV_9l?bwtjUPO5(3{ao z|I>vKMbD=nRMlr6@p8~td^w1Jp}rf)N}Cy+lB-SE&L1JOKVU_@>AB3sB&g{c7tb71nG0s!au;a0hNe zn)=GGfi3H6dXsBM#|m>q*0$HR&Ud+n&$W^b-K|_Y(ER$ZZe5Uv8F~3Hsi%H}io(4{ zGe*Ujq)$Lsj>&LZ>=H9}lfBwK`=;1e#0W!}Z?E5#~oa~-2fgd1}P=3Vc zJCJ`A=b(*2-9?`-#d+32VQw31yf>d6Sednp3p!?2Jze0EKY2HO{UNF95JO7=2h}__+e-=F<)Bq^o zf>f@NeXVLg|6REB&U6?kHTET8f5Q@=zgIc9`EpN``a~-K6}!F%z_UYc_7`pg4wn0AKA>;`atT(+SR+%@T=jkw~ckYt&fp2f#x4Xgg78qMBwKI^_lqE zryeN;es6gChIt9RKUIBofNle@!9d$fVStHcAk{5$%*+jW-WSFlHmeuMmz2%T>D*~vun3ly>o&J$(h{E`Z3+TRPTJKjJ!G3&b<=9fVLRB=Hf_|5}JX-mA+iP~PDG286@5@mvaDy%76dyF7G`pYAdc2Xqs8221h4bXtm-4$U zfMUAT=nU{of1>3vM=g}AI4@l$`wIqVHQ^@DYS}DfEc^iB%ud9(tzzZqSSe&4KY%(p z`jhlIPrUim@4~)GTxiC(A)~sP+v_0d;M^Epc-J2%zw8eh&og5v$Bl+MO4poF;Uw;( zgELJPm!qa8c;u)S>=sQ`R)Ns0Q3HBt9o_US`z$c2IpVGlDl8(S4u6IzZ%A%~Y9zv| zZk`qFbp7;4RJI7O64Fs}Ygb|2!?j{p=7``4F*lOO7MMx+lR;!wOE!{u^a2{uyzH&2 zip0AJW*_e^BXYa6%(Q|}G#4lEXp*Uoj>@Q1xh|Udq+C^qu!V=n$#YrnNm3`$YEvl+Y)a%j#0u54N1p2@q z$R%*k&N)_}ph*7sU!9CTrnkJ^o-|N#p<}?`B|5)AH+vc9zwK-Gp)Re3o+7UP{TSjo z)k7AJu4CI7L}~lo1ofQhA8O+*LLM8Pn)0g9g_nFc#6Xt@@ozxL56Jx7TADW z^yche{e9JA#x#P`7xu%l@Usw?M8eMaEn~zrYMKP{QM@h+84lfhqA-1-NaWxgoYC7p z0XaSo*ZL)IHq4sje}D>{EtC)@NAr)ZP?FupPIWC0SGD4jyQ-GeABzKPxPcx8FU_wT9k!77*ba@9>N4>p7pC*AIbpwrpphZON&pvy9JDpLS|(iSlT0r5sTi8=30bDJE@R zg}+#ou+ap?Z#S)Wn|5fmr+5RS`^mhVp1vqc`j{G~+gL_781{xdvZ7qJSMlS@Nj;RI z{c}p24JP?H``3uF{zJ$7q%~4HHF2q4s917gBFVa5>x!=`Xus4ZP6W{LgUrRFG0RyA zr{dV4s$ZQbIupfQ|14icIUohPli+Ook&?5wy_KgwunNbGFjguPSvGi}Qn}*m;*Uik zYaA)RL_tYJD^efs2cNXn2dwOT^x%B1fJ%Q;bbi?*yn+;kE!EKEPgEm~W9<@ccXI}V z+U@jkLsXiB!k7>5HYbFeqr+sRc+7=Cb!Zz#L-w=hr2C zgIFlfvt#G8^7f<dA!fw#Cj@Bw$V9Qg^OoZGpV0J130P0VFJ~RTPA}>h=bomhd~FYVYl*O-(s+fZfDLINX5(@Jr)4NftbILL?cCa8eN0|P|dPf{EW6HyzFdJ81vOK7@1_@IQ_-K;Uy1qjM&{Cw1AHUkLcxtj=#3STU z2EjT8a9|{=-OxOPpNI6BLPm1X1{YGlo@sxZ69wQgG*NBm^Ew)2e_6JH_yxIRNGi)j zs2w4u@a1TPr$gU9TE(NT48hHz*o^vd)QXt3J?AFY4jvT;^%Pmxz>zDkS$SOeeY$;& zUtqBN+}NBiYqMqh30$LLrm4yx1Iv<}Y_#7!!kxCB6%5G>?TH?SL0=1@={ng_RDTc6 zGXY`qFE8Ua`HmoXd{BWM>^+{pxzta+ES?8m{=P=mMiCjd0x|67InFOi>`JyI^W_uR zT5W3*8GttR_N#IHK1yFQzKFoSyJ1|~bx-S*e|pS1+ZO|7M&jChT*FV}95P^yG*q#A z+N5sct>n-x7fuV_>Vu;=h{Kdx-de1U2N*13tKt+8Goi&cs%o41H6jwBQr-|HEEXz_ZO_BU5Ml}R4A@bZfVjlnMd_M)7P4Qv@JiY=p18(Dx#$> zc@S+`$vl*l#z4{UsF(-&+s}rvswE^xm>zh;GU&mP$i^)ou0akH5@KOR*7WV6+)_vM zs`67!br7G&=C|{tw|o=~&<#(-!T}p1S&yhog!uFP414T>#k>yQ5I|;RZhOecUI%6# zltg4QIz&&An6> z`(>7}wy5Q?r{v$BUpm%!mkF^jDQ!&fd2Tf~eLoBTttukbq3<8&9t_P4wNK`t!DWg> zjI&Co@w^koB@q)BKkGQV;xnnt2fY6;OO(t3S&ZMpMA9jWnn^QB+E{GOO!dI{tQd%& z09q8|#2nNr`Ff<(5TS=73*Zj>H@N>#3HFOizaH&}i=>0QHxnm$@b}nIiailI(NJ|S<#0>ti8swa-d-Phy#vsRFi>8L)jvMz zW0>-PNkj|A`u^KO!Qw*KFXyK_hX=~e|_ zv$0+EkYvP1&k-JY=Ai+@UMuXjT_YxSS;($0>}c_+#cC{Fji{%X@#n7Cn+Dcyjf*oy zEl$Msi(Y%@nGxic90oI7{Y(kiK!G}(#eJpo*3Ee+_~wU7xL9?;NeIEH)>{Ov=A6~? ztT7)o5%2eX$Kddg=km_}(hJ@sdyAmf)>k*k??zz1d+n&jV8Vg^;){y74OQr)^6z1b zrN^Y6k%$j@=+cF(8frRoM*TnaAET)dKnP%c_{6OA#&Mq(O7*xC++&lD7f$CEf)sYV z<87q}wDx1%$cNEvA)dDu7_mDU@rEZ&SzBj3$*85XqbP%)V2QDJx@}I3N|g?Ofsa0~ z2ax%S+p)~yI35B{T2B_~u~hgBScM{3Ytz zpSj3?xvt4*Kji$q@O-bR4bPjYj#0L!c(i#PZsRG$F3rG-yF;lZP=}n%t?QE_B^2H@ z?soPnlz%4t!+r8X^s|z?IWLm(>e6LEzKBCUqqDiGzIYaZ_R40-$%}sZrK%-3sM~^h z+C7xyezUT_@f&mcv;U`9YcGF~9$JPUWylKLkMR|3F^0_xiTp%aAYvth8@P{V zDs<}e#WzrD$IV#`VvBE4pT?Zy1lVCEiZXHUM>#f}p?fmO7mXhodl ztt&GDt~5&ut(5d0y>ho$5t;yYb(PBdBg<9?7X26S4>@LT(_;I=G>z1ET~Sc^C+%oO zhFX`7F(N5(R4m*hq}j<{aN&DEsn{CNnHVH|n#mY>X%yH^nSkNtHI zT&iz?yqM+${*+#dd~&mps{x*;c18?uYt*XS&q+)3;yFvW;rOn`Yvi<)GtWEVw#xzY7Qm9n3Dpm5L#0)_8~gHqn@qfp z9KD>>vLeE(&n$#*f#eLQ(W*dt4eY1U_csvTV%eFjLlm;l@zP-x?N6c#adV@MGf47z z9m9EWj}(JhpZrKuTR-i;hv93u9((ZxgN9-*sEoj+QUxlo%uwDrpgG5PGE{7aDqMkS zRaZiR>XmK&7=$xP*(lqp!)WMAwqK&xom~fz-lLroUBPB;o0KeTh;lUm5w>`Er<2G zpRZ)|WO`+oFlxwhf}1!eiPv7zGW`|6;03|br@z0hfL4vZ7i3I!5Brk~=a5?cYDp8E zvq{OVLCK*q(%M-Uyus>YfIWGmwE_dR(Vs#O=cG7}(xEenofrOnT)qV{zDXuLFCkn@ zuZIRn3QORkG4PvAG6S9Q0I$-Wv}kyoPPHFu3+fOiH?leRKZ}+nXEsl)*O@tR$!|02 z)4WC$0hpA21D(u=WrrjOpn!JoIr)f7kcZWv3c%3E&SlO@wEeF3lVY`==P_ zp~svnWZs!9!hI=E4H|RR4SIEY1Gusm)~i0dCBZU#{PVqDe;dGZR@_=y$ZoacH5{7; z+2*z@jGsSEBhesYaUOlFjo*mv8VOrx=d5w0&LX;WD&K&V@^FUK7W*Z?Nust5qS1Z} z3|)%joqd*HGjqd2+02#-S+EhGjX-Iatfu|DZgs;H=Z&}umx<^b`s=(<#(o6F>K13V zJ+INeMxSpm(LEsTw}PtzqE29FWtC(*=$2|m_kE2Xo&>Tp_J%SLbU`yOPzMG2?mcVV zeXB`|ME6j_K@kEU4pwMtxDrlR@=2IxlsE8S;N29w_MgJ`_eVv>7kvLbM&0Fztx8Lb z?S1FfAEtt%d3&J-!G@~gfG3?}i<7s0e|G(OuQUi{4K5%EC-xc2y;HK*ua(#Y8!aJd zey4}s<=q>iAraUr=8-BbevVh}$N$bQRq1PD17lTXR5*))Z|EY<#8b!NccbGcOm{&5 zooQx*b5_R0h}+Zac-5Il=zyzc4J}k_#N_mK!~i>&UL#u<(fr$2X08ll=Z4vI*Z$I9 zr9AK7@&za;FKC}uM&SKAt&JQSa(&S&JwfK%i&rnjBgmKtosCw$fjNh5Brw5UBDY9? z<0qH$W2@m+l%iIZZ?v%rC=@DE7EKz6Xn;4(`taOfK4l~GYp)eDw-t6KmmHhsi@UuDj5Wo>ruStb+7Dk);p_gC{08XPmE^v??6x@dGXJ_Jv)m`w3}JD1 zrjm&!ixFv?+?LQ7e?27TpM7j4n!Ai%+L=5o_ku)LBFlmLE*ckQ+R;rlwGfjw8QyGO zo`oTMLW2v9`%Su`p0HkZ45F8?Sm9M(1W(VMai@7VON0|LzhMAhX3&Uz4t$6cH6fLC zX$~MIOfEs$7cO{*7Fa4n{IM1CN60!#l)(zgRq# zJv6K~YF?P6zlCLk?sapd*~ zPDQcZ%3^PBiaL!XRxHw`x_8|pE+A+B`LHwHxvEKSe;57`;3$f@Go?I_jn?R4t`{Br z6waAd3tT;UdH@LKw5E!aF*Us6-trJLP&yTOKUJK++}topS=;#EPcBl)`{7Jhg8q4N zSy7{7IL{=CPwg(JFxDRy^??$=UFkjR1`+SO5TzmEwa=mPKli%k+8e~lVEW8R~+E1IOQ4hAJ++Y!Y&D9k%4 zjRO1Qkea;>ys*x5N{ZS3jg%t|>IK;$hI52c1WxQc{Gu01GKBjiPUeFV(jO(yPTs}r z_9=QU)dfwioHTEzpl&h*i}avqC0`48_1707E zdj4HutSzB#N9Ke>|6Y9TD?lE3Pd%z2>QCOpuhi-9?gaukxQNAuwumk~QFgMyJeWk* zSw+A8M1%|(Me)U~Z<>aqiya%D^`sH-jP3~cS!%(PGXEL=y}|!}zPtkxJ{mpko~EAs zm$_#-_$PE7QRW1D+13H|jJIZ58eYowLrHZMSpnDv{V!o3*DMbe9cKW(jBCjGuXbM; zhV%~CFCLjjSi)L@&-k8z(}%oK9*t_{Fy*7{OOz|na1nL^q4{mFym*UZS-ItO?=X?B zQx@kGJ?@1*Ept_<#nTMpVUH9fJG!@Z?C@V7tY%YS=NDr|IZnHiRL7TwY=)YK9p)nl zyD;saQT_x88cKjH&M}spyAJtWTc^f1MemLk@FY$CtE!$aL8-GW! z(f*JLb3*@hvb0WrvBgfV(G^m`)yUI2^Oj(p@J=1mY`yCMff>ASimI-sBRJj@d8oo< z0(aDO%KVNEZ#$KymNdL$dS696HZ}6F%zIOANj348Y!#lyYNdcvEo)_A#|xRSt@c#a zQOm!)R@c-`xqq2d{>cyVCf`fHyFfzqh@}&QKQ)oWde8RZ4<+#Tja0RNbZvg~`i@Bm?Uk-DN?D%hhow`Usgc2lfbSSd5zM}U6e{ND^mX1*}Y19If)pMs%OX3NnU;%WkUi%fd zm=*%k_UwOJeu@=nL3 zrOp*sA$n+m%(c!ga(|!(BiDonhe&ZQbrs+Z_Oz=Z9?K1BvjTd1gUw>U6eMbI8!n<4 z^pyZkp99uA;@!9UA}a;_ah;Brc@HOS*J4+m(F=4c8*&GNMs>CPf0KCdxw{~R)YXFk z+|>e$*{8Jr0P!x=f+piIkCK^RghrI{%}V6w)zS;-%b^V9%YSD6KR>j=gSl=n-TN!T zIYXn0AP1aSTG0(DGphKV#ALgU*^Q#%(7s4c0_XbEBU?-!IEfDSxE2eTb$i7XiKguB zel}139MB0zPKI%f`?m7_?WknX(Wb>zfRXqT0rr+{%ji^iT)(Hwt0intXfY2G;KOg2 zNJhrPV^2Yz4}WVy%gTf9Fcwvk1;ElCh%cG&U#SF{lxJ>_lBUNlw@jT!ChYavvL=4}9d zLTsUrp~HP%EKa&Wz2)yia?6ex1@*xX+A#Xkp-~L4H!#P@*`Hu+UYMR_loqV3(Vf}y z#MAUBDZdH?r{6P_c*AB^K9G!fuNum@Gh-HrMpJajiG3?%jV>AmZwQEdBp8tw!Ds45 zf1X{zyMN8v=&bAN73R8K%NNDM7VE9A=il5-hmL>6@bufdZ#M`C&YmKEsScm{c!|M{ zL#)Cej1OE78mc)wtn({pTIQD5L>_d_wuRds7jP$@JL5w)&H82H9WQ)lu-`yz zblM6jOnCftb{m)9sPigJ08v`u7cHV?wc$s0i+_HsLiET_E;xnRp1I%y`?%G)z@;md zP`{`ueuoDua<#$e<4DqNNrUIrw4@Y$4=#o5h2NqBh0>qEKBd(`D-q+^4jryZ@52o*3cB>YDpx1oU`R?z{RMnf4z z*ne?lSPf z6KlZb=BbG|08q3GvGZXOAoxjH#CmV@Vzyv`kJ^=N{^aCN!AvdVlAlyfx{YX#lluc` zN(w_xUl|xkJ|dj3ttIz9MCT(?#|wA-oS5W{Nz{i=Dn9kAPjXyvUTXd*MXQbrBK~p_i)xUL4Aoge#GjHCcJF zlFx^CHX5m+)!|T~As zS2KAc#&W=2bSmrnOfa`IT&xttSTl?hK% zUYe)Zna^6$)G%%SCVMV#b>USt5=X0d3s|N{qe-g2JIFp+MdBH^ljwRXaS(v`ld|`{ zOk4z##_$m_=?`8|3V%d*Vy_;^CaKZxIQa5%F9X?^Wo&suThdI=u@(s)=11fc1=^ap zf3SGcAE1+31Lp;5nfSdxp-d2}LfQ@_tSq;9mlkj$5`uFF5TVucD>RMZm%ztf#c~~` z6Cp;2>z+Dsdvuzo1ZVSVpJm+Os<+0|UyzRn*?)tS8qH1gkb%`*F}3A; zdI?zilhP51EO>Ws0-Hq(n|9j@%IBN~3MY@0-ysVZZjFOHKdo8RhNh=#^6tkBOW==~ zDKe36HuHbLi)BNdp^uZmNeY%xIYm_vp^$+v?WT1*N}yl3-s1jEu9nW%0+ z6LOtf@)rSTfJYyst)4JjT-B+gVr_BZ$27lnP1O1MX@8T+;d%T3jID$Hy(pkWOvf+D z?11!)o<;tk{9mDWcVj^*-NJZ|E(&L4-danwNnKhElS7d1d&KPpv?-T(1;HyEkIL{H znqsJSAyKgc98cjW*HvKCORX2NpJUu2dDN&_3KY{ zJ%q!{uMJBS@^?kwdNN#w3(}2mT>@xrTQamoM><-LD3(aS5X>L)(IZJFg+L-H9=E2@ z8=i~XrkrB%xz3H+F2-o7Pcpjvrk2{dv_Lxz$A1+DKagL>$LZWKb%CTsPa=-HMsnic zx_JX_AP}}d5pT7YZgDdk5^vlclrQG~M!G&3e6+j{)TC8JptU~7UY1YDJMKRXGM^RK z<~@mbA>i35^-6jB%?_Pkkmk=`=O|jE9Q=%Jh6AnOQoFA+2dM~gnw1?bpltBn66R2f z@qeygsthu{dXI^&Gns4i$b6YnI075PC`qM_Z4|o>uM9K}mois;UA#b)WrP~!$#dox znu5NAI$q&hR#FCMao*H$jE(V0z+g9DGQTG-w4aKR(i_tto)t2c{Oo~3+$zxf=7e`b z03^+gKG5fZFba{)*r8|<9X(NBWd(LtF7e^nQg(mkh-zk4bOIO&Ga6JLy~R#q<<7eV*Wf#I;YL-2T16yC91IJS0+hfS*4*C`WH`D$FH3rB8SPy?L z!YAp4JiNP=n)8l@XmxCLyh5pw?{cGHrtOqT_Q@};g3VyGvbhQe7gg8Fntu}}Q1@lO z1*!AHriJ*fM#gdLR6{DwYOR>b4Kt7kv+2h)dFOxWvF5y{fh0Gqo$@L0=WqG9e~7?; z_O}&vp*Gk3{xzk9V`!rDZSQf~Wpyrid*M z`^zqX(2Mv-?zndQMAGr$m-zcs6=J<0q@kbia5ai)pmkIPq7)(<*wQ0grGS{t27HsX zw@+&N=N_0Lk?{yKC#JWe*wA?$lDnU#qPnc&mD$)ADx5p}bv7*{5PvxFhFH~@^FA12 z(D-@lNJb_sf>`GU4gvI{JA!0_rE$N%E7ZHrd%MZssdP<6>kw-yc5YaQ&HGFZY~i_YHc2K+<23<(}uBHot37f$I^gMe#Ef158^(j zcg?ewQ3?cV7JsKg)#mQ9i)N&0o;iN>W)gs2-kM;g=BbV$r>an+L3&QF-?ePCBf78_ zxgfQh94DeIPo>%?X{z9gUH#E|Zzp3pjJwa~IouQO zdKS*sBx{Xr=9Ni7pNai~oZ8sU)va*F@~gN%VdYJ-gv9+y>8)tY+{v1f9IRL4L3NWd5pgO?&Y9KPM{V=(e@n7ocuXNb_W*Q z34b2?*#lkKzz0!G4ez*Ko--AVfEStk^IkWq#WJSBK#%5LlATFh{RMN-J&J^M8NnGFyN5obE%2m$!S|pQEs!r4ABU9O4~K zxHRTAguyrIHOr~i2&t2SvjB+e;m1Xzso^=T!($a#hoTbejMzfu^#4|nk#dfDYo4); z?x5I|6zwd{!kO+5jFcp193T#J{#^3`T`VmICfhlK9>=F~BXfh^)qFz;VJ{P{1&> zf|81>g&b!5A)?z92udc5v=h;JFyZZN&`qE;e`uc62h2^|_Jdw-}+MlocUDz~fZw3mS0HmfYpxrW`%uoks;s5&D$ z%@oBGMt_n06uEf+d4B{}_w!GFu|<^^zKTg-YC=xhVtYE++Cn~vRVfSa(Fy3Z>t7r9 zb>#{$q(D?8f^b0N#k4!qVz0X|#MT3&3$bziVPr*1If;n4p+J`y@LSw!oqznR^s3YG zwz2lJdq?9n>8ZG?z|*UbQOoB2UxvS7_1}jFP&!h3j*Xq>tqQcVY9cTxU-1(snYArW z3GuEUR6$#&6(GHkvE&lF@_bLUshL(ILSjua%ke~=4W|ALQuGw>noNWJEG@r;BPjfp zh6YnXlZwQ^&}o(24;4bxynmmam|nVJ-bd^9k|P!TfM{w;LK_5OR$3qP%v3!VBL{=Y zw|q7DdrS0bds@)kLxqD90{7EyZn>PiQTLYA?7p&pJP#=&q-sZc`<3Jer;ca?Um8r7 zkT_0Gn6dKaC#%ZITfPEMV2}=)l4K~EmDm?DyVv=_?8{zvplX;9hkxJ!wLPrC95;eJ znxB*p+9B2#p>o^{O}DmFyzF2-%^K7PJMmIBl=hCY=n>VH}bBwGQq%z7j4yZINzGL-g(>*a@EQAOffE%Rf&V^X73DvdHC z0!uO(GkV2L#n{iRE$!K-(!T4+s}XyB3})#{H_79dM;7NYi^o%AAuagskhap^9g$tl zqBTQo>LP77sL1s-(MI<7{rvoyDD+)&|5yE*9-Aoh=$u&=;D6lL3DMvsg+>oiMEiTG z9nN}~&^^Vd1>{bP1lGf;oXaD{CXj>HC;XWaIgr)RF)YYMfax48L$vwsw~fedE`6(d z%_5`cPnfLjQD**=G?Yi{21-EA$+$oZwcQ@#-V>!()(U9Rsd>a_s}ptRZZl{4M{($a z$GBlZEmp1_xPR*{oiqiGZf^|aC@Ypdb>25aidjNqhqzi9_%>*G9R(?P+JF2MdK5R=>Pl|uvO;65_W@T5A;uW2Q}4U@LxN*Do)>1=2+{Y?WDq!?h6w9! z^s2*~Et;l>n|JQl^u87iTZFT4F4gX`RX?;TKvPyUt73mkPYZ2Cx_59QyGVr>>)71a zJIp>Su~aj0mcv^w`04)kv!vrK91SllP?N2=^M7~c6NBb285`3e+v=GHl!*XMi$b#> zD2WsjBR(sy+oA6NiUD9Pl- zTj*f5v*l^w){1-%{g$@Xx_@8MicsX`fGhs|K`M0KP^y9u(-vu(y7!5*B4+T8&(W+! z`hTg$mnea0ESx{?Dt&BP&nq+|w4IZ#@Cy=jYt4gqfOW<&2WH%`Ry@8D)giC3ERA!s z#CJQPe(ZGUuj$HqA_I0|lRxjR2J^bk8Fwjo*}w+AO6*^>+6(H4f$AVQ`=&ymD4|Fm$MD3p#SJjgs|)gm!$YvY=2Y3;eEAi-c}J5{0L{+Qn8=>s=C^agJEKq zMtfIK7d&>?GbqDV!X@38E+cOy*8M@sYAFA3+SFA5`=jz934CyIlRSEiDk@b`&=(q> zTSnt}4j;&6w!vPe7-xPMD(eNXl&9F?OZBduKMy@&3Y9>D5*)lY$ghL6KYs#^ z2CSfGi^^iHj;TftT^cwg_!?W;-uR=EY1;h?epY-K01&)A27jkgm`qcRA#hOJ?cGAl zt8_aS*qN(pyRcCb^d&R`SqEwG3HdCK@brKhZKy_G%#gc&Zo(f$lSRc*r=w8Z&23Rg zt309i48OG|#i3fZ`X(S(Tpw8p3-R&SB75@C84>NSogBEg1~Y}#8(ub86}T<@rh6et||E-xw&B{I97KOdE@ou z_8YAUZ7BV#2lcZ=dT&-?3gvqC9?!$%2)3fs^Pi3W4rX&3I(u)fC4Gx%F%$#-C)Td` zY!jhly!rmLSGDf=OMmzxKEv(EDv=pfC6d4alc|sPaFb?`DO{R7KnBJ>KJI4?y$KN* zlKDuFv;#19`QDKGQI_WphXss}D_(bPvM7E_5DF*9+S79JT-VNuiu0G+3&+_Lf;UVI z-lOb=54rIEO7V~nYud*gdR7=s7wXm8dx~h{n>x)?BH0#5_OY|EBZV>i8pfsI<*mO6|h={a-)Hfca>7QSsd0u1mk%A^_|ZFGs_ z&=AtM+HjJ?8#e*{r7`sNFM^7N;kfr~?v!i2u8#Ugfk$YqeXY|rCoSK0d%iz4en)S_ zMctxs8bE|c#D9dJ5u3Cl0*~aAH~K(|ra^5O<5MV~{Ie!vjGpCOHvIYM$k^p;oL5HE zS6XCgc&hksw>{%vmpwCh`ffsiPJ|^sW9UFIVZk$zoi#pwnlPAHv&^DhEv~dClD#-* zF6}HlU-S_5vMTLnN@;EnFFjWn!TNYItNAT4&pxqklz)hkh~od*1Q(B&6cZL2i9oc8Of3QFlb15my&y+jfAdYZ&#BXJ3u)xzlXKuI_(A;cDC zB}%u;jeo%wupw*L@ec>1B+`}BM9QJa%Qv=RlGq7%>&+gKj0@(*4jA;ES~(Cg_VWDq zoL@&~wQvh)PTJql`|z>{vY18AB}+bGgu=~T>Ca@0-+WOI428bxO6~WrJPY zdK(qQM>asK)8MNMccwhEk7X&&J8V%&fFGXrteMut6w3o)4<3 z(|?aZk+qODeXJ=(&AgaxPf6#X(J4+R^f)$#%hj;{*{yiVJNH2tyxs)Lk;GFqFlwd` z(d`;dt!S^5Qlo-5;*Id|Wwqw(kMF%9q>-a7a9q1Oi|1@Ir*9eETjpMaqp^BqaI2YE zUnrCg{J=Q_-3)nb4)-D5s2Qcz!4$Hqw12sx$!jMG9#g0(I*2>~3cvghipn5V z99JrxA?8*+=geUU_BT#cEUaB9S5P_NcJPO-e}b0DO}yNh7T_(24{(*E;>!_pTai)j z6>o?cr=x#}X$Z%fSgf(2nTnX032mXw!pP@y#+m&(&ppzqZV81&#vjx2gsv!~&425M zih5OHn%l05&Wb4qeejWW*2Xn0Ok58)^1>yEAgr9168vG)--VuNH3%@)m%x zz@`Lmr0&z&!u@1svt_;zg2n4y<9{B1$cYY>XTaUbL+z~N8XGD(Bbir=W#7{iHp0Q` zBKM8%oKS9y)Sp&Shbbwqp@kQ@ng^w4T(LQkvUK4Qistb6IMfc6+t`)h5|BUGr?kKv zg4?s{unQx+}CJL-Uj&6UW#MsMJ2W)f(eBp~1<+1OAGJiSq8~12L zRQ5wTKo7M8_dyay+_q}bJA3NYkPQoc^WxI>TE^s-lb)8mHMX>3tYD-a=;e3-4ORFD zu-^0!MG|VoLa-QZs|&TZdsfzJ`)%9Q&egEx-5Z-*safCVA$iG)ex%qKCzeYGC1^x| z3kYqPw$|0Q%Ir|-B9t!rv44NF)TK*3NSQzsQv}QQ?XWtJ49<`kAa};~Sx~vyzDGiS zxukRK|ET0Pi+^hQz*cvJWC|UQJOk0BA$)nTwR?y+)ox=3)kpVY%~XaXftW;EgoSv7 ze>e6>f>;qMYTPL5#j%-0K$CWlx1Du8kiAw3Uh!4Tgy;bG1p)7=DSyKCCRDmIZgmC+ zVuN%dj+o#SY@T+2Q5Qp(!>D}T5#mZsGv!BCVyf*r;Y@y;Pxa^SuV`pF^R|kMcD%o| zPCVt0D&43eo00RHgMG#-dFZeGP%EYd+i$~e3<;y3$ExsbRZ% z6Z0m6m$!rz%@?C#q29q4O&JOPxasxVV!5CTd1T}Ygk<>)>VL1#3?sydhbT6c?v9XH zruTM(2wZ5V=#;M@OdQZ+Wy#OwIJ~{IViLPFXIo&_9;V;r`HlavdRNWGd>r1oFAj2C zQU08d(V30(sF`-h%k$v+8wUOO*ugKwn*q9oEJsJ|O(#x`dz^`>t^=_ zF6o^-PC7`9Tp8(;MsFu1l@tuni4eh{9-Cn*|R! z=prtX6Gx?EKR;GYVEg5aTnIF~2oU#1392Dv2UL(}CVv_vq+8Yr5i3A*?WgFjUn)@s zEP@+z+f$slFFy{@Nwn2dG<~%7f}xcdnzHIvj@rB(yu6nTbs_n#v3EsQY4Msp_%@}f znoBlc8C4vxa?JfX&o^HM89r1DH?5uMU}kNnYKCAgVV6w9jWf{I^gNEa0B09PAJ@I6 z{yybv_kRu9%BOM{-rL~+C%Xzn^`4}q^h=bA&um6cLnw6E$eR)}NfBn{k=GOqbLs*~ zqhhm%ejw$wh3In(%SjAgW5bsSw~JLAr-~64*uq-P7eexkEJVcyszOio^X|4ysdF$k zkX!(h7O)vCOMkOwRQlV+)2nR679^eZgU0}kseii6m~Ml7f({TULC^h4nGO30Wf;D! z9n(ivDz1Qj&p}_fq_L#zKnGGK)E09IsQm}!j0OYC#vunVrt*T4r zxj8Azs7PG!7-=#*Lsomq==pBT0qvF9mgG~Y!Zo=sp8~=71Y@9)l}-I(PD znSU`sm)4&&o)Yo-$m=5_?Qp+QE+{yj-NW)Th!%+8_KRIYbsN{5T9ID52>I6V!$m0Q z(Kig8%L~-0Nbl(F9?lt8=+H!BMxU*s#bZwnppgsvyiH`#FDm6yPvu1khd1KMtMaZC zp{RIOU9#k~^0GBDP+a@Usmry9?Tn;ip?{d~D|Rc=(Xpcc<9Yu;*NBzAHJor;fvmcS zP?+J}&8D!Jt*D#AB&6{B+&L#`?oT%w(Nb8Tk0a#V8Pn}a*TO$!dfa!N^qoUv zt(Z{9BE++5O5(Qdym&o2XdpL>edk+PU(3vWcSlPosG|Ie9CCqu^sK8kC91&ZS$_#v z-VJcfqyjfg&jVuZgm>e=IML49@hMKb9S(W{+QneX69VI&cGLTfHaha15W0NMm-wYq zZTm}f;~vx*bT`%#ViZ{;D<7@Iy}L!pQ5?mO2PA>?de4RO^)(!)4tyCfZr09>Rk<)3 z*wYX!^Na4}Lc+v&M9V8=e=gwY-GBD}=;ZI_p_DbNS;1xfb#}URHqo37-|(KVs*ThH zs`OpWO-v=J`54)L>US})^zz(3{z?R*hUNoAD)trGcDO9>g8g?XLDS>hoOQFaI^Wvq z43WHiTDN5J?{HPWoUHz%lJ(AYhxeb%6Qb#+vOS<5mpl+7_p?W53?-A`1b@2H88oC) zh|!4~nj4tQWYrg;(Z@a2R)RF3!C5zGi;Kf|r_*z?O3ISr0e)r>j`HmXni2`{|Cs31 zg}e5S!LX`Ay(U!OUM3oflZI{NHoj#K$jWY)*bu(&ng-npr@q!v7}n#62O+!GhEZp) zac2`|3}3OMRAnGAz?*LjrGK-xK5;Ui26hz6A2LZlY>M3fve3cz+f?gE-1_>7Zwj4{l9W2Y+%OW{!tsgL1%F z#Iy?5pawvfj6tgp-a^B2`IK|TkR$N<4 zC6zK=EsT?sV%LXV{(sJTJZ2K(&#*toV%og*A( zV1g~_=uQCNr;jZ7fjmmym)6%Vl+g-NG_gC@#4R+0rc7}iFSqLe-3>4n7I92x9Qj0x zeO!X_$Q$m#y0jrDT;Lc4QW~EbT~Y8z9UNj;(2GAH$7}~jn1AH{S5L#{+7NNb!DZBQ zar_itV3i9k_797h5#yzx2e{2hXB`2Ca-;08U?o!u{wjLP1Ir6ARCPwx8nD2i7-`F{ zMZ1x|$qwnW1;lbuvP>^Ecc-_w%rHCOG3)j$mVjp$4AT!7BcxrSY51Dv{i9O!`X8Wu z>PC3==rJlrxql2p75+ZC5NS>8sSqJB+=KisPAQ2F&-bMY7^$0v13PuGSDOdN95MeY zlpzbabw^^PrfK&owxvqh+Y+3SW<`Gb=BY_4%}ra&x|4rVY8!Q#BF4saA!ly+Te!6j zhw^=52J9kgWEYlP8Yw2$Y&76|`?wrsY#F7Aua(L&xqpCq#0c|&!NT&Efnh$DYuPqD zVOzHiSrWy4FqyqPD&V>G%qI@!d%9^wPYo$v7lQbvWHVo93Q|XX!aWj?k9Q<-(yI*U z1Y|MZbz$_z3$x887N@+EB6KNAx=P|REH7cG30;1LU8a9%0qds3<_A)Rsskm^8kugy zpY4Ajaue&3?`=x3HvBf9cBkYlroaH>Tn(s zO6(~21OkUh#OG_Cw#;9uY`Og?POony(V43>5I&RK5K&G|Q~iJjXd6dFb+{yzAqeg% zMOB=}QK(f+5fLkLX}kppMHO^#r#qos%-hd zi~8gw$#A^NF!^;sXs6nk04vvsdyxGzm2wdGw**v-L*qneo1pH3@eKDoglDXn^ceFM z5Y`jPV;pgBh4T+xM;zWPG9~(MmKQGFh_O?@_u>Wzi{>2Jh%(qXGlQ(9tIrh*yIfp&II3w}>+~bC?>WLcD$C*B~X`@ry2q%e~2ZBuKiE-o>EK*8I$@>6M40d=rfY>wxAMt=#>s_(!h)a7vzse!N+N7pnbWnGd73oiH zgX!oh_1WKkj&?@suw)509BJE*w{E(*w{FbsHrtT zZg#-`$dRbEfG(~eM+bp_Sctm-P2IpUe+g4Ju%V)(13=E*4#3U{VCNBF=M`XM18}gh z@&Cur(M13tVd??004TBmElL%xG?E2T*r32Lau@|0e{UptYNulK?BLr>7^2sl6+Uql=X=e?1ex z6Xa$MPy@OGT|9smfWJxxD4E&=|6Ljj5;Z`>8sz%7Lfz5Q&C}Ec2mlN0K;}RPSFnq_ zg9Xq90A>fM%PIhroq!I18!P;6zy$bra{%lt?Eek-Z|}bXfgJwjY-(=qXzyg|;0j$nUN4^xnxsTtVdU#Xh{q(oH#rr-+yU7xGD z3&_dMmBkfg_g9Uqe}w_JS<=Bm+|k}1=-}px^jCfoAQzxHxbNPq|2|w>2S-l_-~S*> zkb{NgUu9UhJF#jyfSlcdvJ(Hc0gI6S$gF^F0B$xmHeMcn0MHo#^fI?*fBlOuTx&1h~1l1O0vfsrX-n#Lf<|0GYc1%z#!P z2c$pI!D680-xz%UE+8*}J{x%a*a2*Reg6Ao2%aztM+ZCaKj!~BVpb(x4Fx?l#($Um zU!|CsqZh!JnVS>9%)!kLe_&_lIn(DR(=& zf9dJ|Hu(S1o7#iyy#H+ho?Le~@D?aKf_K5;|C(w8|6W}&M>~uEf2)&qGX?L0sDqW= zf7=Lhl>&JIEmS~m=GK3Y%inU%zZT67I$9-kgM$<6L5lNe}51-LG%BjzmAgC;vW#) z65xL!_@r3>o}&LqIKfGSPsz^I{vSSIQp-OO9KrGr1g|rzCCK9+G5@l5ba(lOKiI_T z9}wIL>pvBNJ7MkZWDUOG|5$)!pnpJc3vB-Z!R6Zh1A^=QN3!hTdjEvt2D>_d=l36a zaQcpa*ul<@fB&NfXYce!4G!i6elt1P0WJUZh>QK-QkVZ}9T&KnPT-Sq{71XNFJ@Nf zKg|WRIlDXlb$tJHWM>C=|A62gd;9}}e-roo13AFnUjKmL@ZSG`;1>G) zNe&#z2k7!Q)&JZW=I$=w9=iSOP6uBn|H1!yNdtjiKy##(MMv}ZVK#MP9S=34M4rrh zlR|UUd)jIA%)Towo$gO)@G11wSs|M)ccLjHeHiOIl61EpR>@v{k6RnyKei>QwmUDf9$m*El=YPPJKHTtsfvkBxct5u<1;kAV!u-5@Roc_isI!WVu~zD zj24@PJJC&@xoXL~R|Lz(rnbiL4~>Jx%g}dbBI3v@Z3U)hZd zkX%)}4qkD6Vk+meTtY<#ZQV{)I6kKLf3_nHyQLF>>-zQaSLzbaGC}^}0Dr(NZNulc zf4~ok%N%BTZu-5xre3J0T~NFam;O^z(hdk;^=~wEPlYw6A&5sPO-I?S$#dSrnVf#r z9v-a1e6tmXBr1)afs(fwuicdE_Cb5=SNeKv9xAeGB)I?h0R`&klC#F1d)Tr?nLcnP zF2hDZuGax(O#V5Vl0!YeMnCy@AY04~e^X?FaJe z7F?dCs(BK@Gz|j9krRqW;V>6`I)VzNkRhC}sVLi_l$pZKdN#dx*7+lijA@#`e?6<; zE_aY#8mJO>`=_@JwzQR4#0%-PW)04j_V7&Uof3Zf&S#c0>wfhFjo)|D}wOE+Yg}P){(LXE}pger-OZ9&(P+=jEMrXC50QeNUi^ZbeeGz*05# zh;$E)yTWhA8A!=h5|94nDy-X5&KXW|Cu#dF~f59UmvIh1M zN)QnN4(Z89d#5OOxddzm1h19~D48xW%Zo569l^@q-vSU;e@vXlWmfi}LqflY45J&R zUEL=O{?cn%8;bhET4=8QB~&79=#`*^4>EN0No|nM0KFuvZ4xUV=KIQQcg72q(*;%% z`7{N|`Za(3CpCZ&uilk^e`(fwf+6Fv4=@~G3tm5c6p;|lzLB|$VRNVFCsz?R)k?CK zgdTHsYHwBgy!NVms#9Y%%2|F(Q(l0E`+ecXqVjP)J5FK+`C~9~fN3TTFW0xw1K3Z8 z>$BYh@JvE&jALb5Qh4V3oCBOSV+2Edwgbr4C&sX+aCYrD2cixLe+iqW8GDT(&38&Y zL#XrJ0vCD3`sq{?ITixbAak6>bemW4XGM-(lW}gBDuwuKfdc&9`ftNeKP$T?0)GBB z&&6C)G(jx+8HGh|$!{#Ia#Zb)AoZ>Eu2L9wc|Q#+r6~=54}mMGgM`lq2&IX@D2IOv z`$%B>jsQham`Ns}f6AzQ7*bQXI^Z4VMgTnwKVGVI4l}lK7~|CZN4PH>4;=~i8KC{g z$!vBAm)exllbZoyz4Ej14Uwt13BGL=JxKds32>D5KnazbnT(Q1o;ISy4_zM&rfALJX8c9;QySVbMW(uS4Pi^+R^IkGB=k znC%wn?B6B?Sc9JcR^&|BLr9(L{;_#zs*{Wt@cf)wzJRV2)mXd5W9h2KrfpPS2=e!2 zP>|lvj9dHVf0wAUat$egqQ|gsi2EM*Hmokw3#(b7dL$|s^jtNTi;T)nI>wQ10RZk) z{dhG!DnaX9@eR+kPO{5qE)`L%WKV0e?m(GGPLQO3SV*HjdZGP^&wYv-&I1+6+zYh6 zWG!dQEf8`ZzM@!IwzH?@CF#=2WqBxs7 zv1a}~$w?SE%*3wtS@mga9b?Zmr67iG6fD+H}57g`Hn=gc|A-pn26 zmShw5e?Y9ty}yuSG_XgSBqNq1c;>+$?XxAoid(b~=BI#DLIIda%=YScUI2bs^LYA- zqMHi}ZB%*qXO5$*K!_J^BFr*G`?-oPeL1m|A7s3#WG4@O7WaF9(pX2UvFIe@1#Us6RrY`QJr>q_ucFO`9R{wy5mu zB0K~!eDqX_j1(3Q*p!acoHOpo*BE$5+!d5NCWXubCj!o1jDN@>zKVy)iU@LF7Q!NH zp!m2JH=O#rE10AzE(eu$QSg41@0vq~KD$3?zuJxX!RM_Ei1EF;O8DlN>tRAq+Q%Xh ze?d&lnYXf^B2SeT2y-(1WB0RrEmDs=Beq?G#qBOv<6(K*07p`x|zm9PgpGs137a%g1q&x$M&w<>uafVlc z4SGE)6QoYVka0^(O+_x%BEu>PreP!KlL|?+%+N#wNK@uG@5*AVLY3pF4K4rnu0 z^Wq(PD2I)Nq2gzA7in{uGh1MSHiFir9=bdgl{FHoC0ymw##D*g8lHMXe|_N*pMyI! zHoBT`II6S=604M4H)rFXuh0X#sKr88tv_9@Q4udOZCwlJ?0+P@c082-vPvP7Jynf1 zkDd!?Dd(6J!zj_5;H8zTrE5BGCmG6|xvDg0SCRdZuyxO3m#aDtX)_{4ZIe@?(tyN% z*6w4*F;Z2l9kijyXfNL!f7UuUWXVLa&dM23@V)x|^Ia-$J}Yl;rO=oo^MM+5Q1t#! zhg4!Yu_odV4*QUAJfdueebznLYEt|)IU0*7z6o^sG-(%9o8bw80%JGU-GujVxABT^ zHa!RMB{?X|L?_esrM>fY-+41Z~=ycybniaSQYp8MIgwHV5GMD^57NdZKd7Q$SxB|#>+wA`=^%S(;_ zlrx50g;^TXfTH3_B-zMcd^<&@)E>4fnEzVx7D-{F1KY0S3jM0+Lb!Y+S>14wy`b5s_Y7`2ENrV%#XUB^-^^%8@sQb;7{5o1Fa))vl>-iOVBxS_C z5HH3ozlAkvQ@Xo;of06Ua&J&-U}Cnlvp{v{BGg4cA(FsaM0n31Cz$DoC8mjSbiBe_ z#gfZix`Qv)w4){qNUtyCH>JSWBFEaHA@O?0Zna;0T;ZH%f14td8gcT88KB4B5fNM6 z@k2)cyeeZ?$`ray-Q&Y-0qC&F^I+DS^3@{a4XSVKJOYE-b#yZz(*PRy81*n`NEdg$ ziX^aiWy;a^O=JdZecd-acW*~JXYnh-hdP15JiCgg0aw#~zF#X{(rvR^(U$Eua_>6w z*1L`i$7LY}e@$A?;+RFwZVlfvUmxSbN&Bl)k(&CU+;2IeEH&A>)1G@~V!T#=@eYQN zI!X)MaO!X1AjNJ?`tC2wu+e}gCO#$XEs~*ZJOT;Z!Sx06MPNIn)=cssSIaPry=hkK z;?ayLl;WejqZFHkS%N8H+X=zjc+Q3;m$cD%h3#iLf8T@t34wJag!IPW8-~n4x#ndv z!jv)d-~|z!+MJhh>ydj`M$F0l!04wz<3`uauY>A!c-g;5m`vSDyg`t)mowuozgwvr zuB12#UaT+*a|$sef0Z)lV;;yHO!A*RmT(s6IWkh#(m(G~QJ$jmJkI$3K1X;dKiIBnGLZ7P)jZKA zLGA!-K$E`?vO7bf_JY;7YM9434Y%P5D8v*;p2u0I`25+()=s?c+#9`ZotpSJ8T~Z1 zLzDJ`RF*O;1hyhZx_4#Z2=@Fzz_p%p=V|FG8AvuiJb##~C`WuuBa^`^v~0lex$Gd7 z{)P;c0}1KIrI(qi1u<`EzZVs(H3yNns{EW398`7NL2m^C`rV3jMa>K)r#YCbZ&{E4?6oKG>IYwCy?(dQSxz|MI6md$T_7mwRam76$9RN>FL z2xdWESAXq0#`o<-V+#E(-*b??%OlE?LThfOxY1|SKCt>)9;=F9`j=ab_8<%|-32V~ zxYQq#S3`5Pzvj#&+_rzRR4H(5J`L(toMSYiWlBRk<1uDk)AqGqo)|eFVU3!}I2yM( zs8{!&{e3F;(Fb|PH6nVUX*YUn(FPB(WTQU7Cx27H*ICp6LT%QXiatibM@d~y;fFV| zjnUWd$wQw>8X*$~iAm{aHKqfm<@KONah_DzVB_@Ai`B-1pj3Ri9BWTJCeca|;q< z>(&S4^BsE!rcE0~2T4m=6no?nHEEJ+O_<6CU9@VxzKjQ@aJ-U&w`_TgXaOR_@8878 z%Lee2M1tgSqR$U#mqc0aY3F4(G*vi8=`H}Lu}}sFgB&OvOo=J4@@xI`6aJCUw*8a>l1MWd6yqEs+1j(f5#*Xm!HS0*PH^^KBfpyWb+2$k?PEj6%t-%RCD zh+#3BLpw1cFNu;$>y)&IVme29w{9%{4iA!j(E<(aW%R{VQW9;Qi=w+oQ2%J8!XK75 zh?jb~E&U+KmX$-c$u^3%ve*;aOmJK*1@q2t=)LZCB63x?U5}LSav2lOU4PboAwLop zEt7Dl-7#^2p0o3Z8WY?od~ETUnlmOe9)eZBD@}r5b^07brM?d><9qwQH^%kE(cs~> z%kI$cp}S36m#o+cPspNakSAwhb33H3C``bxytrMMzvfMWi?f??$WZj$(-F)<_8UR% ze#mRN*zm;Xpllx%@Ee=%;D6c3TjG*=tSOwgb-4_X4TF%3E406vzs&HcjH)(c>eJ8g zDhmnT8phBK|InQF(}h?8uepcziHvhhz@$)=S3EvIhtYUHtxJtkdRJ8IyPILO#D)cG zR|7fXB3sZlL$LcM?3&Mw*)Cp9NLmfiak-1`%xO`bQglsD6ZQ2BfqxYO#MLmNrVfqu zL?lnbvU1nK_0!LJ?MaSWqgDKe1V}U=>FU!L07xl!cC!5S)!VYuSpAJ+MfjP;%H)nv zj7Rza>2>&6EQR!C*h1$lp%MEwu2o0UAEGwvG(3DCsEyff{42-KPPG(^=M@g*SP~Ze zSxT@zfsk`P{Y4M@_kWLVC2HIaRX8KhN&Fw7G5x-oG?JB{1oCZ#0O(PNM3))FVkNcB zvVMgrNI3xutC`i7@}(eKuR=ilnNP2MV+#Ozj`L}yKEVFe7D=suxiGMK$E97S_SiLb zHEQ)muXwMbj0MKiOlKU#*0aeS8qo3;GzdSZJ0F#oix+cy;u1Q7~d4 z;SVh^wP|_ULK~c@mJ3qcnpp1lP_e)`#UO0xNZuAuR@q=;&((mYjl-t6#Z<=F5#T(I)e zg>{tQ&wqGl4mcN>U2ril61gZGP$xxG<*rvSiQrPU$Z+1X1VF}1$S**StviP36-~b{ z@HF$f?l{H`C4UL)(`L0#=^O1HB>E!xvxD9392Z+0&%+RjGe&XYg3*ZQetGKN`s+X! zd4qbO>`w)amLj~6Cl2orW@`j2__FzGmU@^-Lw~a>5103yTij7MwcBkz@d-q2hswKI zjji?=9n;60InH#9$|M}fB{!eK(wA=Nk24LipQBt+Q)9T(U?9=y70m2{GZc;V?QmLx zCO(Jvo9^Ov!H~ffeD`PFU(>;ZAMt#&+hL^;i>mU6MW#z`QulD%Pq`W}(h{{V`(?UE zU4M0MSl!CZY^W4IjJ`8`FnGO6Dp952;#nU87YUq%W9plg zH$5#V!}XZLkUTOfom}cv#Td&71J(@u&wrH+^=ff};l%EiZNa#*_}0;ZVY;X1@%|cL z$-l8T(aSHXu%M0zD`MLp&!o9{!F1qXZr9#F_J;XVU!1rb6GUJ*)h)p2lVBh&ze}86^ zVA3bZFwYryAY&eLv0ZbgSe`{zrU%x!@UB=Xd;*8l7O6f39_}^1&64S0bz0r(6wuW+ z^fwn999E@B2>MN>$1_F*fylcQ2ikbAy5-*zx#7*oX_lCN>Io3Na?h$$7^~m>I%Km=ta? zR^#p@=FmT^{JwVHmiKa+6W_#OL=cp#bn~jC6e!o}UpveYnU^@-o_#5GPJd^;s5obs zPF=$_-rCKhhJ=L>EG{c^!K$H7S)0i%^{XF4%^<7?i1jsUU>&E^_f2jA%`ovpUPoTK(!-VMJMS zPf6lL^nWC*I+|;0hbrCQzQpq;Z9cx=riUJP=n;Jvm*1(0cLl*3 zb}DA@k7frUL2nf72a12%jLe2=zlrzxS|mb`G3UyuK0PO(%L`XzKT0h0QS~nGEybW9 znLpE&Ng#$h$ICnF8!XTIN*?Ckuk1u^lDYxAfdmvc7>}gG4BepoiGLtPUzkiG^&0|{ zP8Q6MBPR#$VhrBNqD0a8C1k~QC^VcFn}SE>gm{soif$H8mC>N ze5HZ>z}b)mX>$tR3*5=0|L3A1S&PL}R7g*4weYe}MBVmuNO476Hn354>udkJD;!sR3aK_{bX?-8w!-e%*=lC6yr# zMelQi`Vb1J95W+WUTL{!2gb;f zE5;^SY2-OIc7HV2%f|Fc!g4n5;QPCHb0B6&L&wFmX$MSD`}$XH=7!_8KDG3;59nNr zO=aniAE^Znl;<-}8fd6-EP+^MpVp?Md!hDj75Z>((on8@ zG6hmD#(2z6Jwd4_>`nUdAgcxV?iQ3;cPe$%QK zBu~c`iEY7XPd>gXXzAE$_VlA4AEX|sc#tx6Cr^j ztjWA+rhab}hbCGucf!VQwz2~J-q*`o`gM3y`Q-`8+S@+KAq1}bQI zVkA^9Y$4`|Aog-TtAsSBe@z#lGi*sqC$t~$@qZxGvwi=4W{3LwrE8{Cy^#Z~H&iX5 zr!PXZuQHczDWRF9C?xL=P4#eH4DnDQd!6F2m=>0trp%@v0logxkJI1;fC2?eEkQ;v zx;`JG0SStg`xUYlX=o6O>}jc5jK5;xoCJj&{EzM+3A}V~C|C0!z8JUzAJG?rpCOaz zCV!jndz$6RK4;0PAO^}<^#3686+wI(K;Ptve^+A?Q;5s-f^caVO~s|4j4LkT+QQy{ zUEDcXbbE(Y$_QEO-|02e~K&@dT zhrEHDpiOCa7_Ps+ex=`24cnBI0{H9&-G9zufrM_~oD&KgGSU}Wq19}7>iV=lgx8*c zF%=@hWRem?@WFdn@_pk&r;o)Po0fuV@kv#hW&!g4i*6evTm~_hzI;euaF)*+!UuOf zTj2x-TE}iA?#v7M$UG&8a=f;THsQLQa}(+6NDf4*=X6>j8N4BKAXzlCRvnFlR|$0)OuV)$MOwjwqz(hPea^kBhpMVO|^Oc=I_vndq#o zE4OraA`Z$=6^3JK$%$SdU`x6-@fK6~MHfNd%ks82IS}_MW}RDbX`dW9TwHoFq3Z94D>2QIGk@KU@o8k} z#nYxSt}2Gc-`M7hO^NJFGLfaQJq{trxMaT(REH>fI-#X7XNS$~1XD!8TgU4 za)HpU=v&cbj1Up(ZK$F8Q?TlF+IRdGg>@*7w-?aTPkz*qK#s^xQ5&bDy$f`&;7(7& zVC3qPCJ;g9tA9yWAxZsFCAd^*dV0%A7G2mFYjx2@P4m2g5ThRIMmg++k=uxoPtL21J4aJ^H<5=mE9x}9!Z zkx;Av$(xXcm@sJek_zR9`dqxNa%}kn#i41}D6!O_R)0%F^|84Afi?H!mQT#GF1?J8 z9$hP0K=$vNT+ts=7u)B3nVgCB6Z~jyEn?g9ukU_Ae7aH)UVnZtE6Tl*g zRBQ#QFn=Y;cjyu*fGUd$nj!G3UPf(@!)0!;XSBySPhpY_m#YOF?#k==zKe|;93yEY zGsU&<`MHWA5JF160-(q`YbeXJHWzqW;oK7wYgwbc^J=B-C~KUzdM)+Ff3h#Rowo?Q zS&oQyD#i$yJ1cI?pJkMZ+bhT%5!rEz;7RH;H-E_#Aq45_qJ_;3Tyoj7n?JEyk$$uC z#ah@s7ET^sPIGO5x%C5LZa|Nc%_7{1vA;U74i{?QxJ23c-LCnlBHHMRxhBI3km4xp z;r4u_E-5QAvz3Onms!P}KAkds zK&7+Urq!NL520kd{-WFUO|hyHYHxUeh*LL?;pL+o`MzdI_6%k|ZbZq0)E`Qoj(qv+GihV(&#F>F8izafxsRjA76R(zOJ7( z+3-BUor`3m`dwGc?%F5XqaI=+kAFOl8ea8N)C~?R^*WXDh0Y%VCB;`Vi!6?2EDgz>XWCd?nL<6tRLl_0uuG$>Hv*apR(&&|GP=Ef#6&6yDZC$`FX{vQt5pT~WPn;&Vcv{)UB#n(X6kV6c z*tfvF`ioIQ-Buf!E%j7;d4~6HU=-KN)o6L^vJL!%qynf9C>%PQIf9>n+umv)W(KJy zDENZ1tT<5^Qt=fpC*PV=lvwSpxfR13sehE2hv}?J^HEnMtt)2bcz-Rdz-RvAXe_4p zU9loj4{yu#u7>CO<}GAb2X_D=X>t#8l>3Y0WPz7lePQE1tMYuNj9X?uZK8+<$nn~Y z*}r+clQRrhp3u^z>3>3r`4m&3!Kf2*!j2i8&~S{lXF(v;IO8{t1W6qs3MdoDJ0Rb& zoC0WM-=%1dG-KL%##bS$v&=u|o~2y>YWtzH%-Rl%|CO!bo8h5`7~N1ZahIRXg;qbx znFU(?6`AZfbX=al0!wgIV)O?>1^>Z(PTAoIj&MKV4O|j;Uw?U0=9wVb>o&U8dDdoK z2Je&48Cr4k?wmak@8TY1Y93fwKRk|J@cAeWmggf>o(Os-HYBV%fS$1|#PkD^H#~$A zNu{Y1@!=GHhB&#guMNATKzbHkrVsUg?{sr%ru^}H`pc5TjuvB_sGmb$QAt0@QmbO{ zYNve&a6eK-<$oQ&ur;^ScX!S2_io#Ol$5FCn1U!?g{yt$^olTh&Zk>yrL*EpZtD%q z*#>NB4tK8v?VWL9=2^o^5#b*dl-742Hb%k7U@w1d(ImHLS!L94)0PZj=ZqckBY%)LtfafvuJ*UBye z9m&{XfAd{jjZXILM))WMZKNy#&kil;E>U&rD;ok(j#%V%3iDrCnqvjo`F(2OUkc}2 zVZWq-PV#|Xs^C@Zg>yAP@-;8^GGnw|7nk&uhG|`Z<^DD$OZLpDG4rlpP#wceIc{9> zVVPPvsejtYhgR3Vhdi00z~78UyD=PD%y&}cHZAB=9P+j``k>9Vtoaksc0;4P3+<}v z)WwcH>*VKcDy8lw_ZRBfSoBjDy-;g}bKeu$i3S(N7BR<@nydkx4nCg+A)GAFg}rsM z6oaQu+ge=sWtfINdq3aqhL6zfmQ8j0Y*c;cWPkpmUt^38Tf_HMCb~GiwKJ15>{Rd! zKg`i#6h4fuKkwga^{A5Y6`Slc9h_tw8@}c|7?rk|hG)a4hWxgh$x&?)#!xT&5IeN0@t(NAXi&uy>U8P>U3!6q+A76-5jLEb4Z5}$1t8+5Z=Gzw^hEB$#ETY+Rg<*x8Bai8xuW=-GMhR*VpC=&Ich$(EBCZjK0-hWH4 z-%ksL$-4pXj|t;Dm&qM923};aHwdh?FS^3B_0TfIi8)9o?r>G_k|}#O4X#dl@}q`{KQj}Fp66M62Q&g?@!kZ zgbe>&VW5*^dg`r%R3a?+Ib`w_8h=WYA6SCo`y){@Z6&WeHfbGawA|!KNf<+-?E8JE+uMb6 z>{+IVEH3O_C%SyscqUpzzqnDkkLy|(joC#5ZavnwjT%h%b$-0>$2!g_1bY7R z7Im-MDv$T3xsQEEIYb`xOhoqKE{z_3@Kv%73C&-#`Qw&b!-o(#D*Mnorw!^A=gKG{ z9ED&{NJ(RBB;Bs>AnDAVvvFYQu|=A%%hYrK(yKM$050z*NGQxCBP8@iC_>&Jh}+x! zM));ghho8cHCT8H?EX6arGKtS0S+_{k6MEu-t%T^$9T-^-eZ#szg={Gl)J(qRxQYL zxg>gT8SBiJ9DS{@UaIm#;BJ|t1BzAjEtWxPxg!CpSE1x?U~!#YbVmnn`Bs?w$Lkp% z!&41wY;u~C3u4-aNt@~wTWa^19M6Up^NP^NXa%ZS`}P`3E^PyV7=MnDtNhuc;s%55 zj;%Jq_Ic@0f3k!Va?hRCX(MG7gTxk!0wjd(R$%R1b}{sV4Fbaj--$Cs#BTNa*S9W3 z*v|{RFOXHsZ`^wOR3GjN_Hb-#x3{jT6cV9!8nP`HkP~iDyST#Qk05ZyKP%@dM!D8& zK{DTk-vlD-ZZluUWPe&@_nmRNh6c;nUQ(&VX8P4ceaDlv zU{gmEwv3h;q<`{Ads;j{**~-$+lVX>(F%h)BEh11X2{E+~{FN#g#}DeV1+voC>@rLsMpgS-IG z0c2}gLuiDGLLmb#{#}E`W75b9qzvpPmD8R|msejJQh#^TOrnES*evDAu=zpYJnU$h z{X#3sSeLnz6&2*z8x~>w4)H$VRxvdyRQUX3w+w;-)A~E3JQhomoK=|3CW?w>XHVSx zr$)(lO(b0QC!*!Ng};e$h$^nvNC*qBZbpPYHc-f0&%QNFS%>IWw)cGLcR|9|X0+aR zQKk6^?SHlY*z}3XG~JWYpktb!lfAK-(BOVezcaLvi+S0pF0`*boFw$Fs4hfN^4x5* zqx4!)Y_O9ms4gi&h|N9V^El6Q`X_=>i|2jjM?UO@K@yUpn>AQJ>SeUlOzY+7_u>5_ z?ggCR!U+7GLo2zOqK{M@*CxlGzYS?`dODBXY=2jtqc##|UXAwoN7?m2^<5V`Gf`I0 zbusA>VEdMZVl;9xkqO;$wzu8ZR-puu&|iWw+`{uy-$r40J8DRxTb;Ob(_QAtGpmSu zSoN!n6f~_KuCNoyefKnWYPE4oVur8EpSW-x^MFR$;Rwo@w7zN23&w znSVmp0$Ddo0o!C)BSzfI3E7CBi6;lym;@mXo1iO?IPtgF&5} z0G=?XP1)y|#_CzYL+P!At7&d|_7?+v%QK_x$S#{T?m0Oe4P@AU;CH1kYPj^qYhF}z zmA+;m^1FB_vJ*C8j{B8*t?~FP6SJtkpMQS&l4VtXs3sP>h_jWhF9)$vR-696foQUU zW-ZHe?S$RNVH}YRXP?=l(Nwe9^r5ltn=Jwd?VUo(TR3x}*PNfeoJFIE%MWO0vhzom zM#c>0&@_L{_H3NGF0>%VvmMIRP<0JiKG)9U+4_!2TEa^z^E~TxdjiE2?iMcCWq+bl z)@@~mcvOYidiSJW(LFyQM9kV{&f+_gwjQ(}^v#gNIqd!H#3C9ST5!55Y=4%N!<+4W zvN1i&FQ(KpBSlCXCut!Gk&t!VYx1zIXgeWM8ZILw@Ul4X(f zU3l%hWCT3euY(_&PL~#9=1j#9+kebEem>zi@#=3#Q}>lRJUYW~u=MgDC({ZJv40yK zjTCbGJw|TrRw)oRqqbwgLDWi|*Pj9~X(;{3FXT=vFcWYI-!D0~J2G87$ZSXYwqKCd zobj7yP2Q=MMw0LGxvVTo)6kcIG^P7pV+Xz`!U|R57(P|_Y8+e>qd#)j8Gqy&iV)=u z?{%Qs<=0#~f5k*+ViwNi3j^g>C2gVRV_hgy`e3S`UdmUvCrxln9O?CIcbH5Lqj}yx&$rq;Ezl@N-~ZOnS3c@V}HHJ_Ra#XTuRK`+!<$SU`YvGuy51 z-Tc5F$_~$}(mkysNU%;Eo@8S|-bj+`&YG=OP7u#~O#MKu^h9sI+P9+;+IL5H&ed(t!-_y!Xr+)1GPzDiF)67~H zQn7%A-Z!{*eF@r8SAUK@=nRJM%M1ht5ATUu9Ldu0VFVqYR{a78@{q0H#H0om<3}Fw zw6mjuI9k~bMil9?dT;T(EMEv*U7|%glAJEeN}3B~Ony(|LB z2=@ZukfgHRTj1Pd=8@JaprNb_X4vPFN#tG^XD1-9DiIl;DlNvL_wCDDW56lufBhl2 zhD6lU5iawt(D0h829sJZ%snl(w5)CIL)G_;Z>78Tn#1FR&!gYOJi9qDEfg&`M=Z(~ zOz!RBJm(%YMSs(uu9DPoq9?pm#N|?*I=}Z=L-Etg+FFzE)(2o-n1`wzsUjWd>l(FD z(Kj{z-k1L#!k^}c2ep3CYZ?zRq9yO@qD$TB~ z=&$S+bkv+TYRjQqjsA0n)ZM1_2$<`4Hi6-0gO_>1((}|^5YH9u_N>kwAu;e+KtQRM@wIAJB<)*T*0 zPNHO3EUtbhNOtfCMW{KU;gmjMrrYF0%sV7kz_%5`5{YlrSauoy0z36}&hg!pXf^TT zW`F11wip9s-JM4n`74;XMA^h=7PR;S_9!D1M@VWQ_D%rO*>xy{NADN5iC$j);~V*(YJ25R7A9cz1YIaeoh8m1)|&P*~3V zkXe`9`Qct+O-@d$rY%{L)foOrsj@mi{eROa1v7(zVpy6i?=abVuUkyj#z0~9z*+mw zEpC*hrmQ$8i}5gUYj0fuqUf~gckJ7zY?qpaQ2`uuY4~#^Y2Y4x%yR>ZM9?8v41oD z(X!&IVX@q5^>B=G&pOewc4k27sZvdUPuc{P zY(*6G%2l9->_L??`nxP^bqteN0grRO`EF&jbD_1JamWG}%9IJ|kUvG#-1aSs-7ayto`Mr=D6{Xt{)5mae~WvQ zPtn$-Koa>%;rA;ezG!%Bf|@3j3okO>h0_n?F~~}hHv=(yu(Si6Wlo{zD;UPhlR{z{ z>vx%~*EyiK7I{9bT>MGuOGswFDV3o^yu_2XCYqlhN>T^1fET>qrl7?}uYWWBbNDjn zTyezqIc*ue4C2zxk?bV04B52Jg&Hx7jo1;Kqexprx)6P7XR6Ge&(Kd1xz)KcC%~nQ zVfs%Lb>Yi4KdJ6Nv8*Z9B0RGhz4cv98|lN~VD>Q-9+>i0Tr-XUH;JB@JL+=6(I-yP zrAfIYbg?4gdI+;k@DJ8*Jbzu^NHS0-x}hYlir7y$u7J7C+GPTV%dCpn?{;k#*%acX zrP&9oT;Sn|=GTcIWH{z13ffRMhjRPj>l!4veut+9ZYhV^p?r!1K@8`C=rdQ#+GWN? zk>odXFOH!#K4XwiyqVnTD{rhH9iEG)j;38{zGYZ*_EF^V3Y5uaC4aLdNZTw3)_U&# z_7MISVbVL6V3iQwk{9)~2_0WPp7XBzg|Wg}sHg$z)a2y^L}*#ChG`UesJGT1ci!8o zyn8C}at0it^?wJoKLz4%+>m9;Cn!d#L=3Zg ztnUi{#B)OZOnAzl#ee=A;=RGAIZs(x2=?SJiljUbDF%xS+imh?8Sb(a4b;4Q4UWd) zoZ8j7NiYLKFX>!^aKqKo{Q2AG$E6$bs<_v^w)A?^c!FikPs(5A2A8a9e zzSz9;iwLo8M#Fq@ie$LOW0qEBfzsWhtzS}+0~F4RqN_c5sDEENC&w>_=c>F!`xM1E zdp~xu35s0iIeb3J(#vxf*1>(xMWlwyAI9ZS&vx7Qalnl&xsFNK9u=>h)#!lA@**dB zgwvLehvFiHwC@sABjUrSC)LiU+O7BQLAYzD%$d1dw=5rV!l~Qy2W9e)JwTq-8pxVf z7-ozKV@Ok2tABcp-nS6MzfkZ^*55wQTB;`5DCE+833lT=N%&GHU3M>yF_z|73SU|n z5|iz@bf7G>IehB<@V%Fgx98JK3(=VY(u@9td&ui|-7dUMqQhMEi8kiXJc^h)Y&Jy} z%r*twGB5J6QH4rHXpPZKQr!?-Yf-7Z zz*GTlnoMZ8bVg)=qPSzbQOnG$yD5$b2!G(Evnhil<(G`$aO@pr1!gehbsBdPU227-vu=iw!c066!>V* zw@NiwTz_zSO>BK2hk1D5F`MxPqX2KV_@F?Joi6gab1V}ow5qmT&GRc~ns$WTo?-cG zeawR7dz%kO5_d3Ply4u<0p?7uj7P$xIq2Du2!z)8C2RGYhu=&4C*YglDj8L+81oqX~oZ^28VpV{HBuYa8uu z=%JuU?~~5~?JW~GLsNx5HEtAw1@h*r#5nU~2pbLkZ+N{(-o0T^x*H($uDb8-C4Y1% zGy;ShtciL@CkG_wR+SC}c6Ri<&dM|7(TrDJv@Uu*Xk`PLAO=0?1P!Eh;`JBe0Qp3dAAHGlF0B^jF`7F{o&&ou>|#3(GtomDT43Ug73dd-o! zBRQX_xDMmT8qsnqo}hI;q*+`~k`Sv45ikY_g*p zi11jyb%>KQcmpE~dO6_uetOkZPafq=`(={&1t=zA-q#c*IOuq=qHYPSZbz<@1- z-BA{s+{RkMKLx+P>t6EvHSvHJ$2}LNHbk&dq(so+;qSW*4_kW_J%4(*{@id@aoWTE znXdRJeKD?zZw zLpt6iU@#VYC{K2v_g+YSKZ!S?+h~lvU2btCu*zCAY<9YfmhoYg^?^|zrPK#V9w@Gx zwha%8HJ92$&aW%db$|WovW5sSy3d>exyWfQ%N)@!vq|ibNwc3VxzxIs(1uP!@ZCUn zLw1vpjB&Am^;FA0nBLj=aEBW8z(&=bcQ zc$QhFl(#{Ua0nVwa~=QBiRl>eaD}D%{Q7B4Ib9X~s0Lddi5-;}w-*x54a_%zW><#N z(=ij=t=nn(z-!_KdiY1I3u1p=W)o%BpvaZILB_T~rI!z?^(DbSORdLkyCk@TOZ_G5hV>Wwgr za?rY5Lo$#6|G~1Cai%ZSAI_y?y5LIa9p;1-UcOTb(H{2QkZRU zb(q>Vb?ryIs6In#a7Crg0xRw_t|`fZ!w@N981ujrG)MJyGbaFggQEP- zm&vZ1O~E;$l~nISH0?1l7`~`KrIa^y zTUi)Pzp~ke0@v{P><7=ySumRZIxxPi?!dSBxmwR@D}@eXlO$2R;0LuOfH_Pu;}Tcz zK4$QDJ&(6{V~0E>@(6~Dx z5Znpw?(XgooZuD+4#9%EJ&t_$ocsNM)qB-dyZ4y3#$0R6wW-KdHJHTA9ZZ4J4)(50 zY|O0u00|`}IUWEjD+e;iJI=l@rLgfq~@_1z|E;`$zc zr{rJ{kax2MuyFv`xcS+5_*q#2?5wPO{}bro%ny(>aR-?Ll$ZhX4)#D71S$y!M=xiP zrIqXZGXL`mpf#fdu<`NnF#eei5VHe1gUn3q0ZJyWRzSP=70pa+0U8cwAfT()f0dvW zv~qQIOdEuvpdin@JGV{WfME#U!5@{PysZp zKrVmTH5@ElJxrW|fOmr}$P8%j@}A*lZw_<@ye|&WkW&PxI0Ehe3Re6pfD!Qb-T>H` z+5S`R@9aMcf$aZGHZe1EuyZuA_X62l0xUqbK!A$0BD1TfD_^-;V!A2yAQsbC8)Uz!Yc+vPbx*`nwru@fUtSd}oj+K%ezpdu#yKKYsst z`}i&|a|e4{uYbb-JYNTP5;B#{ci!#{yiLYfd4M0?C`EyAb|ECksGjbv6{U< z*#4iT{%6YnpThsB@_!Tg|0X2uW^4PWoAyut|Ho}&2eS40JK$ZkZm#bGpycpA2KN6u zR0sIi&?*7VL2h>c+bidPYVtk^V)mBrVrF9FWM<|3%MNmp26+O_RY9(1R)0z6FT2(s zqh<@T2dX-_fd05!-m_R)|CjH5zRYai?+=%EUH;`Vad{s$*FTT(4-9-Cr~l?5WpCzS z{>R+0b8!PqoSjX)5Z;ge9dQAC*xm=!9O(I{vH>j2_71M^DS-EXp8Wt84$cUF95Xi$ zfJNdD(_e@ez#{n{#KQ?-k^cvA0az6NgLqj1EUNz?b^wd|KZpasqVW%UucG-6dat7O z58?)}X#WTCy>l`758~nju)JR@cK=xZ*e@3If8cvzbD*v3zXR9+EWm%@`&vN9_q)Ww zp6y>T?_4eZ1>ebkTK)^Z=YakN-w9g(3%)b7`4@cOF57>>cgA-A!1rllvHur*=jQM) z_)f#|Kal->S;v2^`$uoi|9Ib7I9vTY`90j_ANM;e7m($@cZ%&j!}Xtlcb={$ZvS$> zXZ#z!``!P6?C-=q{{`QPd;JT(6ZifT{+AHV+?<`?mHOv@{qe5S|G|HL4S+yTpc%r- zqJx=0kac}f=Y6dhp$F66lpyq3>b)*I(^R1$oa>O(tkKq2jjYU7g>vbYK{jba>mFrs zr~B-mOIJR-4Wx};oVQG*(!VT8P2(2dZo%gheC~+I7g1Zm@^q5LN%%{ghrm>cBhh-{ zMa(USG^kL2eQD|kmJ>Xvu}YO}iuJLGcw(VlS z>_i!arzoeBD+qQ!Abj;wNaN9-jsH3w zeu>mui#>*{a%rpvVQ-?1co@9s1f6^BjQUiU%sf%Q{8QwBWx{&x>_bsRisiB1tEM@w zNTVNrJzlu@v&~%T2$k^X8HsVT;0dNMv3w<^<@Q2e7^7&cHWofURp>1B7E(mp3yXp} zrfc($fhh2mFB?@-T0?{{gGMvBpDfl%vySN>t?#g^9^#R6!#^3f)7r$li2kC5OON{? z+x)AnDXiP)uuQnuWq!G|Fo&<<=iT=dHJU_!s{TU5D8%n&P2n_E7<-UT*_zn!^NKg( z@l?UJuwkGJ9b4?PE&;}Gg^GfMszv~uc_GvYlA4gohiq0pP^j-v*{?ob9#U2HLVlXL zLCh0u!Hxd#uR_T^DAJ}EC|i}BIdB=u!#;9PU}gYqeVno1>IO)hxF4db<<=q@>acu& zkv9OeY~qn>>eLREtwH|gmE{I$Uz#?2BwJm)0pJDs$Un{U;gN2XExMHRFFR=q0}ICa z;PxS(=}dLJ$z7iHuJ~$3c;cw<)L@&j38*1n_rJRn-9NJ!C9p&IJP~oMel9y5UvCKy zL1(5JF#hVm8#;;n<+SI`fKKpY3nRjRx18fr5{jR5Tl=YYz=QIKQSQ z^i}W;GO@YU+eV;VG8m5*xCfUN(Kv&avGNANQ`tqFAc>RD^6s~X&zB`J0jDf~$zeno z*idmnSV;;`FUP!tUSmhgrv^fQ}brkIuE0t%jP|r((}lGZQ+pu4Y147s#x5z z^-8eOb~1XpZ+vR*5av#=2Rssg`emFWnb|rY$@5JU*dj8`l%FHyURbD@erFSHfISJL zG_++3COknZmfS-&ewZBXCF?;|WbQ_h+5#HoOJt8Yn_bC~uTpS1+J;b~ zbnfB(AsjC*(qQyMV;PF?F^;qYaDw@I(T$TO{3 zCBJFzUdBN?VT%g1#OrOGjU_l7(iwuOv57l;?n7(+omoNsL)1;rGd6`=$nT`K{+-0) z6npilg~i0MK}BG*=W)-%LCz~&P#&5NDPb48azEl)s~yf8z-Rl*2X^P92}fy--WrP% zB#68Gd0Lc`no=%P&R_w5_I5wY3nE;+esly#32Y}EY{NNYumx!CMo%NAwLqwi6i0)h z)uOlPn8)Dha|`Z~1)EkV)H$iTXq~OqV~CP=wkgk(Yx@WLvMFEeOVUtVTY3_d4SjC*|;$gxl5JRQ26IV`^ zR2QFi1gok%CpnGB#2f~u@@#8*lGK-#VV1IR@qaZ9$i6V(^ieStCxoPQ+-hgdI-^9E z<>}CyL)n+PW-e51?GxZhe_98#Z4yIfbR9dt;{7NUvPZ6~O0%D4MlVxp?*xZSs-cXL z*GMaiQ?|f=;nM&og>PgXx>&usOuXd!+cChOnAkoo-33cLr&xlM%>gXfAS!TRC}_fuA8E9 zO((f-2}=4pUKE}e=X=ueHi8x$ZoFXaLeW+~rDr=}?GLNiL zeeuB{AC2jj?-(aTe}Fi+418D(0o9`|Fierkx<+uz0&>>Qm4GpINr32FJWy3=tXO7Z zo>PqVCwe%CoL-t1Cgj4s$cfCFIj%e8Ds3;3>AZ93=laJ+!)VM1zWY{SpwbCl7{%*m zY!ycT?)>EuLxr8oK7aXs5Cm(wmKH8#*KjZqbKBPl-ydRzf9>`-!Qfo>4e{fHEKx+!yB=vl$!elq7lF0=;C(m$cvma-fVfcp%*dKFcoTr_==OiUGxi` zu&CqJhLMgpe;7dcWNTLNAUpbb4cK^eta4K^E7>)QX>MdHx>Ru)$Tf-Ob zv#aWRz6tf(Ig!kh1$QSmL@ZyimZdiD_F?6H$yzKfY(hh<(x=-=xwb$EncVb)Rp2Nd z+(6^z7vtobrPS|uS>Hf!5rO+zqyhAOb(0ug^~U&5wae6_NDm=I})E2cPsl z$v4Pt3+?royTWeHZ=;u-0A2r{xLUe~=?ex}OD3rC6}<74I{I+CEkD|?S}1Wa-QPb9 z#%meQjtV0%^cKmJNSi0%eW&Vfh^Qc*IN%o=fB9u8r4+dfR_FGn_SI240LPJ z2fCVr-0zp?ChcUXSS9w4CWEmLfIeC<(yHgJ&o91p7Aq{<(y`9v4{(X7>e}wl@rKt| zQ0LX~;I|XLgJn#Kj?11hr!Qxa6{yi!u>K-6um_QrJ>JVWw)Le6q4(!UjJbP+QwegZ& z_ioiDycDj=W3^6sXV5b!C4q&MXy8ASzF@^`sANv7VCNr+##i-3Hgyp0dZ82hf3TfO z4^>RSCJ%g}i!hW{2>9$L&wM{EN<7Btjk>YQ)}6Q`$w3KWgU=YidR~m(m(e6=vd9aS zSAie#P(wr%AL6LGuIAh%(GRLj8(Fsb=p_D$l)C5(R#^2*cA`Oxs-}*CA5A+K%C{pl z!0@U>j(1ipQ1FblZ5_K8n#jc_f4}gT!v$<3A6d}-vIv%E&`ipak^x+Xk#^F7{>JVP5CwN&mx-+y`v*Qn(PwkOiT- zHbF@7KZea=jG0_?b{gZ251|ZZBWb?99*&=Ok!?#iF3hA^)bWb9E?TSv53ZHa(t$P9 zq>-ydZ&I1gh~f=7F?=;te{JCwo8EOJEg$sTgbGsSm!XA%w*ImzOE2$dLT;?SI&YNI z3z!GU2xYFiNSDoiSP8JqzUcuOm$dQl}_A4DmhJy=#N zuV!@=;Xc_z<6%P;cPZfAQXF+xJX|jt_3&ecp~x84(Lrx(pkwfkbdKp!lr@T3(bXLZ z5>y*3;zr`{8x&A~T}{?-Z@+z|B2-9GJBrw*0qhs}*TKFJe{k|eQ+6#xW6Q!xjaoVOnDVQQN|} zl7L)eDVOV~UW4HY@$zuy8N>YcFX{z1AN9ZQQhE^&=d6}7MAFfIh4yq}Rk+y=I2?Rg zn_22|tqRX|f6YjUEAAvmV{r{)Q3^AxNb#F^kJc0H5-fFIJ2=eV+V$=H zEBp$d?4Xkt`{e`EAsAbVS@Gvi^K;2om6I^bsXDZk+2(VhLI-9Dr0h zCr*WnbQNM0&)CU_g!yVH!?TF_*Uzg2cKl(|0LF1P2vS_g(zSiyM0n!Xwi)QYk^xJP zg5_?Ff87eJglG6Cgm1$TM9kk; z{^00`^r0NZ)N23qRGJ3bTVUp-m<%}^o@%BRBCv~t|E^ho_k$7o;5=$ZXtKYwA{|2_ z3&${j+Zy?4e^Ywfvi_pg=fl{8Z4+?OoyB9re{m?p=jMFs*!X*gUq?nNCr1;hbYJ}d z2kkr*quEsgp&a>Cg-A|;kjc5|T1cb$w=pRqzl>QK!h%GeO576O5#2NTOi|xeE(%xn98GiW93zJ zOHpSfYccvX|0NL$-X%XucP_xV@DRotT$^Jjula-B1%(?$TZE$VT8j#JiCDSte>IRF zfp}8P=1qBw6Zf>aOnDOL9IxHROvULwiaa8am#~DIPHy$+tLWFt+^8Z1J6fSqeNIlN z7Jnx_61TBER#hXG_?41lkyUcHgtpV*=B`2k(Wpj1&D6s3eojPkIJqe|t#ZtppSd( zAMo^Ug3C}Jq(7p#zPM98cdRmHl1(s*3h=xfZ|r`>;tdQtXQaq5xRj}$SZ3ow z2;Ex~qF_Qfs16*UV_%UOe}q14MK-W!ll)R}Hz{cJ!ym5w}XrnpW( z0DJEiGr^bRwOlob+4^(i{vDgo?`OGe0Qzl=BLz_cs+llI^@j@72gPJ`L&thxbzvpU zfw<>vqo@}n=M)$PJ$v=jCdW zAMr8@!f7P3P(aOT+>PuH32cPAV)O@`{0Hvh55jc~D*h({6p9|Lb>*A?d zcuMSaCh77cUS(3v*?vwM?Qj}zU3r~3vCl(GKp;HoZtXF-6g2M{H2i+zLO&~kRSQ{3Z6ot zFZ>Zh*l%&>E8;Z8FsllRI;X}SkVtZ%?7c-4lVR0_Ly+{og!O7D9d7rS{JwwS9U>Yc zw@I^`AOR0WSe>3LfYR)tfT)lG5#zG3vdYf7D*Eoh-2{IzPidxW=34YGCwV6h$IYnvX zgMS{Kvs(^rtvjOC4 zc7D@^rfQZCHd&E6MP+I1NF-hjIy%Q%Uxx3& z;hB!jcr@`f)l(xKYImHq9;(WHm0T7Oq!IUN}*s`KVw5-dA`JhXjzQDvPG1*I0cg2lrt=_ zZxKaGE_G;3Q3kB4!?w*Mfu%FSU!T z;mVe5qF|w_z3-`YSi0Wj&_!`XDq&I>gM+g!IkGib(?y~xKhvrdZ&!-^h68nv{3k=m zk2(lL-> zA-%HAr{wc7E!193mN7~p+cof*dR~3dr!j(Sevvh*eSlQsu*9vItk6b)T!*(o`qUnV z&w5@xA+)wp2@~BLc!Z2u^Gg;ARLyv8S3E(C2Z`~hgkKCE-45#fO1FOYyH}WWEn<^n zN+N$~7fp=ek*9Yf@yG4+f1x(|bPRLoVgCu<2}`z1aMjM4x9o-?PX6v9>aS7cWBSb= zg#u0YC{!K;wj(%_25T!ev~%$X?(arh&3f8I@%QPbXw*zQOC!Xgmk@c#{nM;Rp(_)p z$TfU394tg8yz)2H7;{oH%pJWIJ>BN#+Wl~Ts#+?_KaL7?*ND`#f3~dMrD2Q(h^i?1 zyZbmUT1X0pheK5pU&ns;c#@+j=Wq};3dFFOEWNPBf<68({W;PBLbUv&8EKjYS+rNX%m}fJf88( z6-*X0=xG}kIgiXte{wAFgS=aLV2Hd)$1Q}6tFwPXF=9a7Bt!Kg}#0lImhRd)Ust}S$e=QqZZyY4P(V1R;+tA5h8R_Hf zHP~8y6Flne&wl$sX18Rp2zR~Z{wP)vz)0At@4HaerNZ|pea3TYvFB{;QJOIHfWzX+7a=d%%5n=S5XB8UO04sn zbH_hjhUBf!rRI_!a->zJyl$Rz`mn@8>_2mUQB4xMPRZk9VbW?Zs2gF1yw)ZC%y8&e z(44LJxi;A8$AGR78wxacu)DMyeN5zRqK{)Gf11U$h&K8H|Fqho7kR~w4JVBNlWTg2 z(qTIFh^7`RAV#crqPtu9&L3(9tC#2mwK3KTtmkuaC0>5(<&Jd?45K^C%zzEBf1DeSSsilZinx#wJ(<&LMxCyCoZd_L4AH1Q z1v>2WrQSIrfLDugfAMfQC7!xS%`==sI=&9Itk=5BWykcwG6bz+Aae@J#aup4yGCX_ zgT=ALRR9$^Ng5HiH`8WO<3^35CwbMgA|0q2-5nF^Tfevo#Gg432*UkV;DV7{f45}O zE8uhbaO))F^`%41ik$2LdX&1Jo}3K>ZHnl*UJ$^TrzUMGwdKwHtNB~zSIRApTedoW3pxf9tV`ujmfT(E=tmec_h(I?EAD^8ym(m$sDIT? zufNrd?_2FKpd}%XTd(I9%xnLce+4=scRbiKP{><&|B&7ji7N_X{oFsbO9>`i%i*AM z$o|COo}0OJ08)gJ_V7+nZxjdZyN0(me~N;3CCOE? zdC!unz*oN@^KF=LdX<$X6TOHy`3~ea#E(28+}>mRNOmp!IMQGWTiUISMxiww>Y_VM zjDh5B<{?Z%NzyoRZnIeCFFF&3(Hdrk_kQU5Z2FASiz`|VMV6R&GS}&IHD@|Rvau_js~0fD@~HB z3;RlTJhk7{g3khf1IMJ$rw|NS{QSdi(uXj&43~T7B1%Y4l$Caf0Iz)joB`Sj(IkHu zk(ER08DES+0patFe`DDNtBdH{NI}5(Jznny^n>=Rp7}&(?(5aS+%dD6CGnf6+V^D%Nx5z4r}ZwrYgb z<7&{A$n(*y^a8sC3UnuV-^|_Ls<}O*%+3i1HZrXc+P4cxymyJid$Trli({&|oh#a$ z;5?-koGUa%OH*gQo`yNGufWMwEejg>1nRAZ3hh$uzz!jS<5K-jPOF<@SygTHdiqeg z2tMeKQL=Ike@|d?psEfLxir#$JvW0D!Xs-#jsd9h+r!QLd1t*|`T1}}s{=Nq)rXHV zG2r`G;-Zh*b}Q5QyACl6FR(QBAs?Wm+)&cj5~;-RNy_-q61~5|%L$TN;Xe^cs!nVq zvNU5g50i>oavUIz8gT>Pm}rD%(k_HF5=uDeHpU()Dg7Db0%E2kl?(+LeyL7jE$N&3~N51^>HN@`2u}`UQRSTsm};> ze=PUuC%a73si9zU%nZP>mz2+yBJZQ$cPX4FC*w-_l{b}7A(lm5`JW# z!V>$~uay$9E z{2_31bfg0Rl^bgC`v;~YNOHrT9Y=^Va6ynq8OQ6OjeZ?Vyt_|qJ^kRSnku3Ze;T+R zpLR4LxwWLY>;Z#iX`U2s4@bk>?Ey1-$sPey;eNJY!m@g`s|hnI?Ji^EV-hPtp2!eD zb4Q#L%_A9_i^fs4n(Kw2JXl}?Vd>xnVpt=zO0Oa2X2zHpwcTIK*q)!ZhBn>9c7xJE ze%8dWvUP6_^Pk-~18$^ksN8`_ythA@Cf9a)a()s?E97~e zZnN>e{86k{%3Qp})hrRZU&pmV)nKs%_04ZYpR>?4Fg~U~LF6gPey>T>1{_h@1VgLB zZDKaj+|>#@F`{$YTk{G!f7RAQSJ1YFL5>O2VyUF%`pBzL#CEh=szGd)fT_>udG*a@ ztR!s$e9)NUu)F#ZC==c5$6X6TWRWZQWd`mLc3epsA)HO+lEm#=n#I1K|k$TNLe{8CL1bh?@N$I_j z7zLP5&UKLe+!5MAsz|i9C)M#meLKOuKFajAV^B9L60me(SFfkxv3^SX9|Lm|BNsP7h zAsFz&`ko8b*kmkZxScNE1cd5>x~@pMvQ6* zXLGB~I?7y~I^0#AxpY5G-x;#~8BK_Yk5a1<_JW8UO)7)GlJR~ntF5G*D;N)b-N)ls zfK%=zMy(&4aUYPgAXzsC7ZBik3luL(5#-5c_+T9Zy8wAke_{v0q2HfXOB1nKL32Ft zn@qH(2OEXo0pp^QcJ+tX+G3w<^3idkeCJSM+-3J|e){HVyIdH*#cDtuSdgsxhzd+) zP~4JLCaowsS#RQ4X4(bO@#IN#<`|g8ZYHr0(VEe~(+bZ|E-}4r*aC3e=1c{)Egp=q zi0mCzy?76-f8-|ZtmUkdnY){bySvPAeukf{pO?`K=qz2h>cL4be_t2^2lbd*(owSf6jaJjOUrEg}qj z*lecNz_jew!6+Ve$1y#s%(Jl zu8-<)q9z0?zSD!V8`F@v|6-&9$hFamd-XYe+aMUxueWKPyUa$9yw~zzEz@0p;0r00 zMaRj}<45-~wZG{6BJgcl@fjMA-kK^fN_Sz{h%+^#@UUosqGs?i^$X&2R-g;~Yzh{F4O6_{+OkWt%nDa-RfypbmK^QkVRf{9dQ_93H(-d9(EwW=t z;J32s)@y-$-2EMd4;hex=lk0V^72t*@@)5`)Of)M)`@21-4+lD-&scDKj&g*Z9?^+ z@F8xVn3_FcZ62!BTh}Q?6p7kGOmVu*e+@#W2l_E8{AAs?JW@bXU*x@7ULXC;wt?6w zbS+U>k*m=aom8>8>qxRZbDP1u<&V#BezngRoG4)&iVd=vx$ZIYs&b2k8_oeHWWeT| zJn6B9U_5j=RCAydtDh2<&c=`4KHxs$L+)a@F2f*t(#e`3zD zaVW$xQbg+cpKCcYbtnKhu#+TO6q z5#2-}d!Si&ca@qIC|F5=!H8n?h)wbg`Tw$+*xyDU&>di`CrN0n#t{3a&BNgqaV#@Q zKS&lb>il{u?V&Je(b81yx0UQRe@Z2wjtMq^FbLv1;55I&8Mhy>6%%BI>o7T+q80mE zTWm=j+l{<153iN$*5Ylx6$7ogekjqJY>l|OI||hP9t=v!+IN}**+2@op_N-Sw0FLrZ8d|{w=YkDvViJhQIdtss%Y5o~Ym8wvJ4v)?AU<4-9N2SZN*`<7rh+EpX zP}9NN-hdy@sJUb@C1gXlBYzMNgX%y&q1MI1wJ^kUc6w~xeAwSOe}@kw(;w>AKrF!w zu1)AT;5fn5cO100niQd&VO4Kmq8EFW;kJ+zzA0)6O>T&p}Trn1%vkzK^O zJ%RDwf<%Dp-hTa0e}M#=Mn~`+s)KD)h>6S>1BaAk%bw3gdDou&;`)9eqVq?><1EqCpFlhtH>L`O0!z-D@~UAc&b zE<%>8W+P!$#Hb zF*oNzsGmoCjMwB)qLq~Jty zLjiVw*9e>#MD3C;&oJs_ite@7;m5e_W!iuU+CSnq#eVRDC$jxrb1*DEPKg&BF)(+0 zo!E=hg#Vg5Iuc2vL#OR#ZptWT4lQB99q zjF?q2Mj|9>9l3t4dLlxK=(FI;<=h`(;QO4Q-Mz3`u+W<)04B6?(uUHi(qbWBdpHwm zeQwJ$e~S5KA|;+!47rL)O2Al10u6J8jQcc{Ha%&czxqo?eSk0)R4f<<0bfwR2%lzN z!TPqz^=AF`ycKb7FV#7V09DnK3oM*(xJ{h?YYhpCVP9D*YMU|~7}`ugRHhw4c0CzG z9zlIga!J{`>C{N8cs`emkb2uI91{5`zD!-Cf9ET0|96^}_VebqM5N0LITs~L92eD~ zk>c3(LDiE1DH>AvqlVYYSH~N#iG&S`v5}Eylx%Y6HT8o;2vxC@cws2}M+bJ0_XBMEUP)8QZ`z*hekZrk$RAbX?FV) zf3rpJ+=^j^T@^>aB$2+n*_+cmTlzbN@q6qPM2Y%h*rj|peTA?LishyZ%svo3Xer&> zlF2Jzsa;*gfGECjq~9H0|X1F8v~+d>LoBr>Ye=;ZRIo?NHqV4{loS zl8_zJS3Z$oBc(KrtE+}VhLEg)c?jwVe^D`f2ETVq>Lrqdy6zJk!v?!CWe^GZN1TBiw1jr4&Q~_q#dI3e&RNUsnZ{lhk4mUyoj4 zQG|mCu+7CIfgC5{XSscFz;GaVn;ylzYp~uWIl30|K$%g8dX$j9zcFflS!D(oe}9pz z-e4Px3d4Z&)R62@MPyTVuw82<>uHI$=9%Y{dM;QesB7ekiy)3z$%FTj4E9O|T7>wt zFq&{QRwB7};P;AUa~f~Rst{PBAgyR(Q#Ii=92B}{&c!D`%APbX@r*W+l2rJnYzwEE z$ZvnhUxSCP<43f7qRq<565e*6f6W84`wb$Ns(!T)2$U?5&bPlaUA+&`D#CXG?RTo zp@&6{FXp;V!j~MZFqBSoo_Ump7e>UcKA60&^qe!W(9Jp1W6NH~E)%$Xe^8&7x05oL z=<*8;j=*7=evq7L@6G1>5v3F@xalO6^m57yq1O`()egUL1_JCk1EnRkrkKHGei5QB z3mGGPV3=h5w9Hb|WxD$MRuu&$P5wPF%kq2xB)sPTE4wc{Se> zzE-7j*Kv?($wt5nY4$1M@y6S_dfem2cdov#A;*&~|a(o90T2F-9~CxTjYL;gv_<&V1D|dIx-@)-$e$QUr|J(cByUEGR~WQI#x#6m%R{X zG(P9K3sG_+>sP8ce=RCYCD_gx$vbPT+e!uF{lV$y>e~PT1CoyYh{RZ+^M}T83N_#m zd;lkR6yAYuSR~3OG zo21tbnp(ORRAe%KsjEm0WyVWweK+EJH@F`8n|cxX?Ic(De-P+h;ZPj*=Z0n>YE&C% zO|#7;eG^f4#xx1spSc?J5V;ejo*X+{t33$Sap>pW>%(E3Z*~SI9g6Z=^YWRoy*7`h zaypv`gl2QT2`>uq)~Azp1nkbjyON`PjYBt7BGkRPOqtwTRE9zaZowv_L!MTThM4<8 z*&}f(ucOCOKa@i<3Mg$Xu+Sc>54fqS5XGzp77Eoih94923b2^7-hTWd^M3$UoVWN%_>3OF+`m*F)86}SFa13VuAGne2s1QZi8H#as4FHB`_XLM*X zATl&EFf^ATKLQj5GBr0gFq3gOCx48$1yCGVv@HrDxH~}`cXtWy?h;%YcXxM};1b;3 zNr0fi3GM`fySu*5%-l)l{$KT8Q3buWt}W-BhMZVYg znH9jy!NbhS!^8w&VPfL`A45Aw9)PH!tAzu8aYW9H44$;q~( z&Cn4D012!ujDfaJAP*N?6QCmilpLTUB@0ln2ipE^Ec>?s9pInd0GJt={|)z#_pd+} zwtqPr8XMc$*c;k# z=7s=qAtitzsK9^9b24_cuy=N1aI&!eRU+fBFrY4r*_w#h+1LPWot@x*@e{Rh1R8_d z?!ox?WUXxN+-$x60j3tVCZ@lNFmbVGRI{~kZ~;n*{$m0X!Tpw*0i6NtOiWCi+^hhg z0|4l5Y|i*AysC#i@P98Q^Di-|0v|7XJ9~gBs0g5sg((p92hPjM&=m-9c60&yc>SsP zFM?xc2AEhFI|Gb>W)`+^zoUc1K-0f5X!wp6?f`8j(C#q zZ%h8a35mN{TmPk|`b+=+Q5)J=SbO|q09slXXV3wVvjZIi+y8B<0sQ;W$^lI*Tx|Zg zR?68BbP$AW&3~-_ZKH*gxP?2=MA5?8*!=Hp`CG2`>y%kr*a8*poGgA_D*$@XX#STD zbhM1EKv#zoXeIwr0YN9{zbVCRjqOZ+9WfSm4uGMfqoD^JXviSM4)9_IokbI%`(H~8 zU}Uhha|XEpK;`)WOzj-ueod5v9l$8`OY}G505A&wMt__DMv>o$3&1G)FJcA(ptZB% zZ#6f7QS4vD$pl~&|BXP_62B1(fKl={Vg)ct{YGp6M(N)OL{8>60+EybjX>n&ej^Y$ z`QHe{Md3G95Elg-pxJM(Tp)?!Zv+D77QZ2gp7L)5qNnm3f#|9Ji$I2|=DvJuDOT3IneeG3y|!O z{7j(AE&qU^(OLZgL7lb!1A^NAyHXYq85=`m$3Obc{A+Q4Lv~O!ThN{GhaS`pyWjjk z@qg_8qXvbv|E&fEvj;u(w*OfQHs*h%|6K_-P$Bl9CA0fIWHwN5?5$m#{)i8fIQ*XH zFXRGr`s*tDccg5;gm%tA6C>;YW?<$1NAq7X^RJoyF%f1^gMX)F2RS(bZ7lw~pX|SE zfUbYcg&h>c3G{sa%N^7@C+k1AkC_=%;eYS6pm&MU+1wHM#}b3u|{{w=;d;9@GgYo=L4iw1~==gW4|J?1yE{>qdIREwff=;J?00 z0fFv7W4OgRJ7eBp%lhEpZhwJWn85n>z3@<|p`QR2pI%jP$NSmA zTRp%Eq7D43GIyvy!yZd!jfHZQZA)*R>*!)9^Hy#$ zAea*G8~RpKU0Dl;z9WeOX3ZDYWt0Px2a_+{u1|8!+$Ga22soW z(7(0Y>#@;cb!hk-{cULK=ewbn;mvLzjS_)=0emwzW*RYb?Z}m7o=k#N$a3egH(eS) zDGU_4CD&xGCrHB(KCi%Y;RjsijY1}-4_uJF;G_5_?780Ou|8EzXY!rvGpO^{ZfLqe zuR$F0uSQ=}&&~?pnX`%+WPgQHN96s8qg3Lp2R6+Fl{22LS79-TmU$4#CT_4V zoDYx{u}MkvZqHW_Md}24Sl)9NFr27YseOrOFHj=hI*Otn+iMCK6b=gM3^}Ruq&}mOB}L> z>idVyv997LH@b2uQF6+nMY(>NeZDa7McoC_qTYA4{(@K$*Dd}m^&JX#RA2~MD66sL zSv$)Rr1~90E$ZhlxWafUs(1OMp6g(}^HXD+#3PfNWM0-)Iwfp=2ux*Pb@iJYjy@F@KK2Wm+SsxR8^+m;0o}R5=>w z>cz2!^Knk+t{3pe@sq<)1_|rC_qPxqvsI_GWEfUta1Ms3yXmkchGo1A!$m#_OXPIG z5fXSTQz1plP=@xhC@@W{r&e=FDUy*{Kkh$Nw$dkIuWNVV9L@m8hNA8UaADrbjLuWA zkehups(u!zD32H*AK3CgTfDF=BrYV#VYu_t){#HG#eY znU7e;)HoyGZ-45XnSFAuq7W$CjQ!qs^=J#Fdg#`Xw9`(OYa*{B(wbQ~zNBz7_g%0^ zgTQcPgV20b`#1G|=f00_hp zOM`J_ZP`^W+$hTE52tHuawI(OO1Tek-VahHZc&Xsw@W>l%Re;Ed2K160g%#|A!J>R zXMb%lAuXDUyC?=p+k55kugI;_ z>$o*^&LM&kRA4^LW6TB+<^wk{)UPYT(-ib>TP-VSJxmb?W%HD=LG_7VqftP6K|FoGPPXwPF=@d=ZZsfPX0O zP|Rl7>yUjr>F<8`wiriWdt6gJ92I-u@=7VU22oY<_1ZNk_Z|*7OqXc?vVN*VI1Z+AOm=Lhnc}>0c){1$$T4R87 zS>cI15EsWBUv#v76~3P&otV&ftAdx7(_W|0&HWvk)`kR}-YUCT_1MZ@5+)k{C;gSS z6p5zWpJ)62RD?nZ)-C9hC(H&bTrLckF0?0`izE-1{Jdv$ex5^(lYiuJc3*1Na@`>Y znbMpBQRfEVp=mISyMI5K*-Kpmn7!B}#5B39dt5gyp-yI#=#qN+;-r??yIyo7W)p-a zq~9#`mohjCb4QS2+O}$mREaP@^f{NC2$J5Ga)C`)$%oBE$<%`9PV*LY9n2(I2Z%pV zLBTIX%U?zogY&NcEPpb2sqA??22ZR)d0L}skL3GSoR_@Wj~USy}((YG;)8stY-9^XMS$;#S(tH?diee@y5i8~CO(qOZS z5b?-yN#mYJ{$tV6pwsmAz{eIMK`7H8ge*M*jnxne7B)AuGJk7N_#Ltt7L8N%dbib( zZ$}E;Mz00iBnri!(1*t~dTGSbbXOUR4Lr)DmFi%_hd$~kCHLTo)0D4RsA8SR?CHq^ zZcOwGK(a#PWZSE?=V0re%V`xpbN8XSg4i<-qwHb^%Rcgx^XJIw(@x= zpDpQ%IgQK@-O)zq^~5O|qvzY@h3$tm2%7XS@5^q7ovzR9GBJz>fF?f&ty`_^4WiVi`I&4jgH{m=9}5b zwfDd<)R)psYdU{E;OSB78btI{zh2n0dN}M;=oO2A>r6Wg)SH9L_UrkuUQKYr0%ERr zvxPQrDa&CvW^Rkb&~Pw!oZI5CT7n)by1wTjpWdWb-CNrU&+S(x!4jopyAm_q@3lmV ze+)!eU3)kw6I(OX4i7ZFQ*>wZmki0p^ge*rcxvQbmLPwe!$8qOCt(%7Vqd&`+PV8F zsY5bdp$&D%oHCw%Y|Jiy$6apE&%!DFMfmx$$%zr-B(m9z>Z;5gQ;81AnP0nlgKI2F z!l}PCfQLw#j9ZrjgChLF#-p0rqUl|v>(IVs&y7ZDlx&}}upWW3u%Y$WL-z*#+ zY$Jn`Tr1f{9(9%~tZIk#8=PfW)WSa(T(HHga7;nbzdEvA3Fv`A>{NK#bQY3_q?bjs zO^HesfYkqirKcaVY=)88+=_g^Y3i=f=Ir~Xq6@|tUTBqfln8ol*F0O!Z>8%j1rIRXD;k2tsF);%dB;Cv zE-N{_i7gxWXr)Toc9w&}o5L6HfM>g~E z@MM1$QK9X^FHmIe^(6!jy-{HqgJ-RfPLW$04oTkxA&?P3PTMrNj#FGm3(vnc27J5E(J5A zwOu;>>75Muo^g>_P3sZiW9EC|#Zf6;Jb!-`DCS!L>E-liRCAlZ-K71U|i?{+2VotI-BZs<*faehE+nu9vrQku#+O+wEQX=J%`mKN^ry#27xFWX4BfZ3(*SRj zqq>NLas+EBAze0@pRm>PvRpP`^|pTFN>FX^nNrF+_t|f~j(EHADern(v1fny$m?T1 zlvqvL>HBee!#zFtfCckI1uF=H?3RKzLn$&1`hg^<2ws%m|pLcl(OxO(S{!vqu-f2GUb zdLO+6Px#OCKF^?>kW9%BI^=(GYR9e%U0{TW6P}xTIO`+AF&^ap@~RuH&8+Wnsx=SS z1=?*eq!aJ3=%-nOZwV|m=OqPK;sZ>-2R&Q0Dl;5rUO&51`VZJJpiz#gZ1#wL8C|sY zcp}2#Ov1`X(7K)zX{hSA*>BQou90wI*O$nIzH3@!E`CIIW{jSJe_4Nz8QnO8TW5=? zW3I9d*MAh{_pyhf-7zgU<2ENFcqr`$*A+aKyEjtvkR;@cif~9@ z9#4lsz46(wym08V`Nn^DZta;8msc2-T^w$i#CO4{eX25LhMHtsZe~MC%?d%<8*kjB z@Eit$3OwFQQKh`LTcWVbmXu3%88`WOn-g}CC3uQ%psRiFiFf;=6+_$cT={`#{B*bP zdtrYT^Vf?eYrjQc7v2E4fyU%5b`{CEG}dXgR#+kEQf1%hXfxBBDa0|{oIjv zPBoe#q0_f*!<=H%m~3f~ypU?F1wNE{UPdJkqebzz?s6Ry+0)BTQVbS6LY&GN@B<7Q zOUZi-Qu0q$zYc#nl?!}!9r^N2Pvuv=a1kVI}+HK#S%5x zcF)O6vjej+!>!nOmqzj2$#lM6bj=5k)zVtTNQ=H$tSNR>l7ceGaPX73YoeEgMtWI= z6RB%Si?9X;e-HB1av70;Vro%nPa1)?Vki7-+ZPzLCA9a~De`&SWE`&bD!8gzs1c;g zIMuSLuWWzgB`3QAnPA^3Z;ozz@BPHFP1Gf1=jdp6v79g~C0+{G^%z^r92$Gy4&8v8 zNB1LF-rs*9tn>^PEprw`V7&#RWn_NZlUoqvx1{FNFgMteYY*ptozEY7_5BH4KUNo& zp7l=s{8(<5o9dv@;2yjw&hwkJg2aE1iaxxMktEaYGB?wt;|Z#{ElA?G z4?4TJ&$oIrNe~3M5b(U|uwC8<$^cQFzCc7tml=*%rT*uMG|Frx)M=>%v-{^2}@*OM#)NA({8J@4FgYuljO`KdQfKXo_h`deq;L$KR* zqG*5b=1qw6qR`1xlv1Kwltt>)$t!hBT}aN1T}=>m38?ZM3oeMCV(-eo!b7WQcCRwk z@l{fPF<;l1g9_+iGi?(WZ848qW>{!YeM7CM0y#-f7-H+@^GpXH{z1M~40A#R{Ho>_ zUJE`(84}p!*)wx<#@arm1J}IZeEjmF^^AS_ry z5Ls;wg+mHnhbTRGcjboviDyV%|MATb|7vgcl@?TbjRoJ;h?}EA;z+=jDNP6e`vKq|xRQKCgxAct4H2PtnmZ|D# z$NXcNt+>h81lr9RlQoCMSMk}6xfcbyh0{YB6tRj;Q>By^p<}Ba1KwM z5$g-&(dWo488%#+u>cwRck`&CXK0i*?NxnaH!~BzE{-WJjM!$Xi^2VE2-Km70D}W zmqgww*cCo&C~%ZBn0)(Lg)2zBJD<8Iq=#FLy(y&}@WOYXcfIv4VV5pqX`wpF7W zQM(mA4}f@xU^Ol&OlmaE1V`j6aSt!X8(U5|nEqBibxOP)v+HWh#O{CY-n?IQ!2?{R zMUqv?c4HfE)PIX^6vZkn8hdWmzPW6exvhRPy{I(eH3YR_)o%`@Qw00 z;TZjsEa@*v0U~<@DbZy3l9s3WXD3awqmwtt(@VWjDR@z;n}U|Dh4cp2O3{j38ea*Z zga%xrThiWqXrLMG=xBc`W=X9*L9hO{E20JDemi-9m;K?(%N5z8MiYe_Dpg=hfM9e& z`!X1kbj!6zr=U!}Ej!)U>|BZ!&l!Ns=;u#}w>S4OWn){b!ov1vPBHw4ZF=0K2oZ?M zs^7D}j;1tW>bRuM&7)#W8vbPI!&6b?ebWN&GvF4SGFgIxn2~>=OA~kC$--7 z%SLw2vMgQ)RdMLXw_vbQy3R?BR9T_lyNJM)iy<{}dAjf+=!>;!TUyO3d*|u8&fc-} ziLd&5#Nl>|6}-5D7mSU1R`twR%sH($QJbz}JKV)sYY2_}J~@3Y zz>esSzN%e{xfOrgvxg>N2WzJ@0tN2OG1*?nGy9v-n;u+np^%&7%aM1SCL@_`;*-U8 zx0mi<^if17K)E3N*1y^cXRWVPIKi#C6rRJjqm@pZRW_qI(5{x#pg zbYP5<+_`QUQ>!r{Q^?K{M&O29$mj|IKYIqa&1U+1YAY=O*|=$tX`D~9rXe?`6}~X3 zekB=^eK9J-QLiTyhjpUHfSmG9?U6|y=DJqNzee)t%n^#qVw=TX>8H z&Ths^$_jtXA6vT?Iu&!3cdIj}`3&wpCuV7RTP1l?(l(p;f3W;A5&x}4h-|kQ?rO9% zC?pH z<#(L!L5%rCiW!%E7-{moeW(GPDA}HThd%Izb&G#n-?k`3v_j8yu1`mg(L>r0-dK<0 z=+&q$EY;wRpV_#^W)$8)^ZO1o*N8GLx?P6gX=m`TbX~66BQ?`T`BfTLR4bowP z;uN}JkqG#+dXvy%7NPC4#7mR;7{3{e)oK7cP6BXJfbPs@FVf9*mtXoL>ld;U6FfJO z1je`*V7))_=_$GoqiRjp=NqVq#HG2`#dd#Q*dsZUuRzE38XX0OBy*3pI7t*l0GJ$aayNZp>aZ;T>X zi$qZuGt4(qR{7yFC@LocFmAVYj+0mJL6^V&1aiM6Kl)QpfgOG5@OOB$m63S81=fF! z{38H<@bz)rD(aKo(wK*U&yP@MxuL+CtGCO1R=qf<8n`LAS0cMV;J?OR`QGpGe_eGd ziQ&o#sx4jFC2M|deu6|Wp;%XXP<0o*LZ145_Fc=m=N&F7#hhd?GQ)@kOvTfl^|#@l z!7VG(h~07Xxm};$?RPN&9JbR|_vU{n2O#k}I!ZoLh2juI+#Pu3y))VzagWqKmv>~t zjvts;*=2XQe8m598E=DRzlTWwDLyUYi#`jK^o|d>c^y?5NgLYw`;HnG6E+u@}1+_TLP8LFf>hW)dt?_*cnY7xj*aMC=4T?dD)ev*G;MZ2Y{ z3IMemKe#c;JJHQVM}tI0lBo;!?B};C{+})-)IDqQ8XFS|y+c-dt5n9*E4W7*{52}-o!NU~A++P10p_mEE*J(A zV>`F2-0?yiooI(o%3*pA>dD_Q{6*yE3Q0+*M=rpP#Ed7AVvwMGY2JUs@6}JcZ*Lw{ z$>$E2Q>Aep>o1c@mob#)FLaliJXCrpkFgEsxI*VVsz-L9e?kHaYz?N zv%kk*)-TY9ZDziFpsM>;zdbqhl`*ZOw}p6_t$Z5GmU>Z+`czW`_Wm@SLmc45ZeW|= zF3qi^+#kcOB%gUL??r#qIc_kqIp_EF0%n*(J_@}quO@781aIlw%#5dy{(TpG-4657 zk5W2HUIvkcH>fsHS&x=1@|UUS8RNc|YF21hIMv;7u(!F+{DCR#2!&iEU}!SlBvme2 zw0mP>UX(g#n=wAfqYV(nRqxj>uD$IgA=Pg^{GWzz*s47VY8ZcbN78$7k~-L|NeEG5 zu<$?R2pfG6j1z`QA*ICsa`v-vAwy*VT&DwxXLyKD;nCoc#UV#X>g#1Sb1g35w0>{` z+AB4(34w`qLgz5JO8qqzxn&1&6|AjJlquJmkG_ zl};&OG7PM?G82Cf(^k>Ua+!F=|0_%|{GkyaFx0 zT=((S3ZqJ80A}b5j|PdHWs!l+BnGDd@UGd2lu#jpFTua>B|6NF`4ZWnp4J~StPMFF zS1S9RVDY-6q{kfHYr9Q^f(Nm4I{=w zn;nb6RLy^bcOLp*Sw4?ti>SI8N70ZVos=jXzdDPYHv1xk@OO~<>C;l(>P$d0SzW;e z8e*Z?_$E_*C2b(n^Ke!`--xJltjTL)d0<3-6o0P zLs(`hryh(%(5n{B8}}AddM|X~DznTtlNmTD)g(#eC44o#1bu=4UB4`jmtqp1?C%YsP+UGsM-3e?9l&W- ziM5_Jjf`l*53PGI>e&~vSTFBSG!o8kr`S(KVgg^#&hoWIqg+QbeBCHig_c{ha>jc; zpB+3kHnWdrhigJeJ>8?$MTd%cY01ZXIZl5fp2v-&Rh%mA!aT=+3~%VB)^7l3$#+{; z--u%wPZmR22fI~+FAw-=r6EXNv0dFr<6eWX;5j0PMhu)qDiEqo~HEl zgm9bJ^LD0#)SYv8ac|05{zb`^=TLuMmXwaz02y{l0Vs#lhH%Euxk`7|1T__v*vXa$ z!%@Lz%Ja#cB3>P9LVo@#Pt=5eG0%vLAW&bd8zX-4;?i)jG-(OkZI};Q1Z=NjjMrB9 zMs!U~m1_Q{nANZ$+e`485^5KlU2T1*!PVp>1##XYKe0l01Tq%jMo)AtPLF@vLEXC2 z_Br$%VSFdq_PbECJ~t-+^b_r(2XqkAmu{ENrbP3zgPnzvWJIVf=}_V*^#!%akYFgy z_%aGtGw-K6Qzpm?mJu2CyorsnsX{0_69cfhb|f5u%N?z|EF(1B!J?4@GBYC=;sm4> z-Wt(QQUo4Ey1^0J3|_YBYl(knI{9sv^0ie1J((%k^%ETvoN3S^G>8n0mWhG@GdwFDOVT*1t03?z-RQC{Mn{^g0jtJOnmbvS05cTni&-I-2^fFxr(QS`3;lyg z$vZIj;ONE9He9q6C7uuZaok@@0Zt@EyfAQlY-1UDd^Z_ZD?l}HKPGCP6`*;?Y#qL2fU-!N(c2(dvT_?Xb1O)9i z&OOwK1PZNMc8nBWH5lk%%l_9q4nvC*JbQ?K;K}Nbp)kJyD8DS2fw|`Qo_Gd?GjD9L z9&uR23h?DcGG9#LpMtqi7b>-?)y{60o{G0a;J>4NHGmbkb-{m63~Hty?aGr2(^h7I zT)Qs7F?EV3aE$xNc^^r^KVe*{=k_d5(-OSftyNkTqIo72$_1|D{<^{pCKOo1QF~gc zAR<*LUA6XoCrm~Qe4F2oV^EzfxLQLH*A)QsIxC=GQhzIkYYxZ3h*0ynR%Lh#%m`(Q z-XUrzcuq`&2@!wz#6pdBTkG`pG9m68jL4)5fufBzG-LclM|3Y&U^u|T4QY)PlTR>q z@wo-%A@R5^9L>48hc_-DSvnxXnXwRh@g8zeOM9JMPEDy-2~sAjK7-c2l4+QVt| zm`av+rZ7?fzRw0svC;QxY=(b~dlC4-S3O|L%@U}vg2~n3I12;jO1JFDj=65?6#Rqb zhjt{rs#<@UHo|k9bj_iH0(^-^6h_|al>M$Xgu&ZJ9v0azPe8vP73Yhn_yoyeQG0JK zMxmsRlgr9b>(+!EnAd{7$%ma|jQhGPDSP?WbeuGJKpc zx#9C^L@8A46RXwCbO zK&XlMQJjfIa+1b6nZnISEi4{o%38D0NIIVFi_`mjbJr36 zl_x!Pw09NA+YGx;BWFvqC)cb+^|RjVCHb@b3~C%R!5<;hehgic+SEk06|n;0s4(4% z$lQM`Jl1GDpJz&OmA5WZ*Ms1(ZRG*pW`m+^YnUu}US9tjT~a~Hg7 zURg1x+a`ftc7PGHKPG+1iowj0!{lCC9*P5AUyn!=f6AocEqb%pH`Jr?E<^wBaDqV; zv}!$S>qGtC7|UUy>Oq3E9+begvNsq?b{N>G2` z(S%b!;8Rt6`}!6N5?0+^^GED-kbd}*4i@Yb(2D->>w06-Y(*KV>RCA3Wbpx8Uk=fr zr%AwXmLnUUw}0l#xOG-axw5gp6L9lMS&B$pOAFCc&WjZX_Pq`5BBwOzDkgTE*JCq> zTg1t<%mnE=b2|+!6SQZCh<_qfQ8`R&2J$evMFLj0$_LqiGCBiX{+r z(V56ajs7(5NnZXId9x#~!Gu-#^7;#Lsu%d&;OMwwj^W}qj`&IK?hT!3aiO|HWi2tU zir1Jl&dGE=@wV3-z7&50UUf0Tc_XB~=DF{wV795SX|%AOIkLgblt8GQ%#8NH^EkFf zBNzPC=3?FHJGj?J25J*NU5LV^IbV#T0WZ=V_Vm7!+)P{RSecEu5|fqssH>m*{#pB- zHzIbl$}q(rJ5aL6$A+~{hoU%miOmTF3Fq1g@*qOuB+D_;s>OdrQ3$b|osfohC;F^a zQhJbBhoL5AHHxAbIcU>8d-bT;L3T{?XNP zf+cuRb%r>WVn|FdvWaA4#r#@Ms7s3E8tTbUjgmTX^yB6{-FW=iX)sVs2FCugRJ4)P z)ily!8zCkCFztVIB4hy?yB=~@Dnt0et=t^}PQq^VRi0s*XTy}45FtX7#DX;|%gNG> z8CQ?Q&-qvr!KxTSNyl0=4&M3^Q}~ghmdm>jRounj3!9W+d+Tdyz5#+58XV!id@X!H zN^AUPBn{Pvdks0`1X2m_HVJ<-^-WwWn1LX>XF`D6S99hZnC=vO zg8V^M)e{r9V#(*WbS}GKX`yeN`yJ#@aty{{iNTQauVa8uw&KioZs8pmda)Av#C>WW zM;Q2;NZCo+8X1k!*xplN_>q`;(1FP!^sR>s#Im}6-4l7zyPu#xYBESfKyM>tx8}l5 zx}kr{id$4Egd7T`hhracs2g?HYwYlcbOb@mdC(bv?ex=*i5A}HZ_ONcp*5po2IM9` z9U|T`RpR+0_NEduX!Xl$d8CT-ur`qdsSTvf>87(aoFgUq(NLOBtA?+e)97KKZSZ%D zX6v|6{q&$$D1a-D(ysytRy6WOXsb!dFk62F&aFT05*+Yg?@`NvBNwXyx@l@sb-gsE z)|0E>(97Au_y^7cF|6Y@4X_O=qW+yRO}ED3#G$ z&98^KBjt!f$jsmCb$}JIBxHo8>Txp#?7K2K6`S&14%m}TS=UF2)$gc@V|9g<_@jTMCstYg!`Lym`a6;z z9WM-{vyrbjmGv4Ki@a%z=a?yGZ}@*`dy-+ z=L4e9G#Loz|BaEb?eOD5(#^# zK~qYPuZd1ASN^8-41J>&uZw@-m(j%DOk~s=(VOg&{T3XXW$4)NBF$ZC*)E_Xl$>>u ziQ!_H!&6h4Q9i4{=_q08)h_Mx$`>V<_(HI9nI#E*9!aB0-BX2K!zSABzux z6?Eta46uOf3gF~$UK!3#_3ToUU9KuC7JJS|=#cItbhNf1?^Twi*GIcL6EPVE=&j}O zBZ!hXjzKl+t0eC=&5eJvVOyruTIu_!J;EGzQbsJ6O*4~62uDfyi!Eelzg0p{Qw1n9%6uG=vx@mFo5OP~Tm7^>^(C?*Ie)KBE*4iy$IKa(!{q`+u zlA)`A*eps-5k=3V5y^(%TlQ)xP5tAEg_$u`7+l-sybFVA?uINgrH{y6ttZH5+)Di^ z8HM*v?e_IXEDeuARonD{V(cNxa>p6AhcsHP*>7_0j6Q!<2TX!boUnzc7i3}`H2Kez z)$W`3bCcKi7!jmSR`z%rZt1_AMQtioRVBZbaJJwsd%SyNH={j`{MT8H?Fu8JEuyE+kTS&6g|*!OSjO`ho& z<4GZq@u`0=(C32Cz#N{laC>KEjb_6gu!mb*jFYm~WTA*uF^m_pt zF_PGtzx;u=Zh; z2L`Wgohk3hJKD)LAf6C#X?*KWasZ-?bn}0HEW>P3>);skPQ{pVcT4|*VQkzrD|>&$ z4c_B4iy|3Ml61Mv{6@j8cJDe0D@;?-mhw$R)b@TzlfvwC&2Cg!ZaempiH6()N+)Eb z={+`t>VE6>6nOauOUpgP>w-O6c|N4LD`J;2OM_nxuQOt~rd(6ZvaZIZQhGeOSrra~c zvMReT_i@nuu=V)&d8Eq19+(H$Yy%}#Xk<+^Y;3`iwdb#Wlw8e{-t);FYsHRuy$jyL zc`}Qt6!METj7+Mt69Wpq^a>=5r^UXfarMxZwN?F{p&R3_*=5DPvI}_IW%Pe;qw|-@ z)_oAXDtJBW#?+#N13~%~U2`_kDLvNg0+iMk#cSfm{s!6-B8$jr(IP~~Ey4=HY;U!i z#E+(!-UL=eSB5{@FT2eR#8d-jlSTw7YlG>&Bp?^bJvzBuQ(J(uE|P9@WT#!=j|B^XcK!I6>nd4X-IAq=}~5v~zRQuvfR zf*MN!x84>|7z`9h^RoTuc=v#KJ*cp%a4U@?~h0v~{*6M%#>6T@{Kufsd zA_tGAafs`e^u0-irVAoeuC)&*FP%>^I?x;0hVliyt%G1>AtS^YQ(Mk0t>9ZQyeMXq zwd6QitLn5wt&`@XU+HlxXqhlgmSe=ucvV8Dq$rN9XSl#KsvAd2b1Xdi2MFip=?l$c zs|2!kBdPPX`LcJKct(GKi94q8!beRTywE@l08F(M!~{Mfc9PNR<%q8zWf_(qRL=Qk z5?*eg#qMJ73rW+^Pb3K{JQ4cdTf+^wpmgih{(dMl7zorv{Zaj z3?c5)8AAQ+&{SB#yBR+%TNM4UZb43(&%}cTPeUJjW6Z9Afyx-Whxz$7#TlLIs=dT= zmA`{Gp+0f2<+W+J!#fTiiv9z4N` zt(xe|9Ep6JL;F;CT@j6M;+2yaA*EU+0SM@$tCW~uml=Oi;dbXA5T1lCjK;#;e@=vv z8SD^{XMV%4n|d3AL9&q-&;2ROx6j#JFwOty1BF*Cf#o=2NBx4RO^n$Td|}sA5=v=A z`ZBf_G8R8Tmt*v$O5^IO)JqFKG|-e;ILWc|YfRB{ULCj@0G%#9V;h-m)Ho4;obz&i z)gpdc0dZ_eyoO8ofboBcw8|@+#!dL@U_1-&wb!?y1#_TmsB^yZ|M2pP=4J^^wuIwY@EGJJG+0 zZ^ddjYk0Y@c_hNkva5|zldHwvPE4|Nyx{m@l9W1nHHY!~SUE6YnUm7T zXtV%AStr30N0l;C2IyiSiq&~SxqHnQ-NBDB1t&z>{K{i%b&tpLfm27hiYl$Xc=r2& z`v!P|A+WdO++ZPUy0B%nx1B_ryagrhi)(0Q!=Ga`GnsM{a`JhBSWmNizKD@w>K;jNedU zWs^_+vsCPL)0EPEPZk%VR?yq$7>SR{#cZ4PDc~%ZzTnT9nuueV_+GC@+V7Esy zf?Nc`{muk&vg>K=w1Q5MImh6#rAB{aIipWpZ>Y}2^BoR)wu*};G_qUqR5}?ZH;!ny zEn7PLk;2L(d*epcxI*>N{VrvSVKoxgtj09(IxGwEIIIrqAB>mPIEReh(ahS%Wi(BMg74eND%t zZ>&IM2@8pYidTuBBasq|mvPcwY6cC8c`t=W>r58kO3-!LIV4BSme%s{8)mBlcm+oc z`2CgxF17rLpz^tU!aKeOgt=ie`^959ts7{(!&?yYpqbF^O5hKu z8pXvv84lFk)nLz7iXZjBf1CK{;e_kE)4&N0R^g<6RmjamYEVkgJowVaODvk9?o%CB zL-lVaNKO7^lh8lbF{4)J?=iXnu=-qxp9h$>&-Kf4oQd=Rm|8yvqey?#gR!vLDL?ak z*>ifY*U&?N*DM1U4(l8{Mj0ms*K3>#SlN>^GQzV>cFYe#0x)anKleYI1ySCKFKQyA zB0Jq4v6wKm5FZ@qq*>UHx9}>?-JFBJqKsAr&g%oJu7N&@I5Z{ylDd#+rD0{N46X)~ ziMR_;vF979z|b)A_Kbf;L3Xp!X>|po!XR!9ksDq%9c89Aod)%Oldh9WXy`>jJp9?> zt4FwUR0&$pp05Nk&|VWd>93TSkL>dD@}sP<3jym_MWUa^R3igd*k4meTLU8=A$o~r_P%dD40a)>J9bjp8U7|d$@ zy8G9^ltf%NhCz6GQEi4@TF&4+-QzinRQO3mO;9a5btB{Vv0wx{_|HwVh5`L`w%`0; z9RbR5Ix0S!f0BQV!Zc9pL{=xeQ9qSdMw&+zzyVFg{Bo1u_c5RW0!cO)*{!OAuRqaH zC1b?GbKhZPig@uL;_=5cB+TdFYMJ;6!Ik{oG+j;v9POncU4I(%u{jk8?FyM5i9t## zrvgh{^(hDeK8?RE2dujeD#r+uRW{+99O5z5j1wTK!sCD9;XvOHaC%n-QMVi$%|rwM zPy%raa>+P@H1HZ3d|@eSPiSR^TDPJ{S}k3Fog9L0yz_R>gl6m$D0wB+nW*FPaZo_} z89NH#yIVa=&$jg4Zpw%|a@TTf{R1c%Y5#?r>51dKIpbg^rFG#UskL%R#o`&D?PC1> zx7H^VKUaU*2}xV844j9y1Jaa`{dsTue&3Wb8!@OVD0F?uy)@TWqZ2ebXkgx_;+392 zn^Ax;-R42(PQ#tY`B-H~&mOC}G$uxM6i%4Bek}LSS3u9{v6NYxOZ~!CUrk1U=-8Y7 zsBEHgOl;ymE^wtQ=7Bx3814-6vE>kxuC^UgA~b)YhBn6pSF2)!&>;rKKNQ%Fis_Ch zf|Xiaiq-e+^g$?hq6N)*|H;{G_+>X z`Qn1;saR)@Ajg02b%;|qx9%;`j(*K2B$Qm_7UvT!^sZya|Q1HTh zF~Q}OEdt^~!x#G62S-|+i2_s>j7Q*=qw1J!FYfqX+8=dJN0L)HQ7&n3;*)e4$E9wf zRx0r`zmZ4SZqsM(!yzqJEVVYW$nI;YR0r`O8z8}i4Vp;C7v79_sU z+P)%HY6hbJtJLXqjRI9J_L~wGpM2*Cw02PES57sp-<_JI$6YPv1A=NB6X;Och=><=7*K0|iP)R!n@ z*}ONddL`23`0xLOAIGh6=6yAuPICtEB6r1`z&vYM*f>P+_M*(Usejrg^zSiFmD(4txHV{IN)C28*N{0jsVkm#Z^d5PT%Y zP+KA!zfw1!nmnRn7OR4psc3)j1#X?Uy?Ky9{2_NSly?=3t35C~k2SAVFO;(jFL+>` zvcFB$Y?v= z1Nq=$8n_kft@-LVWtPx23#Xd1%H-WeZjr!)Rci~858*A0)~3b=9I=0@A`d?jGVA&9 zVOzf7bjnoa0qYT)Y9oT+df#Pj5C^mY5klEBP?mLh;02#gN4G;0v^U6CjcGC>=(AEF zr`gpfcq~#k5#ndIiiBi@f=+Xn;^d&&af3|fRh=^?Z(G;-^(C}95sA4}7{>2=48Ze+ zAPqPVt_xgA*Uke)KbC*bbgSlAq`~X);JIWTu`6XmTl+>!c#SQ?S27%AHHn{iQc;H- zNqLV?$jyl@oT@<-dXW5Rxl?=9)*N>;#tQn+NA|yVSyX1{|x=3Mj2o@O$(QkiOD)>-@GEA?4hv@r#-AX&h9q}^%nqy*TURn=s`oH9V34Qn=&Ork-WxGKS;>nSDGD+<<5Bpbsaxtm8ArxJcvw6?8E==e-DJG zF5%_IZ_q0KaG3hk@@AU$F$Z(3P(7C@Rry4&hjNW$5S)-B^0lxDu_Z?20tcvDjMkE6 zC$kXW6g#&(%QMO+AW3t#RZ}~hai_Z1a6md65diqGtGIuT!ATPE!S;oUb> z#IO(@%xS+~Y(mm&YH_hZikB?}R|jTAjHjl;s(XK>Hvly-xVXaE`f|}3@?(aT6J%7? zwfBwH10b3v3QKJA8`B7yYtU;W{(InT#*lJ2Ey@@(jA8*F;7F}XYvM*w)oGn-sU#7N zR#^u;Ru+Z1EOo?>^jl81WEbM;=XPU!ouY!2erQgLmt|H=aO+NdeHbYjw`WZgd>W4M47*knRM`v&bLa~% zzfcOMX6UP^0-_sEWsq%YL$`UEE-G4Kk7bH>Jy1+q z{z%SRN{f!mjKyyteHAa|h*peQ=>txy(=eLkuh%pmc|T{po5b0@i!s^oE>5WCz8s)= zI!*S8u1{DH(OscdcFu{~#Zg@7dWhPi=OxEf`(fE6|5o5%&ZGKb<$ZtT zWK&rm?N-b__z2n|HFdLYduff(+QL^_{5bENBlY|z3ksF8wSsU#{8?76bT7N-_9O^E z-3+#_7)7pmZiR_$l_?})a7G_kzVXur&+Rs}wxKN{_NrI5UL^QU%3k_y?Gprl3}CukkY2{$$Bs=R-w#yux~ zNza-i=8(1mbs0;W;*vmg(C6%JM^y= zmcNDZCZe3qesaT-5p=~2wk6Vp#t01ETO2%8o4N7YPrYf9q%bAvv|}%M)M|y?jb(`X zg)dtulq59Q*YZqu(qin)ptOI4&3!KPR>hOv4!X88Hfb%mN>i2p`E35cg_Jsle{*L*)A72CeLO1pNg4Dc9cT@Z z@L3{q!V#}zqXsTHP%;}$bM0fpX8W!jgOSSaIQ~Ek-O16cwmK77H!3)0`%mQa#_fW) zpHi4W-)MQ&sNh?DUp%`x5fEj6oeOKQ32W@GcQ;>P-Qsik`^wneE+*M60Z+<2w!sF4 zwSI`@tDqHb6XdfE&xvoAc@CxW(!;9^(#pJg#>^pCYUWuLwmk_~E9qXVBcb-4^6vtk z+1EYcPytpmZya->h|7&!rMn2e97Rvuv8+*(NRKD0pk`_Izj3Q-CJ1qVC4Wop0g6fu zv@#m&{ImBtGhC(Xs7OglpC=irWQo~H_EQYXC_+=sk6uMJ8RShli%~17Ql}KuR6(Q} z-HXL80AtNhi+fMF9nOesB_d8zGdG}J2n>ILA)sQi zz8@he9{&q;(%3L*{QJ1e%}QteR{qqW8ph*O`xk}JoVM0M=25VJGW*|mhb^m^N^3v+ zoMSXXOF)uqNf7Mi8d6YG8)GJ4kfqxBtaV_dV~wP_u)SkPMdZxn4nw2aYVf8V6whKgKvr^aB0tzaQm_Jao3oZ8t*1hcY2Hbb{Z+x z`^+Yy4U-I{h>_-h*L7%~E&1V%5z?j_$kgA$c&X|=Rq`jRD{MKD-yAT6Ufh|cNLOjk zwblxBj4$Qs-+{*Z`nF#{Yg8*_pM0+43eBMkgtN69{-$q=1;VNbfFM ze>hwUla3LEoJe?e(Xa@$R1o&L60Ou(%}&%GcH8EJT}=3Y<)W+jigTQzdHxlVkH0>O z25&WKwQ`m2>RU7J3VOQQA$xa53)2GUn+d5NGE+}H9ZYD{-PL%_b~y+^eT)qObGzjpzaskV}X?LQ0y zLH^wgD#LSsq~YI`(NK+l9ZGosaP`i8qQqekv)Q*BNWMS@;gUjT=*Vf#4PVgop3Sp{ zQfDt+#oXT7vp_nW_0om~N7`GiOkCzx-K$n$eBLV33r+&en@ye+^1G>@8~Pgrn2BB6 zbV-k%%a)V~;>zydmY~{-G?OCmq$4)89q;=mluK=Yf=T7|@|&Ln0> zP<{YNNzFv5gP|d07GwdEFSz2_&-Wp~E=V*gT0)~TnN2G&cV%?b=i`tFDtW!qDi1>} z=rbln6Zv)7yEsmOR_ZjFc-FYd`KPzWk~x^!SWF# zli`3Bh!IiM3homg3z>~tu+T2~B)F~)w4Zknm z*d6PcD*!`}g+JfgJP=Pe{}z8GqqpgK3b)iajw6%+Jf+t-E3$@X{$OsA5)|hF0t+pF zBNpvLXYYjVs-WvTUjZd%-(*a#cyUpv7yu@ZO0H>U5=yQ{`0iQrP41K)GmF$Zb?I^6 zvyd@*j~fZyFMNQ3W!cBxZCq5fy;%Y>E&!LsAyJXc$9-o+>KRN22N!qHm#6E|@rc`T zcvnwy{T-Ay=7MOROi4F8IGwz2PjP0vD6 z9i`TTHy?9d99bm_KgI(U$z9Xnya3CI`*aDer9t@E*9H@HlC)kTfZ2g{s;&92mqF$k zgoU;Pz#4u@udd8pC1acI6fwEa+WIw~L1O*?X&8N)pU$0a@rvZ${w_TQ5u@z`=p?YE zwgH0Zh@-kF+&`Uh+%C>fBNL>5lB~wAn>{G*8U@0%_;AH4$gdv2u>bU9z@;Zxq$>vKr&Z`&SfSi72Qt%HdO4(EJN!UyXX?%#YxNx`*(AHWz~pE9###z z%Y)Bq`j?p_wB1D$!SSSDJa7^7GA`^Aa=*s3WB@ntA4g!uA?vOzJdAy zpwr?QcUV$LVh+PZselB3DqD!=u`Z70rocMK*KwjIHCP4ApVx>- zAt z2wV%CPZdq755Z26b-Mu1A;U`N6GP2DJ%y$B`};7pnK%YpN@;Ggr?Y-Nkg`uQC<(d*WJh2#AOl!X%;EFp>GV5%V>`E#=+ zy9oRwwp+oLGcvHJ#w}t~D1WLN>Z*YI1?yKy5%ee5+t(y6tOMPC`yST#j z)c=jugB)n6L@Qt~8NpNP#`IrJQ0;Nx!H8a)f1MjB_@_Za_OMfIN}#~*Qr$j@+GOKg zx$SH%XBYt`^5)nTa z;>ZhK@D3UlD@~n1AfLq)HW~dSKUoJym)G<#fN1)1%DTzq0x#590s{ygwe+ozB^O8lHk78Y zq-k}`f5Zlm5xx|ZsTkcPP)@F>1rW8_xD5OQyP@&0`es&kt_PQSF2f`(+t9_%q|Y1P zUc=tK^BtoqSKxe_`9}uuIr1QX4b>+ih49d-L=oJIsm8hP7?wc21;2e#1^Edxt>pw= zD+IMm+YIAvPTp|x0c3M4RxQO);!)#)ao$27HEI>yVGgcR-0#N{{Ox#jwOQZ!5zF$;Vy&x-l_Gm!YAXY~x|IYQ3G-I$&FpjlrRTIq;6#->A}pHQu8fVbA4O&+cBz7J_~ zNP!4ou}<~KS+!ej)v4l{*^a5BX_AOTy_=urP~o$E`EK6{M;J&S;D8A;cVgbNjGoWE z!!B0>4lvrNA_f?L);OebaHmi1%^l}GU!mEwaL)Q>Ks3FJyyJg+jG&XAI>NO6?8o@_ zKQHE5=qg~GN-6|%_Z=Xo(M#d#ucroT#UafLb--JT?zJ)aCloOd5c|4);aldz{Q;#w z#a(^yRg+WqrwH+*N@6_=N}M%Uk5@uDYzmi;rR7X7%hY$RX7_$?knOV_t0oem+w-i}h+#WD#dw5r`uW#gfxlx+ z(+Le=#0?CkKV2PxjAYKSnLN7W#(&DQ4GEDrewlawoumqh`@(WT9FsFFTSCNEh2K z(xqsqGb>XH1(bOAa|I`Zo-baf8RWwPFDPvr5=w?Y3>mC*OL)$@Lf1H1G=-~+2XeJm zRtZtCXx1FI<1urh21b7CgB(!1)!8V`kTHUJm+XW>aRYBi0b*Xbg=PVvX(rY=Ug(g2 z{_)+6gtiDV4GX#Ri?cVWUJG0|mFdn9qinSZ7UGDSZZ2W!;i9)*SSXsKW`N)a5^K*h zX74mxQN`3_J#I4cc&j22Pe5tqmV@P=oUb~wt8bQXoteI3IcN(=U{_)|?;&()wiT>} z4`Yj7O7oMP_!`Ia>F*{Zy$@f7cC>eYmkj|J336?hZ}2uTNTR_gb=SuF*`9jeW%Htq^5V4+j zH|h2@qAz&;S>$gsu%*MQFxyLr;-MVwBY>KkM4-5QIpw{pD5OcEV`8!;145YX--)HV z&`kGTWTk3P3i_%8y`IMAD>Mt=!$HJ8f1IwhA4nA7t`kHp?;+D>F%Ik3mC^PtFQ!&W zBbw)=kUMssyU1aT_rv+x&!Q@SZS3XHR;o`@1ALQg4wc4Q0JZcDco6NYNY=~{K=FA| z??`8Zc)r+*blx_pqvR2fA3;oiX)E`LJ~udw2iAk$Zz?&GeBgOk=nCel8F}Ly|l8x$4eHM&7Of*%wXBgKRyRQm1T>ve6%w2rdmx>cz075M-O*D3T19&b98cL zVQmU!Ze(v_Y6>_rG$1gS{ z@aQ?`o^$T~|Fzy*Su4pm^Udr%Gv90$CLKKD4V z00IF5K%n@4h%N{TfFjrv1_5aD0@PjLP1@fS~SBgeMdN_+2nS3+xR2voc;>7J$Az%>7Tho{KHg3ygpQ?hQ^b8z|iU zKEeYIfg%9+hXeG~GyvMJQ23u@jXw$8fWLYJ;OFK4JKbN=zZ1dWe*}YVY+RgO!EhfK z+zwz1bAkf2l{I*g-bii$7!LVO1b;iZyWGcvJ;5+1u=PFRkDG%5%JRAZ@O^=QmFI4Q zfVm>wdEH@7zf0u%o#wvFN^ppRi?cHnj&#TUeLqDQ0%~*Lb|1b!C+i4z@q+vP1#Dq( zi0$tpARexK25^|02UJb*FUq|M_aB=b6bTRp0)e99LI9{60P1aH&-XjMzJHG^^baTh zZ}WWx0e-G7t^nKnBA@{1{uAe*D6AC~gJfH!7|91R0!sX`&KwvgVfHl+(2FLv; z`@I=z`zO91J_6YfRGoUcg=KhQS|5@pOg#7;r{CAfBo5uh5LdqUaPJg)B|M35R z++b&zlh0p-d(C??|!pv9PeKa_j^VD;ey^T&VL`N z1h;X4{N6ADVG#frfdKp90`G++AS?{<adD3iXEC;4aR&*hq#tG=z3t*U8g)@$7t%o@UuG zO6TD5TSRnw+!A7^aMWf8uOY7FQ%2qruWTu?U&<{p{`5O)Z^Dk~NY?HA?*GFw5j45e ziM#NT^4&!7k$-&SAOj9PkG|Zl|4%o6!yrfWcGMnqmV7r4F+!a}vTLsa74OEuisiBJ zxgFizT9K!CKPskp;tXQVg34xC3aoQxsUKk>c^DpWlAd}K&0Jnhljcp_F{&qW;Rbw; z6D;vFSr>@Ene|<*(id>=rD3Kqp=Ln8BpsV%^?S0Ps((&3?^j;3h8RnmrR*NxaDK(_ zw9oFlqXoJ~9GqLQvP?*@(@^uFldHwVu63v;IhQddVF~4&uBfkhtDTFsTf1{>C&BKt zokSajL3rXjeYbgyzWdnh6b;6l5g>btltxB)zi4n|9d^UO@+|`b;A$-ot7$XX?IFk)8)zoKEDYUv08n-u3K`yF;95 zEKpNenwx{A_v<=R@)Ys7=wc`va~M3X#M|jGY2zNJWM}5L3pVTE4OyBu>>S~7WYz9> z4tn8UM-CotkyjX0+{xEg=Zj^N6yvC3C&b^hqJKqfjC)Y3eB6*w{6reDp&l9ki#@#X z!l?S~#rT_x6Z0Y-pcHR~o!%27d@ZL}WG1=VFEvi43*v?8EX14o$$v?dJ?-Gc^#7ua z8ytG)*B=E~iU_QjQ{rBu$^Guug+?XQ?Eth$^FB&#&>j56X54>p{Nf-istZPgKO#xv zV}CNDbBS!j*eXP$l)0;4SaIEZ$RDI6ta0Rh?%%=^7~A?1uUE8ulJ zmX~@PP7!7&{O&n=aO&_03hqq^J)O8puzg_c^NHh&84f8yy-8|Vm!(EpW50O*)S0#qd@RMU_E_6;$9=W9b6{Bco1I5p|JE_3^}53{7ZNM{`Yt)C z;Pg8|p0iFRhd0~pRsySlh@X|K?VLSP6xFwhAH>*kFpQseXAGK^6K0)S*i{#VXMYdt zWeqdSr>MNAvW%f$Z0KBJrK3;r`!a|Q(nMF@%Ic=GQf3LE4VVnfaHRbz=Aw;q)*WCY z6BpT7P!q)}1dHvkDQ2ThK4LTm7M+c@W!`WdPC!=8pB$u;PZ7utCE1mMeOgZBOB*IF zwp%N#uo5oCDKmw64`3-=A+c}NF@L>l@g@3-c2_1&o&|vRChUfG#GluGJU|{e8QfC% zGF6zfMIdCq%W~Q>u3h`ToV}W4FI4)f()X@M4zm-V1n!vi+;<;(yc9iHq35%CW(E;AdGTr_wmh z#i~gGJ2LJ4WnS_y{Q=Qr>f08tiR2d?vhC<43J=!uQw^=jMJ+ZRvvOZws!LYc5a4R{ zzT&(fSd3Gl?=3A}U-ZvPnt$nk7->*^XER>2R=7_%QtmYKVk22(%05#B(-cQwajp4d z-phxKChMLCUo$tIx^(fr1O;L?QrqAoC0V z*>BD)XfpcU6OMHo4-OC>VRg^sG~v;$9v_UXSY&C5bj29HdVi@1+A#$FlI+5Rlwh^3 zIE}jCjMKIY{KQW-*tod#=oQ&aSD1@op&fjtf5`^=8aqVmFolxmGRM!LSpg5w_?5tg za+)lm{i~U8%<7w5$li3`bo>ql3dM*}TYOWcIxb=86a1L5Vdlzb;MqD=3LN>w7j{5O zHQiS<7gC=jv47IOd-_Wqi(t>FEN;so#y@vEf>#RXd`&Cy4}6)Q(hef$>on%CyJ z{X`gvCd64A1lsyd6#cw z@FU(vPM>GX==Magw$r5!dDrY5jkWv2(+PVb!yOgM>ulYOcotKBhKRUDxnOgqyK?bf z**Q3wpsi(c$swEo~Va;d$ob~;s6rK<1;bT{#ZxeOsaN3Zs4t2cx+bMV` zml4$atd%4YVmmW=zV(ASDlU=Yy<;BC8f&8FszY@4o;fM`8FNeeD|r7=yn3kG@T_cMk4fG~A~@K9f6y@;kU1{&(m@WB z6MrO5g^i5iS-7Eh;ab{<)Ju=O!6-PR+WNT<40m`s*;|>^n_ErZ_!zI@beA)k*ZR({ z$j$S%1irqZz!yG_LYd%6NLJKn61GGvs_qaZlocmt{+ zhdrsi-uW}~KW&Z%(?>fd3JQNbgRHWLa(_zXUc1CWtRf2w;^TeHWVMy$fm)27h1d1>-%dkfFFPD0FTCPe#-V!zz%4oAl^biJ3 zL^^>~2v#U!6E3qbY#mTJaa$-oP#4~QhTKJt6t481xZ-nL4_GVDz`V^vZ@ z%L|fiu_2}=oVzB+S6EIP$`BQ8;ISH7WX7ni*7RJ%K4dtg^luDfbsvcRfL|kG%rs#4 z7!H|;FirL%*$xeYvxhMNN!-g?53R#}@Cml>%Z<6r;U=c$ zOaZ%7wBorR&xTT*fxlC#`g2&L?c>$!WZ(7*5Jm4V`u!$sGUM#@Wh~}41L-P zJd|4UuQ#N{sqBQMkAICUyvN7bF};JD2JV(}m0moo>svyKQ4t4d<$aw~i&q>CeU+3R z)l->S!q~$U^pbi6?Gt9;Bl7^%7G?6D!QRA0C4Dl1VP_Cb3a9ifLJ&*|96B0gdT6_u zG_;S|8LgMiYDD2@NH>R4gSBjVM^HhyK2X-omzH5xF&Hpl~7M)gBxM`d6Fuf!MSw$?%CeJ!_x(O%FiO3+e` zhiH=^Tw$TQo{Kmi_TaQBn>m!B>g&m*IO8n~1QGfJueN-vwa8@Ueaa)b^!AcKg*76L4 zu%36yOKY9#r$T+AmE~L~DF%R1fj&B=?hnnzpol3rXLV z1sQOX<3jYjRN<}xiuJ%_?AxQSK9}2I+v1SG@@#oQS*5FZUJ!BK6GGHA%$=Y#Oq&S< ze}C=sa;|m*2IeNjr1WA$)XN$=_{*P7d%{*@DMj4t8+_oe?a93%+@M%k;;SAu6>bMO1`z8;g?&%U=|1ABnrY%D?&8=En&b6XY zk+&4sV>Wv=OBPaT*&yL@Padxt&K*sng@1&|n~PNbV8g;vd{~6+c44sk6Wg$Snw%pB zP$?QV%x_!uag&fe9(x#SKAqj*^DbPmH#~Fk^M_&G;a#%sDDK5QtD@8>Emgp zWryli*9TjjxXwftSoy~K{bI|?j`YTlI-%goOu~InCG|xLIiDo1mATkAw&tX!%72i* z>Ymdtec}!!svFxJ!=So)QOvLYq2e`X+j<%lV3Sz6H zLu8@h1O(#xt|oE`79=5K@6gLa^I@W{t(5{TDZ#oLm5rhe#jd>st&|YCJr0n0-<`ee zlBsi;tL)>?-bHCZZVazoSr^~N^M9%q=6!;tUk`#5$k>Z(wcU!+k+TB81>9e8;~a(|fxdVW*n zd?z9q5?_tusk6yJrc(Q3Ye$Egg{Z;SoFzdU8T2BdeP@f>$+k=05qqs~nr=Hr_W^MQ4lv2)+K3aFSzUJC5OEHhp|$?^5XII*HP zS2!3lx8d3k44RDX2yMdT41XEDX|CDPqyx5hg?}rUHya=Rh2`>&arq+t!nwl`_ceEk zzG>G5R?*@dIP`>V5D~xhX0i2yG*>?F0n)O0ikmI4^sNrZ(#6NJTmW1nlqTr5mB%WUZoL-&wWP?d=B@u=UccS*^T2P<03H>l^-kyPE?tXvSTjL(v>8rH zM4!EqTig2PLb(ECU$}mSEHxTCktZk`doYq0=BnVeKeQImM1xin>_l-w=jX52V4!7V zZ?Sgy{WK-G9%+ghh<~C0E8izgX?lYwDC;eH#@i4&hlwBh;{4PnI>}{-+Lpzy=KB5v zlODhf-*qF+XuUn@x|hl57jQb%Roaj#$E=&IUjuOupfhpY`*8!a*NpN-bILgjj!k^l zW|v$04W4SN-*!jPTJg{ebV)yvUgV%E*3TSXe0RKdPc5{UX@AMI3QNob$Gz66V}I_z zqEi#zHasFjgxjoQsDo6FYdZ(|)nqpB2!!IIp_ph1~;QTxG03x{Wue&f7N{zW)q{8<;fj&9OFGD_|Mj^ac4j{75@SdgZKEXalW&gY7&X(OQ;PXLOmtQ-SZI}O)kXfI+sZMmi8fiQASH2l zmw(yh{|sGMh;evVL5jizI`2WPJ^|xc zlhVHax89v$A+Wh=|44FcROQX*G7W7`)8%G*D>9iZBTMZglrId4IQ(F|FWY!$(=ysJ{p{>(KFv*1#`wiVF)jJtLh5dA1Ks=}T~egxr<7X8-_7K1S{Z&^co{RIbRa8%!| zy5b6D>x4`;&xQ8hlv2UF@KAp=QC^dbzK_344s$Q({IHiwwrYDQ8zS2!h3K$Rlon=K zZw=6Q@j#=0jA4GQGZA@3z@R6fl^KIiu=k$+*M#yA_Lo#(&wnRCh~fK(%9YDQ+T=`d z%$tkG0STeOI^`$FpZyxYFZal-9v$3FDYL!tffo2>TeJ8)#{ZzrS~_=&maE1rFQ58q z8mlshDV-uXp*P<(r+jzDephxgLiwj~G~&X*CU9byKZ0aO~8R>UeG zDtcE9`&T2V3#lU71?}e=V(FoH=RA|?*bwoo-lMwNj_j%4Z&DUtL=9hfl!e%09e&Ad zh^V}Bntz|iQcxP0yx^ngc_EKGwFYjy>cBYEzvEoGyo$|JqLqK9F`BDdno~5O_42cL zP?}#r3%_Wqu^@T{;7AF-O9FZEh9N6m@8uKE5G*x;U-Yt)L8WyK-h}PVsvDryXd+uji@vQ^cEI0CcgQObFs)B?r!v5}Ek%TpFC=n@6s`YstS zrhmRqX!c79B(APWtR5q20`--ZqPW~#IzMvnwbZ(N&2b$Ftwk-VI6IU0C5!Sp&#UGM z?B<~1?0188CX!(!AKZ={AEny!#UwWvQ4zHRpEw>?ZYQvee~dN9J9>cUZCCWY(;&Ah zMz8T#5p%M)gtP8$SZyPgulOlt4rpz_=YI^-W=l&;WrR>C#f#(&e-VANoam}XD#v&B zIHT{!Pv?ENXm*T<2z!>0Ycpf!A~JTS;SVyMrBOW8#yQgknT_9_=hvy5U)fo{!?o@Z zW7~Jd`{A72%0L(d@>q_tuN7k0pJ@0OOV$_8dsCEYi9`8`i9bt*N^K_3rr3jAndGldP z6L%t3jx~s+Adk&Y3cWX*!Lt4%b-}k+d@2Iwwe!eF0=p(zd85@{ys>)H1&(O93UeUa z_sXe2wW%-|?+cUW?J^8OBVUSvVSktrYTOfkhJ@$@2k$=f4+rX`isbs|?6d9{x*Gy{ zGImxxYPU-Zs&XOEsf3$2{GsX1nRb;q=)df`jE&)3H4Q?`58jUGc)kv(w`Q(6c@`)E zKEc=Nw8>M?5&mSL;?W_Tmw=tfYxYTcAQOjM&-$!FgmH98!JJA}CD7W9N$-h)#CajLW>Ky$*j06yt=^rd zJdMd9-DZ!kv6l0DQ`U|gX@6vte1uzLM0Y4uSjddChH+#kuPaDriYV4`XI#VaeekIe zrE|>h0}68V&Ii5=eEDS%wqSvw8RTG45_R-*s5w>Vtt%+`dp@WwFD4|s-jVCHy7vVf zfXN=(mx07r(*zN;j)jBbh*OZg2I4kZJ;k|zRii!~;MP9OLKV`ML%U@cxwwlkA ztsk)ejw=2-#Y>FxX(P90D(}c(S7WlnyN8kldyjGjA~9JKd(CXfQLN(A$Ko?cK#)Pp zdW%Sb(SG+AClbQrdwj&1vwkQT<+h zalMmzeLGeFkEJZJQ%RuT`#t$R4HD6W{)_+woGpxMRrnTXIs}=$_kG$p3r!(J3a;3X ziTL(xi+q(=kpAN}cNQi?q-xTba@TeCmN<40jr4Q%GGoU&1%E-O9-ppQ$7+*8_1#M9 z^(=wo=vd< zRy3G$N){PHVt-R%w^s@wCP!DmsDxMcuGkSJHVTC&o&p8j-m;T8SCGS*&QvJ4yHG(!4uPGDDXzfYE`bCYW z`xVZMaeu=`H_FHH=9J3jyLU6sC-)W2hYOZfMUdpd8}n-zv$m>i@m+klYjg=DG;xVrauXhh8V~_)HAK-x3x(N z`xuE?7sh^c)Az6l7X$#fn+n)JBe)*6^6rc^4d9fs5#uRvOi>3Thi$D&L1@xeayb_fGNX zjXXvFs4cCB(~}Xkg|VgSoL2KtkJKofe}A{bIHc)YSkn-G@Ygl`;U8#mC@hv#S|87f z16opR+Vg$6tA-ihf;x9hA}z*TeIoeOZFI@`LeX(Tc3TAUX-auN^lar>R8`jvGF@mK zxNs1P<_LymZ!Ie}I=(h}f9w-i!{D_?)NOgb$1X-N=)3+aH5wW@z7bSgdH+u;_18K0yEc`cM1vt zHw7sOd@0_XXMYJ~jtNs7OfXH)34t8b+<|5bCJ?!9`0)3i_ch)4 ztC_%gqSQ&oTT+Q17wUx~{nmP)kv(mpI9Mqe=sWYjbP4(*P&L8kXjG&-q^~^DQdclO z>=i30@LU1 zl9+I7B2Pv9z@r_GF|^NkK$yK04CB4 zUCLKBD#LzaveHJb0%S}D+94Dw1Zk8auKE60Yj}8`ldT3nA;LJL%g>AX>g<*+;~V4y zBpC6`7XvcwFS8I%-eg>|^nWL44=3zOL8!zX>ksWpFMi&v;=I5r8~CQ4F?K@$EG`&{ao!w< zJeKc!WK`d><325*>YQ^YuHSo@5z>bqTke?QzCO+3!M-z64cXKW8>Q#tJCS|G1%bR> z4|Omy9fzX{4;LSw2UoN)4A9YJF1ZyR=C8W?T%U_1END?5(N%u9s;{lw;%F6&oZH}( zv5~xw^E-^Ey_9!>_kYjE{8BJf-PI3|_V5;LwN8rmI(QVn%*{-*hxZ}2E1#LMi275R zL@{VU0H2o>;-E_WJt&ClFr>2~%zl<45iisLe?Wl0L#TwtWu1E{sW4ZHXP}eVLUkb0 zD`nwPb14`7gmT{n0dP-2!+HrGx0{tVg@^u&GuLq1qg`dJl4rIbD=vQ_YOd(vzU`;* zM2}eXM7|KOMcJnVAH;HX8w$Q^D)6w$#N;sS)EoIq^LY1TCvvIs*l)#OqL18ARQ!6`ei1X+aRSq}u7`*1JYCj! zaWsjgYPgoSFZSS>yTZmp{e~8U!{XGrU*5`H{|8Ubh8+rJZe*9n+W{h%pmYQTw;Blq z#Vi6dIJe<71Q;IzG%%OpH3St9GBpY>Ol59obZ9alHa0Xkm+|=o6$3UhHJ2gU1Sx-a z1yq#X+BS`Vl!Sl^Lku~<4BbdeH%JM?Fu(}R;4r|@jUY%#NJ&UYr<6!25+dD=K_elc zfW$ZId(L~_^Z#po-+I=1p1rR-_8r%~*Lr~L2F8L)4k&xLItqyqgb0CU04lmh5&$q* zR0s?fAqN6Y5ExhZACw$u21k1!P)L87|B$Po;ZO_?Q-xx1YPu*SK+Dq=01*X1BxE3x zGGH)31Pqq`mm&%+15kx}Ashg@LI5ok67E3`R6)7>pb<{a7~CoUS^{`sd;o~Fv?S=a zIY7w`jz++sNPsRB;|zDhod|=v0*p~G1RUe@4;Q?0&KQiljIgk`x3>_~%|m|(g?3Wl z0|C4d7-xVH+yjpGf;#|yr3=u5y1{=ZCPWSdm^dRm{=mj4M~pWV4F})=R|E`>^uQT- zA|2pp0Pbvnv8E0{-yM$pqpb5s0R;G~GysSY~V7TL- zJ+AX;1QuWg#t{z!0RMXay|Te^%K?RS_4!-b)WaI!Qcb@)0Z9! z$5=Rk_iut*gT=ux+zax5rulD^{~x=5dHG)m{@?Mad%C**mh%1*|36Zw8^YD+FFB5{ zo){eWby2tpK>oL?IsDJK>cSlmo^Jmw)x%msI8c;NW>TLi}q%|DM+L&8uFzott>Tmk?^ zqoF?JxEAAf;s8GgZVVmZ*xw8W2n!)m7@P?JmtFwC5rroI)lYFzfUqM1M_C;D2N1yl zC{Ogi0WoQSFz$ci`da}45XLy8;s1evafmnS_x>Nj!93Au+-UwL4=(b5?SJ0`a5xqY zBcGW>!DPel*M_$qS1aA{7F-#W9|NwKKjjnjn?b+!Jf$K{;j79DT|$3XO6hw;GyhqQ z_vrR4+qvIXb3N(9mM4abyds|-X6zm+*iwJ0dv}ZMrl85~RsZt`{$?RA zgw6QvTEN@~o>Ei>`E&Czv=$ zFoL(P@L$`*QjZ^fAG?+_bjhZbC_o;t{aCcn&vIEL?qtGuq1;5oql1}?*^=oN;nB4Z zBiw$<>#2WQ*Qfkm6fU7Zq)jls9{A{%3~^oO^T5a2v1}tZ1uq^F z|12Rn_6GPkF-hU+cvxU2o79pi9^9#R2Nx*xKcwneAzueQSl*m_)SOKHAfY;vo~+!B z)>73*@_kFQzKfuS?Sl0u<9@noAC0Udoo9#V$r+IedMr|>PMO;xh9m(p8*d9}R{c*^ zgfD+{b93rHu>2hFOLVAMM%6*$EBw?GDm^9QtglDX zS3Jf?biz!TU6|bNlwDPSFlXZU-jZwmaIa$2KYf0+N#q08b+%Ifq30B~Ey+n^UDzL= zL}r^?4;i$_rPZfqxVr0ewze21c6l(aP~v~?!}Enz^l8}TeZ+#$+}RjQPtjeXe(AtR zp9cr*!4#gW+4i#PrBb{G>J|k4Q}n9Fz$72}i%2IVyJ3iB>ciou&#FuH5ig=5zpqxj zNVo%vT!Tv59i={AwY8Mnr*q2Qw`@P(8W^}%U-}eIvXqk(6f}_&`XD7rIFRH%kClHK zWP$8PpSKgJSGyuO`H%|bHmRU1RWDnOE&)7Jxl2!YtARD)p&6|U1HIF*L{0Dl@Q_9A>Yty?L1anqS8tN1c+x6GGw@)E_v^XXp36&@mT5Zc2LYMX)eMJ z%WrfO4n8)n7}hv6O)jl`4pTM3B0Rq;(9^oel~S`M!|;p((%&_f%)iK_?)C+yoT9U@^U${fF`g%N8W#ic*8Qm zE|xZb=Sd|0DnXzm#X83`>f9^wv$3$%=^x&=z)g7s#gEQS{VcMPLho&{n(YR;6~z`s zhBhpAFB40Mx^?x~he@6=9(8`a>%Aefw_0Z;8;PmNm}bg)B4Fc`SiMPSIZodfaY1>G z^6)NwvTkS^!k5)36;s&@ee{1x=^nJlO99*cxU2t8Xsa#q{Y)TUNP0{F^Df)vd{B%r zCgZ(E_9MyitE1YjOp;L|ZI0O$D$k}7U=0R0h^Jy`*!2mqXzo;-t+m;wRSpA}>cR8w zZku$ZO{UkXsGXZ~$7*vrnYp|Rt*f*gNTmcijC0lGi#zT{Um_d(%@TisV{?k5Rg*ay z@2$kbV&AF`@y&f5jVDPA*bI|<{E}}Q=zf`?3VeWe89{vuzst)_lGxVM03&+DkRW$& zyhT4uR$Y^@Ag|F#C4Ei%RFJ^&=zi~8;OVrj~=e##NeFH&1cyQ+nr~aYK@T(NJtry=(tDl!MlJ5?m6yAe5Z=iogFK5*g?wS!G1Dn z{K9>@)=LlXN^hEvR7&7?V8*kD5yOo1wqM=GRi%2GqR<=FeRY4%G2Z5$ww<3RB;Hst zHYCY6kjI(z*xa-zYZ6fewvt!0yxZh^B&=rMFqfyfl~Hihag1stvBVD)EYIvaonHCZWQ>Me*H$ z&nutHD6xnZIyvI+3yXXGNe|>zG`IkJ*HfErJIr*}5H|)M^eI6Mr9zbi{gQCk;B9OvGGjg9)omUP$M~coo&9fqaJX`vlw??#w>^;iVy(lV zx=>mArOJOLHaJ$A{A6*HEFQ@8@drpchZLW7NdJoV_Sjb)rl<2nUN`CQfMV$tM&lw5 zV{d{a>XQjL1XR154$#gzayFz&0urlQZ?s-YudU3rC+si;iTt=P$1dzDQuaLU&6mw~ zahC3snhvK+GyJ3;vg<4SWb}(!Qku`ShhWx+S=)d5Y-icUkz)w~0Vb)NKNuE%(n)9E zR2}8r=!X%EN$=)8^?*+?M`U|{HF_u|xxijKSdB{bNNQ%X$0T13RL<8cFkn0G+`Dtv zsds>sQ@IW}$iSK?brM;Sg7}n^+?>39c;-|%N2!sVoG6hjc|ik7lQZI&e9YsBtPm8* zGJ${dHTJANS2FMR4-u97VF7xU(r}_`f9_ow9W)dy5&^z6+nJvN)>u|%P{`k6DZkL{ zjp)g9IaN9Px+_&3dRxITfYm-iJ)7GqW=Gi4bl$TqMYHWY$UW+#rze8H3?=NwGGu=FIxQnRR`;@5n zstV>g*pA-wx~7?CW2X6HsWQ^qcxQ)0Gp>?k)r%@9$AgR{>4AlN7Riu-&84{iC80lB ze>NIF7#{}PPzEy`Jk~bzpUT~e6#KCVR)OAk|5UW)(I=(Uz5XgYZH?;lz~;-#JPUsU zF~RMzEuH$6wX1alRb6`o2#Vc>9d)xBKVUbO@P-<(?bV7be!F2E{kNvu2jo4;+U*q@ z@B40f_y?7`X+3`f6lY$jN*dZNa!~T3lViTWT-g>{ODt$k^z5t55;aJkLD^!n{K74- zbouEvoC7V6p{k&+%n$DSdit)omgs-xwgPC`dj_j%3pj$;c|ontb98jiP;N5k=X?eh3f_Ju#UYS#LB?};Iv>O(nxUUog+wWiBiZU*`Z z9t-51+LcKye7r6D*1<9_XrHB*mEgwW4Q$SVISbKh1H30!;LJ-{O2U8vlEQ0a8n z&!niiMy>w7GffYxYBP`{$9nyZ0GWj)cp5vHeyewr=%JNm;ACiW@t1#ywsd#J;{*Ff z3F(9oWO#FdDqAg!yCu4a#@o9C)<@Y^H6(}R^GA=PF)5?V z4D#!bO?CH?R?4;vy&`|9wuFzVZX-RPD(Z}a7*x$o=|5b=j$@nfnB_eKQaIfjQY3DT zVU;LvVeb(eTK*IO(v!t+Mf3YzA9^&=hz1zlA+zGQ@JVX{uONCVz)*YQ^BV?|C4D}V zZPD&ttS-eSvmd5Rj0Ax1B=L66uCUe4vq#s=GC3aCt5XA2 z_Q2}T7w2jD+j`uXZW#q8HU0M%T3WkW#Fqt0mT^x?H!hX$2(se^`m~NRyH9+0G+K`T zIX66Nd9upkDf4W-smsIax}a< zw0|lVC}wk)YNCH-HL2~#t*6qJ(k61R$8+9iYHt!gkLb;jX0+1udunj15XKTFPG#f? zFXc;=3aGdG_Gd_Tp?-qMuN-@_HyYfeKQGCW3zu`Ck2e6FcD@0clSTb4^UW- zdKR@Pr;xt;dSJ?{;?+&)t$1gO>^|l)5KlFyfC-EFdO8-?a{5TkAjzs1OO01HCj7WI zJWr%Cl&^9`V7b0AojQkVu|fPCnwU#xeU3 zn|}JW^^j6nz8+*VjHZlj1ZTf=IC76McM{Y|urJJU|M8RA$9m3}gxATaSmMeue79$? zqg?y(%L|R`Me@?7A`8W204G?Xa zK(cZ0FjMDw@xIA+UZl&h&k>E092W({z?X$!vX3H{&@0@d-EzGlx*NEt^E}EzFRlu=qPL6q^3i$UfF+_;oFqa$Ut*$z9D_BZ&}Hd%{4lYm{OCi zy~8ns+Xmt3RAdnvf<21>BWd0C;1%DBm4o0FK2hp~j2+$9@1%uyDxQ&IZ@jrQ;~`Bd z6yhE8s6Lfl?)P7^CDAv@nRrHecWYGIj#Yy={OTE(f%!}U++sIue{MwHQ4Kg=pwEB8 z9Ov$!TDahL=-W$NGTCMGv6&&V_T^+Dv2Vvi?PLKWtR{n*3%NIGjm+VpZVPFy+sKqy z|5>SpSsQ2G$)}d4jAq@l{5_kZWB#7}sprz4X`_fRCrsj;Xt&u4j_KJ5Zw2X8S3iF*h%uu`KSacvVna?MPaO%%g|M$EHT&K$8#cOe z%Fv~m{%Ui&R=~ui19e@x^68um^-`a?^+}Xhf)EXXPq30WL-K0(8>er0jy8(-CHOA8 zv6-blbL@KY;`uR7pfMSd?3j$G9reepw7@mb2{pT&%CC51%Inx5?;lrq7pi~yA~U$_ zsqSSQ41{Kf(#Pl(9hnWS*UUXD7*gt0rgRbDCU|qZk7sD)X{5)Su*jB3TiF)U^zugf zM-Ps8ZA;FZvSq%u3eCvy?SwM2T8)sgC=%IUVBQJo?G=&ucZ?g%xOE4-=@5?ctXk%j zRN^o#d&}1lZel%UiQT$GiAH|~phV{G=8SapLxoSg_Fspnin^Gl99ngZP6@Dpw#sTJ z-?B0>f%*xr=u>$}BBr~;bM~%Ag@ji4TKz>sOd`?M*t7i334c(&mwfYXz(!;i zn@Ut^R+f*QgawrWf79w=JmC}cVuutdklqg^21|ylw&)x0D>tw^D3O0&k=UxRF$X$z zz*bChzhy1vG?X|HT`K5CiF7vK)4LzEL)B@eH*q^9m*4W`_gky7oX*bk+LCLWBC=H~ z3k~_9KWjuNy;ZKoSH&fAjIniF)%&QHY4w6Q2ke91L|cYOnej^ku(V50wZF(di-{Xf z_UZQuPLY<-VM`j_rh=-H-WE zwnou#C%jc4G;EbuCA7{{srtByY_$G$B>_zy#zP)16uIK zKkjf-hO*0{b#0$i@4Kpu%w(=n2eb4MGfe4Ga~Aa^#MOyWB`bJ=1aueoA)9L*?(WgH zpR3}wE5LgQgW!vSl$71r(AM((hY3wig>9CQsCb#+h`?0@Z<1^5qtEg#4=SNm<$FRM z5b7^k(~CSZvV4D&i#B3xd!Q|e>z-KHn$C<;4K!@#9(&254i#Q)bP`9dC*w1=%unQf zS%LC}Ln_0f;Z|(`A&AsD{``H-lT#D@X+uhK!>~&Rwr9yc^Sp&>4E!BG723;rmL4vJ ziAPbgI#ULPn+2yW*n!rMywIX1x8h93{FW|Xi!$i9&7FVmX4^JAj+5IO3?Eb779cCW z#9wq~SY(N=6=kJ+A4(_paRni?x#xX{MW%XekgN5Ih$?SL<9U&MS;bD-7^^m_JllmU zyZ2ggJHKqS-tfQ^0H?V+1vd#jOUVz;(Vunev`mCzkEsIkebJVReb@Uq4>)1_N4eMb zhcelE0V{vR(3RDsSoa@+F>V=$zKJilwRvlq)ZmA}NXHrD6>oHw(O9rCGdw& z=+5*}DsO^!&p=>9OacOrD>h&T~MG z4AoYxs09Y0gzxXeV9YG4J(l~Q$itg2EfF+>n>BwwmY%$G&iI*YCC6&g4X^bFgwH-U z;Tz-#Ay(RaJ^c}4&abiTkD)O8YRzhs^E@RRzpYU5RkrTUWoQ)55ee(D=gJ3t&xlIt zXy)16FB=!72gm((3Z7GO_!6TTfOtgc9@)MR7tnLX*%*BMe)@L=Idf|aP;keIHr zNdbd9v~d}&_u8rg9ITde*IYYgiBK`#dUiSIio6*)UNTR-Ny`Dcd^h-TQqY5g%WqaJ)`ui}Y;t>9AUM=$UFH zl?Na?GXIjKME=TT&CRB6(_&7OPYr(7p9rqKCuU@R%uabvrKbf6#r-R0Q;Dec#*w#z za*r_tLZ*{nUe^!wqKmneCteKI*0F!hC-dn1tTiQ9WN=`CRzl!97`Vo!-I>KjwGhQk3iadq+aka?H|=j}#c4T(PO z0|>VY58--OnI!!SgL&4Lw3TekO;4eAKK;BWjjDo~3U=6^!AdI!UfHum+?TF;^!nl_ zz*4yPZN*gdYtUL*oMRJO%O}=2^3qvQ^@qvKW8ul_9Qelx1q6>MF5 zysi;abmi?fDw6aeTNOnwrLePEBqIiF!~g# z!upD63Ay&=d)!XJDYh9oM8}yPVnpAYpQ6V5C~dCW`s1mb-#XPM|FW9|5}a=W9a_5d zlaNf4$Fr}=d2KWW-mq_1-;H2OT$D@9wL` zvFi}ijTxmdxM$OLUS5=1?D_{w5>0h@G=!*mB757F#h**f8o0iKI1Dmej=lxd#_(!B zY^$#O#Fgi1Y8(Fn_M&S7B*0ntEh3ZdMqIt0rtkj%Szs2LatdW`WOHA$jg6usUEzK>Q-%k0TM*y`64SE+cN8Tf%m1)o{^KicX9fcB{7v?)O8-OH z^*^^y{hz_00sMC?1<+f^0s+*28eEr|gW2Tmi{<~h&Hr-w|LgAGQT{It{=fN1xY*eI zrKSF@{{Lu=Y%Og({-b~ER~P5E-j@fxO@Q71HvI_vdtBv#rj{1<;0cdPs@SN}a=HkNikC6JTl?}Y+jU}0wdU%I!cGO>PJ8cuKh z_?HU!HZ=czq_~|4$n^Jgv2t(%j2s<}JmBB1_ziIYyjb4G&=lzYR|f-_80|pLZ!Unh z^n3tjAV>J$_sPitU=sc<`hN>?aRHd*|3TcW049|`hz-D``UkNCnAH9t9srZpKZxfo ziqRj$4PY|qmhX<@NLbSIscKf{UiUoU;a_Ng*N#IvA-Srwoz>Vg#TSMCewex zw*!FxK+fOD!R4)~{usPvW%dWY8JPVG{#IK4137*}kc;ELyx(}5|9=a<@v-<9e5m&peyhXJB~MVr?*}8$KfsJ zpA+7Cm&w@;^e^>WA%9%{1>Xwc`Y-sFoZG){vg? zrg|Hb|G|H~bbvs2pb7laJjjGE*s4Cb{jN?J-;H5+TwsP`_hT9jgV&N{hsy&JObShH zR^Ynhjd05FHgI$1RO8VXaBZZI9kh1_>%tyMJx)i<4Lb6Gg|u4gG|0 z1Pp3Id*06u-WmbckS*X{G8B0ZF5E~;1?YEfeUk1C{T0ijq4T@Sd$pXh@1H8B8Di9< zbpuLgDe{f8=Ws}&of!yWY0=Kzk!P=OX3%mcUWsKA=-_=$V%Unkv^Q8|@8>*MtJGMX zx^c;IwQ&d`uYb`-rzpKd4nE0XFL;#|uRD&W&S7BN_Bvnol*PbvSYI z?WKHEO7+i9ZEUXgaYl1*r0{P zc&zmL`m;!##=v$jDUF&%Ldk@_C@Qi$#3vkTm2Hm{`fev0I;r(2zHM8uZ?xEg`yZsT zI!MDtDSs4V+W5Gsj4yw{N&OVK+3#BiC1K0 zbGB;}EAXu04ADnZe@`VymY`K!dF)_bW+WLItn!xi}VkFb^0h0nHu;LCi z80h^Ru9(U+V|*4=iyPLt_;_@r0aqCyi@24j-_qO{$~_y_#!n+(-5nAgy3G#@VY?0$ zQ-8)cy8kJGAQ8FRN70l;Pg`{yW1q-YDadS$y>7OZhA_=XJ|a`8Wca|Gb+X=u#XM$o zOX7O`Fazo5T7f-css>n-&qcJ?*HV5RR7?U6OBqG2iVtIR9FS<5k!aeT1peeFH)|{$ zi9fl(H+)-gU=Fl%z#s_9f22&DmLL}~sDFou^-S3cLa>cDo|Feu!JgdXhIbaWY?YyF zpiI!IEaCe}KHKMbh+z{*O}M&y+54lJ$YDVh+_Jc}AAIXvokqj!!;FAymN=AGFsD`p zkK6);3C_|$owN$_wF}9kj~1SaD6CgWc4}V7iCH2afe<0>5D=AWmQ>rnscJ5Zy?@iO zKE8>LGauABbI$7Ny+r@4u8%92aQ=OG%8WI#IcMY-*X>ONnZNs~I@m#Phiz+Y$F-qV zvB|J?Be@H2Gqg$t#!^V6rTD&jD@xm3{y0i5|4IAS*EvRgEy~Yn%b^7Epf!9Rrw>Jl z_anV+oe8bG@U`4lou0VTGs}mfsecrpwwb5O*bGHGZu|=sbFxo-V(p(s@N*_nSQDsa z=z>Nry_cqXU?sDXN)P5vvyL$~ta*Oa&j(>#0zC@wP@l_~hIr`c8I0N7T6jLj-*G|s zWG@^o1CUTpk3Hu$3tI@9i(kfO%JI}ap4IFhx}6sun`0w>89b%1vX|`}aeq!bl_iGl zW0645DrN%6MlBbj$=4cmH-s{wii>`isfMow+4d)|@Q zsGRJ$Uie3`M;o|@ptTe@}YezQW+9r9NAguYGkmFza>o6vGECK z{RZe$d&G+aD?R}xDDEH9d2Nn`Ab@(=^W%Wf_=cG@WU|gdO%YsA z4qDg06COi&H1lq%3VOOvek|!)J~kx;R7srcF4x)_6*2AWGEAfw)PH6$HT7d35gdbO zl5w~~Xr_rM13zkz33LZOkRwfwuT!w1MK2W^iB{a%Fa6^KYsL}+&2ipSYk3WJS8-#% zuV<8dG-p?dpKVeI7L4YNghpiYji|VyyG-Zmla&RuP-MCW%ajph5$cz?}vHcxwc!*1aEG!&09 zEXViulYUen6IGLWPkGqhGO&*^(2xAedT$mYapV5+0V$@Vvg1pPy;HL$Nerh0LtL;t zGSwOSbAEr^k9AU(!2$ZqRwwu2FVd=osZg1HS$Aj}ucZ2?R$RMmS>oSaHK5besi6wg z^v`5(7z(Tfqkn%5|IC<4WZdL4^`e>Ew1*Y3z=ow`uR4fxQHOg^TVHtqvB~>jn^erl zPe|bu_?d(OzIbbxTQhTv&YqI}#ws0i2lwlZqJBHe=VCQ`*BG%7{nU7jzCIY@=!|8= zD|hm=FQ;^7Hdj0Di3zy*dt5!W0$aE&s+=G2&mA!z&$wuh^d8Rn&}~; zC2J!q#OOyoaICm~?*>{8oL)Ix#H#cks06py;hwF44p?^wFg*{~rSA~x+Nsg8VLR?; zl9rUkUCb!lza3E9lEQ+6i@c{cc688kz;yxF8?TfiG#^~*1H&n@=gLbesOJ5wu%s-E zX$szc8h<)BrSdyxfQfopB z4rRf(%lrzOy~q@EN|}7}GvZPVRR7r#`i;S5D^)#A%I_>E5)PB2v_nU<%fp%(w6SrP z6*gfPs%8qw=&4=~+5~X5RFFc08>Ucqb~c2~UVqP|vVCG#1>mp!8F2IL&dX|Aamd&_ z8Lyf?>=r;}1e+cME}>*pZ36Ya@=m5=VUt$cNp!Gs;T~OfLOz8VuSRHM_Se(=Cn%2V zs-14R+MXo=5)BT<_np~3j^MJJkAzso4uLzW>5#NkDh~oVNdCN?!_E@m20j6b8VopR zxPSgjD9;%Z2?D>iVhQ>(ELRgOR;j#Gc68V8Bn#*l`X}g9Fn@Q^ z{cN0G*xFYEC8S@~q&DKD2to`K!EQ2KvpQ3b%XbARW*Ck3Jiui`<07g(ilBu-lF! zUg|7%>m&_Xc#rE5W}$QJtdGL;$bWntifJJlx}KY#foHBpn%mAbzu3X;F@PsD{it!+ssc z*D-fYW7#v-r!$E5$VdI%GyRXZQ0l@OTs7{>zCcW}GjW+wGbRpj71mM&tIV}Qq{dl0 zAqWZN*$in)OjGaH6uP&CW~?7N+^SGUovjM^VU2p7vA2l9zknMV9DjsZ<=>hCsB)NM zdWX`4mAJ+xxDYpx;oAlCZXO-I2;V8bF1s&I)z3#Gi;FJt5$WMFz;yzadnatwdUK`x z7s*f;PVVZZ&7!nshXqUVC^l?J zboT_?=kd7vM{Ulz5`Xb4u7U>9T{>RbgxRBrq|cl8tG*JZPzvT1EU=Q}t$P$VkcnVp z3jt-xUrv@M)^_@rgIGMa8nD-Pp(`=MM+4kCL~Y)k?p0KM&KY%Jk?2u2%VUAs=x>Wk z;n7X`c_j3$J#(KJ;>Rv^e>lNc{pbt=aYCrchG&ZA&(sKJGJl>CqucsK?=u^zQX1-E zAF`-@#pajs=M3@hqJT)xG=`!NN8WV*?6d2lllcaF(v z2aws2`1=H2##g@Ie9mbBkA4cVS_})#3dbs?q6Mm0>@pz7FcMi{l<~z_K+6|{1{SMK zYU7Y6Zu;FHsEN-lyKy4j-Zx|3D~vX~Y^5wB-VmvsU4O&I3zUJka_R##($ijw$m^k_ z&vghA&Ej{)Pv=iQJqYPI&0B-{-LhNDw4Dnv)u<{~OxS73=#ttF;q9Jzda>j;yu*)4 z{_^rJYnK-CUAWAX?AcPHHxzYefnBGYDEfReV2FK~62i)$vqQ29b&auBE4KQ{Sm(S& zW{6}3 zU3YJe?oAGosw%8_A(9;E-1>m=IlOO5AqPK(QpgY-Wm+{On&%o=IC9Ck%*v)6BRN^@i@>k}WDcxP#8S%&ElVVu;1*B$up`Ixd2JHEs>c^y zWA$Mj$P-JY&H?RiB~H)SCe^%Ysr`Th%c%8^BIYai8t-_un?Bqbvhkti=q2Uv1hs+& z02i5(ZPAO8W=`94!wU}QDPY_Kx_@pQKFQavy4&`bt9Cf$pjS*>MVqSd@ZCP+B5B2; zTJ*_Pnni1%l{K?47oN>e6fQ5O`QZ1H1Sv@{c3CS*{PVp%HU-sJQKYH|H~OqGvTk9n zv-iS$(reR80$+oB@gRVbWj+gi%Wy$UCq~n9pC%~L1QUWr7@QI0cb>Btp?|B>3IIJe zX5NUWTj`r3iGH5V6k6K1}*kf~;sw zHmh3hRh(Aj(6*dl#qE8;stNsYodta^KbcvZJH-nf(YhQ5dtQpi<6)Ny7;Fq#Z0e<| zQ*&$x-6YJFRRu-Iz|iLW$N#zz)*)TijikTd9-OngGKU zXjE12lxr#@OcE}gn|W( zqY`qN9F8nLng`i!f_xKFgSG2~N{Y1N>=XtwV^9Ig9ueq_fB-s{4u9~V^Y1=u0oQzE znLb zn^KOb?|JH1ww_GkNJ^8L`QqX}G3kK!MO}U%a{z6b#_DA&e&~i4@MNH=e69RyN_bad z{?W$U&L388t{(2!wtqyNxYTr}uCEOh{wvaSaN-C?%jU12UMI3Scf)sLys|d)(zPF7hhaTp|M5z`dR0uwQ`6*l~Ex)dB#fEraq+WRY#n! z*sAq&wG?!eP;_0Di1#A z+VE{f-L5vQzKpO888%#bNDE~|#*&zwH_3%wm5Or~E`Ol%2aVIMZo6gWWiS~86w_%c zT!w0l%N=&BNegNX?PcM*SaT8&IBuAiwHhUd!C^T&2;8IW%L~-L2tK&%v-?_b8Cglb zmb-z^e+n%cDV$5Mdp71?^yWJ3^*cB+KuqUm{yH-DTp3e^YXgjI;?co;eie15-+RousR z6cFB;O{P+OTVL@-C>v%It5*ya0l3mx!BEn?c2ZX}$w0=>AFq4z!~nzH-&DShln}xD z(aGnt8{A9@s&4q@;evOGOu^}ZM+LI~I?^&Py}Q})ZMUzcAM=&sd!dpnu(am}cR3TY zzJL5<9wjR(E~B!vn+!H#LsU`Ueu{y8tau9)qe@ zDB?X_a}3)QAOp#oN_KE7pVT9g+*EI4zl~GHQGS_2&Wh?7Y?zx83(efkeZM_5-hY?m z@rlHwpt0*?f5f=JUj0^cYk7dm%;>z=!*^oaQe#O(HQl}DC35rGgvG1uPL1LZeW;l` z91t%Is=+zVOf4r1#Khl};6w(ZVm<7u)taNo;yGu_mU(-diD}&rOeKX966+dU?x%g` zpiHx+bPk7j#>9)E4cyNP)2B@Aj(?jd2`h7lFLbQlmn(nAmQQRE9x%PuXv(dzPdKK= z46nKMgMbKOfNeA+7t6ge6EUi}kO2i2hM$;t&Nv7fX~DCay&QA4eHXIE?ItRONU39?4LK;MZ*F|>KP<|A?_7SWS0Qns}3Pa9cponn>X?T=!b*NC)3b(V! zzb3a_F8<5n;huQ`5I_hwF$s#1Wc^Cdf{C;{bn0I5{jCvq< zxodH?^Ki)Y8mDBDtZ17Eky?}e*tda>SWdUtI)oNFa+w=tOLBmQ99aeNvkOA70huj3 ztWZM4+L0cdT>giW!tpVHD{@BBC4h9iH`S-p4KFSAV4gH93vn1R3K< z85z=kOK4@;qSLpH6h75+)BWHN4TwyMzT~j7(m*9@*Q6X_&qNnkF?|TPcIHB7ujavG zj+=;;l@{4PY0AcCxFwZ)v^Fgxyr25KKJ2t92L^U&ZP;~LbR>oGqOUT>mnp$NO7}BH zwBcLjM7cMRZA?>3lYes|un#xTz~I!c5b{0|H!ydeNF6DFV_oc@HMcuebklo!r!c9( zm?f0E@54tBB<1Uvg#uWAq^S$u3J*052=Ww2l1(J5w5M>o``}_Bs=!}x84HjY*dW}2 zhiH23D9VtcETrL$D;O-4&kjHBncP5S618Zye#}Gt(i$WMY=7{o^0E2(psSB@qSd4w zlRPCT8~JF!&qs5dfo%g{s964EaSD7qG~m|FHdX|I@QK@ZAmuplCs75C%DOv4Y$>O4 zzfrsa?{Jsts2Pv>H~&`Yw&I+G*q|vh?00DreVpP|pGdux5j{|@&~UI5=@8~ad*$C+VHZpfz2jMgZ#^3`ka3m~F*mkWo2k6QQ zQbdR3KP75I9L4rmFJ^OM9O`zcz_cgR47AHq?Li8Msc?R(h*(9`e&PZT4l5D$`exzPdkF6Xsi$?I-&gZhtAT`46*B()>#0kQY4>X`EUd zVa$-JF~78!GZ76cOLzrJ)&>=cLi1yWv{0Px{*tsZ|qt6Jbk|ufJ_@(oUfa#D% zLa4f21AmIi*O(z%=pSX->XeazlA%hzTkwPG=8DAe zn}}HaH5VRi-BWO7QMWeW*tXpr+crB+$F^3oG48 zt&%SbX^nTjz#}OP>f>JL0IFX>cE2m@`{h|GN{l1FYKBKhc%>!7F<6kRClyqQXl~z^ z>J+Th3)Gaf{TB&#guwbl5JQYd-D^DM4)yyY8;q^RJT*PfWjb^XDJ}f4KmAq)Zoa^w zZ}d=6!T}$rknI(Xa3fr+dD}6!C!D%b^kU(S6i3s3qXKRpZ{*egHNCHa|bm)Qt^a~MsJf>W+17Uy;2)D(l)3aZ)|Fou0&7xl`DTJ*k$;Z|46 zxgNl}f6n2S4S4GOd5HW1Py7>yfo1|M)8w=B$lp&I{P_vEE)1jilXquFX67L)4Q~Xg zX2lYy>D+&@xa(c{z0cn%5MlB{&NbR-*$=M$9}nkEDnkm`UB;uj$V}_N4fuKq2TWcg za4hKaPA>lGqT+y&$Ryr>$+`9tbgO52x`+Tbnmp{x@V^gVJvLV7#SeMl-j$|XWxoa6 zcrC(S#geKnjpq;yVrz;}ZElmlV2^oM=LKzw*J-7KRIA>*$1vDlJ+}GY^p5y~e;-03 zU_!Z4^jPoZZtK=%g_}4;fn}5td{g60nKZ}P^yxXDcjcCUXv$Q_H8N~g77t5|&qf10 zqE~=fY@$h=J|3d2XxRXH%|4_vZN;VjjyD&ZwKc3TDY&Nzs5=~^3kEy>K7y`jtJ>z2 z67M1cA1Ab`a~*m7O>Gr%*mpEixV0tF?%| z?V6Gn-J6`&1udOie!7`53jmGTq{0w@;#~Xrfk3+oY_?9AH6v#oZ!$Iy1A#`wKG67p`Dd9QIR z;m|Ogw_a3dao(UQ^CR!*a`Nf$A|Q>`*4Sn4iJa+BMX*@;b$W^OX7U$b1%U@3A-Pgv z!dqwW8p%5qvFF+I)?>!-O~|9_Xd>oF21f_)(Zh#WL`eT8^WxPhtrnrw?`DC#O$~$2 zZ=s7wi>usr}|tv~EcOfuUU>HJM-?1|3rsD+Y;arj!{#U|a9GK`@PqZli( znr$NbU=|q~(l@%8{n)h-NPz-?TpDeh;b|tf701xWtCqWSc$69*NDfSfU(!Iw!ddcy z)I^`~22RlA+r4W}KdG8*r0S(IHd?kTi__#yGguJTZaD?^sWh!Cb@=L!-_RtD)kzeAE)98v4$*Z>NStLC$!RWzqkw^|8jqj>3YZvF+lU+8ns@2K_9(x(QFP zax4T$9^jX750P9P0(u49t}eGcbE zUgU-*It&dK^yYFmrAQ2g9NPtRBA&AE*1nLgk!5gHe)NTX?C@irZI?)z4(x{)y(ytY zsO2fkIyYj9;}eAMG}!q)emXBH_!^QoqH;0Kj&0%};s~`Q>@f>~j$bE0!*yEzM(-Yn zJXnOfMh4`LO5N9|@!c@-+meLzz^b1LCKVe{sE)PnvdkRVG8e*p`5h$hK2qlRI2G4L zntO-Y`}hi{j}`Ki9(O}&<85i{)#<>!$+G}AG|{&M=N}%NA(e?VUHiclvcN9mec-X# z0Hs8-{3P(O+N=fOt~}jrdfBXWKcO(*n|aY{K(stdSq9I4tRg2$GczYJ31QO!Mp!Ym z$JV*HU_$c^T~`KKoxF~DDhMnjqQK(%y+Mg-6jK{9jA&>E_$8(}6dA(sGLFZ?XNbql$4saP+Z--l@2ZM+gzw;KTqCj1&OhWRYhZ;E%gvzKh{ZX+4iM4GizG zuR(33xbYclCbEG6F|p%Qd1!f>2V^H@#Yp8Em0^wzZhJ(U zuQXeEq# z8iM|G+wN;!P%|1R?NtA`H}2Hw2#&B%`ophw+7qNzz%c_|a_ixRb#6y@V)Z?HHnS)G z1^bN??6#P?G`8yI2hU6i#wr}g1gW0$@yr##_m4-Me|V8;fna-tq%M$UNb6zH49m!8 z!}zNLfr6krK8xpv!2JSHU;42Gzh#b#S8oDFjpy4zc&xzAY5F4z2~;xNZ`%Tt0MEN5 z`#Fsao|wq=YbB5EqkP*u?OV$=;z7t3EJ}vJ!itP!mB#L43qAGPvVBxl8C>}Jh08)f zhbsTRnz~)LT5IpW$r)K0j{d;Sb;5jZs2u#4F!5w_*_f z?V<*eT~&KI#pic(i5hCUJ4#Tf>5>#F2!ggoK@KLm$JF*Lpf^e_QY>y={JtzCZRMW) z4hJGm%W}o^RWLc8j&aFg$jeH5+u{&#wQWbbU)A<j z%*PRBa3+e`p+oWaJmL?7+}B&XH@9py=@r(kNvk z;z7H)He(L!^clSY`bzx`1I6vBa#@t_WF%*bl5tKeJ_ljThERTM*~2tb9+elMk3jB` zjmAA0kl2$pGUVErh#Up?eAt`E)v1#&V4E1_S0_e|E6=U*qO7w1QOm4h6*?*-zN?{vOLPxy|}o`XP&#TmAFs2lBvcWR4DP$u9~O zv|CizmVQsd>Z#tG6^<95RBY#>L4C1{fZerB|yX;1i!xR65XKy6wj*WE1sHG zE*DFSaF0CAO+vl%fJhQ%wb#r6>gKqnK_Nac)-+Z5HoZ^uV^k1=Z{t5&&_bS6tlv4& zVq;$Wd4BbhwhhaiP05qbY7|j51l;Al(N-w`K242)g-}-A?wKG-h=wMV6z{sLhR%3y zl?mZ{X^K_ctc3g7H&A^JaH2ccH+z*TNaXlKFmX5$pZy}Kwr4_W&Yafih3%obo_0^r zYTE>6M#~d2Ctl{$Y6uy6^)qu3y$mdqC4q^R$0h{{b9uJ#vMq=dKcKNK73;cqxyG>8)0PrJ z6}51wbGs*fzUihkz%lQ096PUhOZGT2&$|<_G&Xzzn-{=}HMG5svY}ZrR*@{a*~-!2 zLSjk0E4?smBp@~##;OK+LO#m4 zW)hC1?lhaQKKx$;MQTya)VFJ@#sU%}#_DunnS1Yw?G zQd%j@pR{^c037ZLAJLJ3^s5gPuqM8<`iO7)p=*9&sNb?QuVG4>R6)_3+B@;O8!pYw z>VZ6S%YNvSA{Sr>7e(nS6-Cym%#OL>kzBnGv~LF`a!>@wcD0yRxTAR%+-q0#x!sQw zzIZ+8dPm4ih*kqQ>ZoF#XJD(PHP%%7jQ;N*2*E>80M*e~15K5#mrT`a+4sR4#;!Wy zW2wOJZbQUu)OBXgK)BgnaaEEwO_0O^)2PqxOWwX5^CHH!$?XVA=oh+~;n9^p=JlNc?mi@H(Ig%Y_c3k^;aI);_qB>2 zKN;y{0p=`@@c0Q!Cz3c=eSgv11%>-rjMgHYwz9NI88}Le07MR`_-WMg%@XB>jvv-@ zTG_kpzch#4$(P-?d7Y=9;5CWFdx-Ga5HuSFfqT+PX<#K#mvxT@g3cNjf8Jb2DDCLU9TCcFX*-=7i=o}=4j`Tgqp z^?npg#KWCaNBGaYCRa;eMB!GfIJC#Kc3PKq^gzNUxRdiC%eXE8cts{i-Q8Z$s+cY! zzUuML2$8!ty{s5vnnx<*i*+;cBFa3P?wY>O50b|K#@~|dAF&l8QOBXPA$4S=H3E+v z07+_Z`t?+~KxbJI1M;C)=$V&UR|AcW}7%p98nd5UbE%)Q9hE+g9U%2g)*dPhOF#w{MB|j zij+>$K3_X}^WzE4(b+N=$*mSvFSD5V060omcRVpsgo}Gi;^5t&bd=P*Qh&SpWz`UI zGMPM2y{n35ihp2m%vbvUXDn2g1M`FpL!vr`kn((-%y4~Op$dHGfyAG@oPB<;0L$Cs zaA!E)pZhNL9@Fm{#BLV*Yyur`f|SFPH<=l2h4yHbPea{#V~ph97WHaH%Sh?1fW{wa zk5>g)&(tS4(^iTnsB&QgGQhE(;iJ482;+C{=tV^sa|;JZVmGX+p^Znh1}a7Q6w^5o ze0&ap#R&8mXwDbu4lR^U!$qLoJkWx)w)IcpbjY(8Jo$2qjv*h9qT)!-bE;0<*+YX} zcuBy3&BWNRDTF(^g`pDEnz&n1fDD9XuJu(r{;alc+V#P}RCk6_(UkKEXT0j7tu|xICqN+uU!pJbq+oD|2dXeUk+lWB+=>F5iV$8jTM||E_?{bg-k6W6_ zNu!?Mn?T`Gi*AS5H*RvmyMGzw#Kz9(ns{8_^&oJ+&b(V#oQSTXTfuc00L92U4w97H z#EU)_lLYYcjdO8=xdPyWmR?Jm=YM6Q&kIC>uYdf4FoFEy{1+CA00Mt#vTK$PwRtnA zpQrj5A2LW{VcEnu=~hEBO1nvU?FN^~IlT@)u+@A|7yNTO{sz(!Az5qG(9J&PmF3O% z8o_s;b)7^;)*Wo1?ZKhF0@`;YQ-OO)W(;;RN4dh**v7AP%24%8hCh9M%V_wRZ_>hA zEUlf6tKjdlblBN#uNzJgE-GivgwuqVFgn>*7Q4j|jzw{TX@!a?4B$Zl0e7aB3a zZ9uN3SqaB4VkCnV#*F-stcic-w-bb#z;wW?{%kO&*$Pu;dpPqE(SOrFagS8v2xGV8%DUvo;rQ4TtKzyw(u1^t}R@%-raIWtv!B7j(_){pTjlagiI<7!F z+wdLi-A6&KHwct0M}#5iW%#Mwf>m{A6>rr@LueG4@bWiC?IxKk+sxt`omiojKYSx|(;7TxN~f>C|2x%#l9?@Qw)rntPeIac$tbRKpgA=URN z=>>xZRIiovDxyv!ONjmC#3&P8lwm_OfWQA9lcfR?dE7w>Z&49e%G~^-HNuqcSiaK# zU2p;0Ic9YH^C5sdsB4{SXJRhbMj!w)l`Ly+qT?awTTpD1r7CPBJJQBmN*$N$W&1aN zN7#*6noxX0#$#7ga*Yke^I~^;iMU+iC6Y@IK=Nf#Gp=t`Z2`Go#t_#!zYpq)`;k=s zItxSAbZaZ2yeh_{A|cATvoh)=vQ%UjHSk9U*z_ZpVrrt#2eT|au$w+ur->;7t?K2# z0p-U}3Lt@J({4#jD~rXgFDIVZ(p8OqjOFjr`?igNt7>-6p-4kQcKS=N3=OPV&ch@g z00!WRq@MdEIf0MG9X4Z z*8a|5>vJ~!EJO?oh7zi zr4qpD56t((cCnMMdggVU(cWP4V4t8AsuvHY<%N5hG))>_Kk5M$8^94-9Ez>lEBZdj z--gf)Xl&}sZ~9xP?^M&3bpq1Q3S;3%^Wc;QhUu`7;g%8`9eT~^u^OnSia)18%S<{j>0oAYxH+G?{zRl_?49uz|BJ!~rDod!T z3n~RBG#TV-@MBiliC>j_afmE!ghR>>1wKIeDl9nl(d(umO^dxlhFWy2?$xGDXPL+3 z7${(J%Mo`cEBHGj!{{D>{|aFPkY=mv4)!QYQV(%7UvDKYd~&Euc@B@iv-FdIh>h^1#jV) zI2td6*YJ_UFFepAu*KVxLp7=X`LrcIFOIz`N0;6&x#OVCllCzs^%tEbU>eJy=r2wn zy%_s?G%B0-wehbST%yN9X08gxLV2^RMxW$#V!9pOaY_#Bmzk=!q~Cw92{a3@bau*0 zOx28u(c{Q<|8U~+L9>j#b^t59W4z9}_mPd|^4Y{aAff#;r6prd9h;=3D8h<*c;#g>obdhrXw?01F+Ns9VlU68S_} z{4UBjNKEihCTV$)?exsW;^_4ylBVg)r+P7IL4v`|X$z#^f6{{+lI=C93gNQctpHg` zuA%}lf{D$yT2+769l?KdH=$HbP)(eS<@LFf;<0(7-WRV#ii65YiD?!F3V17YB&T?k zROJ9j1}?g|n&%gA0S{Peg#qTwlXtUMdR++j6`_DEO?4$VB`*QPEnJ0UNQ43K~$rszJ?Jv6eXOyuzmdX`;PVtw1gKITMz?cptXTC+3Z8 za_iF!Gk1A7CWN;%=18+6;k!2tyCY5%2y!#d1n<8Sw5TrT#`gbtbTqL+;Njr<55J6s z&dJXHe^awu+`L@>^_O}6Gd=qsf7uI`V^jB~l}u;plvDhXFJjyGrYD^hZzLvTKGLAb zlLBfU{`X5LSp>d1P>be0|4QQ4?x<5 zOBhFa$Y7};qCl4Wih+Lwg9R8n2cSEXp^MSUuS`bI!vU3HV8fH4{b@)5yE?KaT# zZ}|(7DbC0&2?2y5{)!TT1+cQBU+-Ll@p9M0LYcurTCI`i4mgw(i+U&rf)hc3Q~HCj zgY_5iBi(RM4j!JLk6T>D0k?yKImNu~;M-`$>>{KwV7^{K#9)1LFjgBKL7>G zAfzyOxW@0y3$WwJ^&z|;0E%@{bf=WQ+;n0n z8_Rf#55+B%0){f!dU5sFG9joj$o)8pTMDu{L(cn8gb+T9Zy6yFo72ch;uN<5M`dt# zU?IvU*OM=09knd&+*6>NR7$Ah-PbB4SS3#(O1#4cYAuC3R9NV}&k)|AL@@G#jQV;s zVXzN8uxD`IhtKtXz}zbF$Hpt6)H2%X4T>i$&+iE^STUl3a#R68Xf7^Z;NvY6>^sPD zs87@D;{yy94i3H^mS5D!3nU>uU^LpdQvT&D;s=H!lJfBi-fvh363{NhItB|D^#>J# z99Z+SD&sP1`Bw9jK&C0_;XtqtZ>T?D0w#kZV8X(EEFuyBiGMrS8=g*&1Yz$FW<$;l zN+Pmn&CYVycYgCaVFDu%I~h?RV00m@CSOiPCWx5qpTTUeF1}t^ zDvEL(stVvh1yLI87WFy7iQ(@lhw6+m(J)~CdVBqS+b{Hq)qw~9cvDe31ABgBv;ZSz zMv9Z@08{3Kfgsu=@#-U>rvcj)_a5jeG?G4KUIaL%7{c{i#`E#s3Zv113$b8**xrAI zz!$L4(DC1zD*Xg~NvRYNLLEoGQWJnE!AOxfFFZgJz+Zv60fsej<-~(;q-=q+#3d;0 zkmnYnPY}xohG~Fhr2EHP5qv;2raKv+4zR;zRF8@m$}J2DD;wI?jdIgoo?7&Dyhb#j z1JJ&Tl4ZMy#u00r>Am$_`7@)E>Br!Bp{&4}Q^BuE!pn*&GU@HadT#p0#cjqb&Pf_s zy41!57*k_;Jvgkv%oqSyJmC1Agx{oi&!`=rH?{(?7|ghAc1$N$EbVl$oSwd_AHnF_ zpdUzBa2S)p8iIq*oW9x;{k0U6=#9;52C$ILaoQQ8m|Rqzwz?$vq@~)^>!pl)55MV@ z6nma4Q@U{l0@UKXz*@qv}!zKvvd0l1R2 z^GZg*uk2_pbYsal`f!tj!2{KITD+<_p_v)^xfdl2t)hkkFuq%Tn&+GkatTpq8urua zBhc~PcE}iL;ZE!dU0O9deal24D={WtRv((PaMOMw3K*LP_LQTlTECNFdvtEy_nMYd zpQFwAi6{x-Cz-8hHUS-|JG2!}0hg4KtYt|ojf$o?+xA0=8R_fb{^*%ZpX4k1>|;Z(TI8|@|!-wp9c z`S?cuald$Z^a8P>GoFW`8V@&e6R6kv)U>>h4e4;20-YqWZ(5{E4Dr|k}i)- zvQLSt0?D!Oz)NpUtjyJZD`yXu1>ECNMhEau$1UOz#pj{MDU=D{zA?^xBe4%{*LCE! z0l0#+@BSfRPWch`Ok(m*fF2$C4D~5eOyPANnZ(_$Q-6rAyAkCed_3l?CR5C9n4eOn zLBE|=gWs%wFvxzEL;?4-nYXAHTKV{dp1_6Yc%_`n8&8#(^#@93{Yv=;Z~TvTx7=Zs zJld+|NfznCY+6htvjuf%1taaqX*qu6d?{O1R=JgXGuAs$&iT}J0$PY_v##SumCo2@ z6}Z}mR<`zJiRVzL+j+V;<^x3P@{3YD^cwTGvUq+4yeD(o3nIRYyrm7Y$s|MR?_`3o zLtOGcRb-#E$TYE1MD_*|lvTU`4#i(BbB)nrMqXZ{N^3*rHD039 zC*+XI$(CK?_l!NEYJtA=ndcOp)H;x&61Uwc&O@{%qd#3RGJo4pXs)RBd{>!mH|iD$ z5HFbHlEAS*s+-k&w3*!ak$6_27{oI;kLkt)$)D|_lIoBM&IU=baw( z>xl>8-vKtu10P@}NO?JP&aL&`SmP#zxOS`?PQ+z={0$D( zA+#p@-8oB9sJ5ZhG;_i}zX8fz0J@M1T78tz+ZlJ>F^45$uJ-nAmM8D^zF?6q0j#TR zcEo+@;ng7lFrACb%I6!Bb6u-N!k)P9!~G(6571w!sNiO3r+ zA{EmB$%k6yWM#L@=`%k8tJh*@Bt@=x18ktYTFa|x_Q=AStQv{*is$91w_Z~;8T-y- zZ{qX*ho$GOjD54vAN`H{u@zIu8$wh4ML=WjaolojekvvM1dJgD@0edD`?palb5wT3 zXfMy}O8W(?XA47bMHgM6dZB|V+fNhb=cq3s;NW9MOFt1JE1LfGxz8+PH!-6_$|*fZ zKO>URQ$XDZdds#2p|`tN(2eUt;L;!HI@p&!XF*w?%-LHeg$neP+q)+LsVEK5HGskJ z314uS$%P5xKn^t9?My+BK(k+i5hzu4 z_c$+CEvJqBlj`SC;!5b0;~M3Th2eP_Lb9;#aM7NO8lwojFSoj*kNzRIjc{+td#QJy z?6kqdZQu&tFh9~~yjMg(HAL$379iWidJ36ISMd-=qo~s9_r*?~>TJuHeQ`_gm4sN= zxs-YxBEuY#xF1@P&aX%GPSzY`=KkILKNzD)OdO7@zi8;f5Y+=v&~q9k;M6|6ZrYSB z$UZj}WW>$u8jy;CU!Qn=$&B+~y@A&z*5SIihC?~83ENVpZ9&YLRZHm^Dc~SapC;$mS{|mwTm=MWaPnde-&T59ji*S8OKmBjKz`C&bvvibn z<=*J;NPmKDAI1FrEmz*R8d-R8Z%dP+{P^d~l|5U6Q2}0mfUoWxTi4yS?) zDf{MH8t=ucC(8;Z#E5k8=HeU0j<7$^Lq=JrBfC6~zWW$ze+-tDFB!JYWcC)*UZP7> zzCrA`W8ax53dWo@$@sq}3CZ6TE{x7$dA<;s&rCGlxKC;u>bXhF?r6IY8?c@x0@Wm5x3+to_L zizO{1WN3qaYAisZ%N5m$W6!u)@7G`a|vn3`$ zH+zVuv_m(Ma^-v1S=*A- zQ5MAQ1}OFrzw5Fp@3-B@(d6Zw_SUMg$Oi=q1RkM#95n_g}f@{0a^~-Ja}k3K83yT!8zL;mSRsONqIkIz9bL76#73T5>>& zeZ?}tm_VUz5Nk;feiz4LH_gfOV(kF>Dx2W|;;YUj^g0IFE0vUcPdJ&%yl>6Z;JGTsk=cZOqZlU-QTLQ~VCO1g{lFe997G%a|N z0I=@?EuW0EcCeS6A3QtDwnZxPWMfc#?mr$k&}_&^dEzSEvFLRlJj3$joPHllQ#w7} zOe8DEZI}M@hVt3IFk32ExGF#N(9M%XBVyyO6I$YM2v2gz!C@Yqkb3yZbkS&tzuvT% z>dGzWf|WE*z9W#3Q+oS0I^g|W2e9|+M*R7SKsOBt{I{ostdB-IgTEE1ZU7`fA{hvN9h@v5pBN4~hFtGNe}8MG+TAB|va4*XF5 zMYlyOh8&%sO1B=4HN)r!DlDQXjizf9pLS2x)%)ZQy%YN6IW$k{5DK)%u}6RG)_?v! z^kfW|C(4vf9D8-PUN$T*)h{CV#mk!X*(kyrYwMOh&XsUXf$J9&`$~L1O|3PoB`Mnl z4(TOd!gHT@YBe&x^${Cpw}(8JJApbTW)`0;?Xr)pQ?c|4eNzs$q^d^Kg=$0wF*?X< zGbQ1nAfCB}V=FEho(_|L@r|<%rGSxSEZ7$Rr%#bVk1W57=uMuuO0S_R+$xL8$LEiV zSlg>g$S=liW61Xv3ryan&`mGqjMPaXi*mXdQo_Ztc2ZNIqFHOw8B-I@kCyOfq{m5V z~gEAGrm>fd53zdfuDqpYmq1#{k$B-x4L<5f3^lwb0%b>yAV1|fdIItn(9Bo zMKdeTJ@1igT*{=l(KJ}TF~^@Si1er^_Nl$k@kvS9do>c#H228{^?Iv0p^-C z{fUYun7M7|DZOkTUx%r;k5Ia>Oc{P~FQG<3_5@w91V&-Lcjc?B6_20}PiBN=g4Oe( z(Yp?_bB9?%-u%Hbubv{lV&q9f`u$nqBxVRAnV`<=QwN%aftYuYUrOiXDrgzX5FW?%cHW{ zGr>>x%UEJ9DV{_UNbf`*8@cmgnTxe;p@5c21+Z@Jt`2_9{FUf@N9bc?+cA}LaQ$H?7eBV(|s*ESP|OYV(?qhyK*<)LGjHu_{kWMSMPyze2m=^FqpgHM@YHTNy>2(|1(PlX$m~7j1yT3k)u|fE9q~~kB zSIxSKl8o1xHEDkKmuz=<@kK>>3*KZ+bg2e&JMC(s|M>6JYMjoGR50xYo|9kLIK1|< zixZZ8Li4_WYV&G&AtJfwHw?Xy%;R5!;a_zU~}TR)mQ9D@d}xGCOx&fFtE;$TsQoM z_h}>?t@}8j58+JADbU2e?$4TGuNx=m{2s(_@ah$io*l+GnLgD2reyYvI-9rE;B|b$ zpT;&F1AknneWd34Sj?ewo4iSo zpcB~Tm=V69xc;a;dthlR^~n|OXUrVmIj+ds)huUrV3DmbUs#jfd-wH3KalCvp`I-1 zZd(g@*Bq?xb_(9$FWNyrW`6Ev=1bTD^wY9#noAZgx7vpIS+7aVYjs|y8?_n*jaIms zp%$A8dc;{}LLQiJv`)pJd0XE$pJ18NPIi8>sK9gh?3>dDsf9ANZ%?mM$W6zuSvifJ z>-^}m^xtlbU-4CN_0h5g>&d@a@Pv{1U3xe4{9B6B0L8#}aPUXvo@IrC1{z^6z`Z3v zv9LL0x(9^|Cxa?+;df}VOTt}fc?e95a35BFF>4lXhE*cTVSJu{{)EI*jpf2Kh5X4o zP~x6ak+?74zPlg|6IWTM1pi`rVqtR=&w775ZmD+clY_nTGOQ{3C7gfLMXa8@1^ei) zTd!Vb6>7s;6_kbt+%}ATFX68V?4{eBz)BRS0n%kAlqyzqiv>j~6#`96gl_~0WeWb1Yx=&Zg2$C#227Wq@y~Ew? z&n7EdW)s~5;bE!o`I~b<%SROksO@r(u1v~3>-^+2Pl+(PE{&vzr+b(zK-cjV`NEHm zV?O2|_y(b)rF_l2G)kT!B3@JSsoF0PD6+ZuOHbWShig_0`KC+p2@QT|*K1yk?fOMC zL5#TP5^q_P^(Q=~`_rOl&^pqG%H6Pb(BaEIrIr3pkIL8)Xu5D#h)p z7{40nbj+Kzwt+Onp8`+pfB~2HZkrjO&(H$6&KAaCqY+sbzioe#*;$e_lflN|3#MwI zEgsB)IbZVRB^z3cTe$K)U(>q(5%{m}r%RKzFBg%qq=*#(L3JI7Ft3@t*=x)JE6G!i zpoSf&GK^#5&EMm1JcXWhH8dSR1+0Tob=oK@-;-XJanUm2@v*pn0OA967bdsLaOa(% z^V{*MH#hkOW+EL0^uCF!PNAZAmmKYlOTbpa{MK3|Tu_}pk-gc)bpKZE>AHQ~ z4tOf$rV`*tME_kW3XpHa>@WFus?lrJ`z~=eVmcq((j*Umry$!IR9L->vX14*dE??J zBRzxcl!PrKg~rvqQaYK%-3>-tat^2ek6kNby`NVx#1-!L+{E^^KHG_TTd~dCS^eWH z;nUTT!vplJ2rF|FI;u3 zRRq5b=ot$|2ac9PA2j*0Z`j`5YiHvq4;Ez^!`p8}Z^4jThbEF1)L?N<m|FXYzYq?nH*tI=Fbg!Q#(`kjSGDmptrHA!{Q zW&+Za-OBl#QORBpIif6LE#4ax6yjX`&=RMe4gYv6 zqPM_0-jX`^N}>{JIn%MC<_vD2+f>(I4^KJERc1IX+~95p8?#36cBj(gWc)RF#SKJ9 zTuP^?ECAZpi-&=WM_tTSiiO{bfsdd5J}$2BH(V~c*$O~J&&}lJ(V(K)U&fBfFYUGi z>eA5Z+>^$C@TqLE5*_pE-P_Ob%yH~#+4?eUJ8i-tPM|R|%0lK_Jd@sA{Hy)XD~XQk znE5}wOQ=A2o0?t9Ao?bPQWi?$#=EUwBf1i}GB$;?8IxD?i9c0>vzt*o-96R`r&TUv zoDgTfevDNPg}-d4Pvk8Nwllh2;7cnvmxQq^vc?y^K>saFSKiY+jZ&qw9=-dXp-ob- z?w<@ZHU|PzLi@h(|0AV&(naT?vD^0EpdJY!c{o}ATV7#9yAwk2aQ+9J#%c3mgYq4`-Dau)EhYHx)&IRo$HZh~<6-^3t8`W_79Q4ga$yJ@NDhww`qMEl(8@&X3(yFZ z@YmN!*Vh=ETU*9~16%*9tbzgk;4XeBYP8MV-FKc7xtY(ezVn_eItvZp`BsmosOazF z2{JniM~IaAHdkXKW3yxEh>5C-1{TPS%r(5sOzk}ynk5k?u71$i9t}sJ;tZKD|29A? zf)6}af7{$-gy|*>aR2fR5Cen$ z_QS^sb>MmmO#k4}kR+&$U*s>&DHI!LE94kqmllNm4to~C2H4Ll1yK>)SrEMFwByX$x>Sa3>aa zcGso`h`>0og7AuOi-zz^00H7a0KN7XMxX2LlSjQLSVrF>*n99)(2b$f_RNTbNMLj_ z{oE=rKMEx2#J~W?o=}0<4`l`37y`un)JNg~;RXl;s1smC(%<|)w7{kS{$Ic!ApgOs z%PTtpPzK2VkNocigeVtPH&E$^VM#3Yl$-ue;*UjiAR67+*cRO?ruuhx7$_9BCyZoCWB1&(>5;0#U{``W%C|K%C1^U$)Li zK^A118=$IG4*+YxzXMi&#B2~3#vudvJy;fPke)mvC@&TexeQuoCrlt#9^b})T%GUjW&?lI)BYp3Pee3V}#a+~%ThX&-_+w;Z0G`Feh3z@iG$5Z!0|h0JdlJZ% z1upnSVgiO)l-o1eg}9shZ`gTr8~(bE^5_tZ1s(wU_Kv&nlmA;dg0P?J8TJk=;}0mh zJp)`G1AvAYD0`1;0?i`(DQXAy{Y*Flv!Ch(w#QQWHDsHe<_p)k&rSI~_2HSJ8_|ClVy^0SKz2Qq1KJCF-1X09!{%dv`Nd753IP;bM z2e9%S4>Bwp{kI{0-NxL_hr8(paq-Tn8kc$yPL#IJ$r>O9k*zJnO9#&#wBR! zmSq3a9vJ?fn>a-JFO-?0p+1{@;2GdH*_Qe0Wzo@TFod04(qxUhdkg;$iX@g#a2Pp!S~*qOI|s1%|1joYlI+& zP5`Htlq~d{kuv7`gSYeJJOHjf%ntk}sc_8Q?MO;>Lb}iMCjGITlm^I4(pg{CtvOAL z2-15FA(s-=VJ`5BqnJIM6hNU(L4+hnVqE_Pd%rn-#h^2@MA#q?L7a0Vi?qS*n2Wsf zH{83f1%XrJ#6izRkC;eojIj9*U(PWx;AY=r+vr;MVv z`%&?HeWra*nm5(xxc|m^CPec)no*OddMuIE1yNigj`Qi%*48(w2kh+VcjV`=A)}kY z+|#MUt^ERQfu0wxbm2`a(w#Aq{1t^WpV;#($ALk6<65rB>d2l@-glERadf>KXHOuO zj(KX*s?UqILN3pg58%?f+yf~sI=_QrKoqysjI5{t*COELH=b;Jg{0+bNX@Y|J9x?h7ovpbgejdYMm^gPBm>Dydq&|p5;^-q75FDf-al? zCsnPTMfJPxq_5IgwTpe8(Ry!1+NhzkAFnb7=MTyq9+d9uj z%0ti=qU8JF+nKQ5)i+~&vtY$&_%a!jyD}z4+_+}97h`aAKjtL?#(RL?ZYWlzMpgWg-`#8sk+nBXKI>%@xE9^_`|P}8reBW z+iaU#gH=k+Re$WLwIOe!ru>T+TZw+WwexbqFAZs3_$%`nBW&>!vY(}~LcehdVX1Km zugX6uDj`KO^2M&jM@x;;fkL%vzw-IkCEkC<*s~hY*18d2bS)=tFW?wzbNCrABHdoJ znHQ-Fz3<}2+oAq2TUoY~+vqeyaqQV2pwRs?SV3Ta^OWhqT;sgL^1`C#dBv^h4^ zLpi!wW1-7E%A8qRZ*lIYimYsoiQnyhbok#3&#bt5D2_pYLT_nUTj;~6G`Qe1;bUq{ zVAGD_cS@hvRLF5**xKbqF^g%D@*{jpha`wHqL3{(VD8NQ@^x#}%)#0rKs z$R>G;hM;A!aKGDU?apIoD$31iX6q6v-_on$^7?7)bu`05a7Yu;#JG`h@jD<&+#^t% zs&%;R?ua9QT*B1vlbuy3>sH4+)PgC-LA*N)Ld^61_yL>0NshFBSaxKOXLB8I?D!6% z`9fal>QPkE?$Kq@Q;E672}PGf-V;CQl30<5n##L0ZoX~|$-Vqlbx#$TMa3=lb~!eK zzg5pVHQBxAOLQku=`S*0Vm}+xnsAD4@FA!t?M$bCC8Mj}0; z&v-LSb2#AXeu|G{ExS<3R(NihE>~l5)N5_DATi4ni#QC&h|NF^2`)#;4UQ78re?e6 zs3JlCPDLfFO!S-R2ZL&k7ap=};nPhz!6A`j^8M8znj@jaI^JSxO{zV5$S|;1kpamv z1Y8Dxr^Io!ywH?+ENzhg2jpN8dh0KcCHs^pev{?mq*<<)ZOhslkEKTE0;n?vMnqr@ z)G3v-R8Y1VkA(2DRLHVhvxrmzIjGs<8%hfFyz&R$k*aKxtSU%CoO(GMf(#e)23T4# zRQ^8?Zu}&$7#%Is`##=jBOJ?Fov%Hzzbx1Z zb?UjdFy6GY{5GMHAOIENYvY(NE{YG@RW=$JT8Y7rm163r6_zfy9C>i9=OtmQcoK~d zzk{qfJ{=8GW@+c0fQXjee}|6wV3**033U^#j#2`8ZA*Np{S|X)BoVYF1FcAZ(p~=Q zHJCTlS0K(v!(AYp?P5fiHfevfe3T4RRf*^yR_hfvZ#b889nKv({rtAYLs!kp9 z;D}|gj3xQWLhhKtjo7$B9hC9#Snxs^ey(-zYB`5rsC{=DG!*D)n+MjTt878RCmCw? zh0mgPzU%@`I&V(HHQsGb*gfhxZ#?2^v(18%FlHj-3;KOo4@)pAV5d zwo>C%LwvH$d59M)1iQ5^8C{1(Jj^9c#Ge`6HTj-GGVJNQVX?o7$XQ#~bSp{Vs6ArG8?1=r_^#9l9KhstE!k%&u7h zc{*c~B|3AzNb}cV`73mP$?}`VDnes{49F`JK|8S$U>yS<^%e243GMY#F0$3ASs%zgMKgk%EwWEhe^xmrJmf$?!=PI zP<04y|Ec*Tue|+VopPaq_5P0#N!ZW4M6ywQRX2}$nr{^2TFJpTAIO)&c(F}JcpSDH zBn-?lMJ9k`ws!vDd(aV*D$p+06{MAU! z38G0q2mtqnHQXrY4bK zw=#z}Ubvt%$@33HL25CBdv&m^lXH?|Hu*jUX!5VKSnYzgxH$J;$UE60_gHj5J=hV5xw2y{0@Lq_j#y(kGJ+3ub*u3b@@i5y_dF9DZKp_F4TYIra6| z+PNNIs}us9-QXsaDQoz8wFj}*Bosz23yC1_2IeMeOX@BPmJ1nC-v*W-Ma#@xibZgw zY8Oz~D>DawH~|*o3m9Fuq)B@eJ3)Z7Vt5RJ3GP2p4CZvZ@p3JU7cvQgjT(Rjc{G>~ zt{FM~M5A=--X}mrl0G?tLW{$VTWK*AK!piFWKlg*HT!rChO?_peimXxQ`lR1Gt-Z= z$onx8>#QpURUiId1xk(U+-3K#C&YwBuHQ zKKBDThG%n=NVvV66QaNOC-d&_735R^iTeRx+M6JX2ihnkw8yeX7c=L4tSnJ*1uxU@ zZJEV?Pk|hgpC|m5dYiuj0Y|J+gmY%)1Zd!q+xjNXUQ}Jfyt`Azn!*ib83OD$bZ{>a zMI5f{pJa&Ct{y9sq{1=5xl6P+o3QMf(Wj@ppKBQcklXJcVZOS&{qR+KK1p`z$ILI5 z@u*MXUL2lPA^5q;h^^;6YUH~1ri&SlPuy64d`)rK!qyWW_Z-62t2ggt7Z|D_L)>`u z8Z~v5@scZ1X39R@Irq>XpVU)=Z(Opn^nxgBc`jZ)~Io74T3e- zJ&PT`EvCZhw3gvMd|exF5IjsChvHI4_=-OW=<109*E}nc^%`# zk7!&n>oW_N_rZ&^-FFSDUrM*Ba`5nfy}WT-j!hcB&6-*(nZSG=3;#ly6eZro$ zw9-$Xy#Xo;(>7Xfp#?7KYtzLzUdtyG(l&kh+=}1rwc5)6%QHZIPjp%+G)=pIAQV4G zOuuz(-PZL>=p^Tpui_!DIHQ_LqYmnP%jZl~L$*kb{Dw2!T&MWAQ?X(>6_5uv@XNiH+RzJk5cU`NfUP~(Iv-0Iaz z?617e*c8xiM6{&x{NqqW>7Ivwi(6Ja3etKX(+4?XEa%sd8T67OA9m!3Oy)3q=&LOh z?WnjhN1lhvDyvAa@xIBN{uoHP`FV&#XzfXACdrS9hhmRSa^TQFsKwB^+(%$yF+ zsIOaxgwuD<-U+9lt0;{VLn~Q>`0q5;z;}}h;}JKG zjlx|f6~hyi1~YBO<8IY|ylM5A)!-+HD27E=c5@YS5$Xg#GAE}w;J%%{%3U-hYcVV)l!ftI#!>eo_KK zyg8Tu)Jotce9fGjwzZA&&-}?JURf=7)UTf{sV=I2?3&RM@7pMxVlTy+pj(ZEm101+ceol36hq<=Ft6jVeKYK`?fV4D zbg=HHe0g2(YJR@tG}ZZ!5dbGDA|>-Riiw4oWoX{Y?H zwo*(kUUcdAIqAs_8kTmG+Z>axV?V)rCW#BKn z^=l3nyJtiDQ9DFzEQ$2KIhha~H-4U;4BCdV1cT#Ia6!c-Obp=(Y;y&f?m18F$oRX%ndhUQ#8H8cmnkEdF{( z^Z5;fBD>f`w+mHKuL!_J#4*YNW7AxK#=sS=B|%F-+Yxc=UEIyvK9oDo>}C9 z?8CLQFKaZex3VyeJD$vu3$)foEGCG}HChFY4MHt{%aJ3&#E0nf@na(YA?s5&7p{r0 zZ%9B+2HrP0tvN-`{U;_ADhMN9;;FgI4v2=XhJ+HLR&dNqZi{GXaPk{T`joeEc_U9> z$)lod>`_4))5O(}zka7?zHx2J!jo`|jCRD@fR8Y)B0$*R5KUn<&bx-Y!O1oSs|rpq z>+qL<5w>5+8+^4FhuB;=Pe$a|3O6$b$|4$k9@=Q~r-LOy>fGSBm27c~@w8y(5h!jT zC1N=&I@PNLPF6^NM^JS}9TAaMYl@zqbGt%Y1|Br#5yPsqS-aVg`&5GNPM94XE;`_p zJ-}w1?6;*JmBZ^Z+`KOLvj&1LfZ@xR>~ThaB}3!DQj@#%R>5)&s%m483rr$}UfRtG zEZCtu@V3uU^1Gs<*ZC1u$v4bDNS!kAowFuYMXUB8KK1_a97TB2oqL)y;3r`yVj-{L zkW2n0kBTbIAn=McpDcX_#u8>mmW?LEb4HmV9S0dgRtuOKu!vp%Zc5uGf(lMoQi-{L zDxqm-7Ao&MrK0VcVWI@t6j@+o)vUNXAg4dV|Qa zc+Tya93)pzp`iu^T1qE6HNp>x~9Zk5hlEwHREoe=5Rk2YezwQF&;3 z%V~UFt$6%cokIn=CBtiKRmN6-6ll&0r;yml%O)xs&!>no>PE`%hc#R;EXebzYc9+< zaTaIT8{_d&eylC>`z@uf+@785mm)u$Z|pyFG<3%|=os@2LrjiJ$X#yB<5`Xvzx$3X z49)hK&OBFp@09cNXSto+tv0V?je9Lzhw(qcPk>#f4o?@Xf$@wxLH)viX$&CEHVJh3 zo-vwE?s+&}wveZB0?^k?#pzx6F(**4w#^Lr74^oCSgBAXu}PDbP)BrRFe_5=>yc`J zKkPAc{h|N7aU6DQ;N(JgE7Y!Pa4pAV${m9*S41Gp+#uF6Lr)ehcC)l-Rh&1=a7(Cg zWcs?!K>ZGM6|R$F0<|Q63_PA)IvVFTF-Ch_J`ZS{W8DN*>_y?Oj+ltbU9J}q5qy^( ztRbpo92lz%vj$i+Rji(fOyaBdyp%`r%m z_wM5nPa0^#m?3}|=bl*;*>>Sy(Ih*r*L3~~%a-WdixRN+S$|4F_+`d}qzK{EJo$p+ z^+!hk(0z@2?=k_R|4I09-&j5UQkU|=c65VgUqw_I_*l+=$M|wF45BI|YaN~3!8GgFw8BFfW%=-6K`FP5( z0nfNJZiCo>DqoV~2jS;JSa1wFY$5`ot*br2>m8tfRSLes=F>7S%PZe^@qjJ)^}g3l zWwS?hA#cab{;By-P*5Ci#&&@3wRFlpDKv8OD|ZF4&pbht(=>k0^p-->ybt%RDILL1 z?&@he7O*7J!_1&QLG+c;Xf4Rldewwo+tBK79X3@TgX_{A37W7SPi@8%(2ndT3Y|Ty z4DA_ze?VvCZbTv?&LKcmYko!3WJqPS(I{+4sTQ#as^IZ7ibb|nlTSRML*@(~XXK|$ z%k{CqQA%UrUoLYw(>2moGDc4ttaJfi9y$uVfXhW^8aOV;c*<&H>wT^TFGL)&oL4nC zRw*PW}HqX0cYRy|NbhWNvHCwh~PmWpAK0gxH z;2)A)HTq~hmO?S;b%2(AcK8WNjF;G+zNWwRn}y-Xr(Gj&O6wQfMqH^X0dF79!^zR) zLXX5fPlPRm{KKs;qNmm?KUttV#Snd^pYccy5r)Xp_j%XQT44n=M2 zcGt$q8*Vx_nNX32yHm%@6&V;J5=>ivISd@RVuptjKepP3Y<;ey?OPq69tO+snW}+M z;(EC$y;d04C7USJ=be^E)LCYd59V=b&m%4z?Pj5|?KVTvlMZY6>5#I*Z4zrjU%5Qi zmbUX#UfTju=E-;}WD!SmhrPF?H!eRTya?qY`?K3(`;e0Z`uA$j82*`-dW}MV8Ax;| zxJlM9c+{~ad-MDQ3g3unUj&4Sz8d6gR7IWA+v;}55(!cD#QdT{aeYdKJYH$f?|9yp0r94 z#5mCekm{9j@(L%}9PSi<2odYiE{^K~y%?E|oN?C}0SnE)LQVGhtJEX=p3H5VGc|6# zidEafyvTZ4sMe}l68f3&5Z9HvByIC*ZBE5tf5rUni7bQ=nlyGcNKW&1&TigdC(pLk#-O|H55 z2Q2bW=_#>v%9a8qA7iV%TdI$@ea7$^LOYtnhPd3#wHGLUb1y?9#kk z++4p6C%{J`?~25K_KJ3sFBE)$75YA_DN+dYc$bvC@dH=y>)@1?56`uvBFIvLQ&ijx z4HB3x;?Fx!svYIn0mal%7Zy#pz2Y4Z?DdmV5iu#sI{bb~ZvV_obCIxnXG44_O(W(W z?hLhC!hhNk9`%O{Q6nV`WB>;pdI92xTH`=>xpyYfusPBMfW5jJ1T#*o$T7A)*k8 zPXx!^v6`2cRiFuwa#D1C-87`k+CsrsRdB651EUy!=6P{CV7cbtt2=bnc%Zt6|Hhy! zy-BQ&k06~h7QNtQ=f-1A++0zGvUL_f&)Kup5JK@a*BM9R1&EjVn&+S@@LG$LDzy;% z`t*5XgP-MtV5S*m_zbj4bz)IBh|BrK!R^5!H|E7ho zO!hDycjnM?{u|8&V<>|vWIFtq>9lfjhasWY^6Hkwm{M*gm+!t1hdHg1BHW7+1zul; zZU`-~#AvW>Rt-lkJ6rK|y6R?3!l!2>n)j!F#8Si;l4H3Cq@Q6b7e8|-QM5jNYvhf?OU|n35j!wtf}Dzy%^R3Blwm)_-aIB030$#QHW9NK|2VCa z+F2+1gqao*QrMIf6zGs+qU&??A#*W`8N}#^FVfMSw0aA#g^wN#nQAtd#LAw_j`1aV zq(!kY{hIxBv!EA?BqU1c2L^^fvC9O1(H_Il#fXlBHCPVyIuVC+1eO&Exk!U47<)r5 zh44pHUKdaK0rYgBk6fEJX|4eN#H!CP;kON^K2JEL2d|ELZev>D=)B~iF5qfCbLGjl zlDlt=szCtVRR7x>ZH(`hjHZRdv0QUG8>epnwVXb0GYrG;;XI`Iqvsmu?pXVO^h8RjbtxwbZ?X61dCqV&O zG14$PV?nh>+%X>wzU@HuMK5_Zos^^i=n>9M1Gb;983AER+Al(P%8D@d6aLU=PL+BB zyr_|#VXUev=v|pcCP&<}_ijCZedU@+4)fVzairyTw4NQh@@!|BF%GUSvZsE8uZb>D zn0os8pe>A*nO}65WT!%TysV_LhO@#A(yir{ef2k;1RNtD)?pw&n${vpSvAdtnUkdS zHa2kNDX?SRd-#c@0VxcSzgcH&XUzzl94MHr;tsEls>whU4eqB)0%4+ms11wo&lcF0 zHEeHdV^P#agMaG=LFFU{YTnlh3Xx@T(L*lNGGlO2$*yu>B`(;SEf)#z4c1*N{suv1 zvi;hwgEuyPXl~KD!j(eCmk!vLghpcu(c;&OF)8$Q`Fn zIQPNHhs)`Anul;~g_CA~94>17U5>UQL0X;G4{ly8mkR7~nk?l)ve$BhgSh^6LG)=T zKF{p+Gk>cB7wAjFQv^=h%93zslD074)%D*ovll6EQldm*a=-!#Yo){_mD@ zO7c>C>rh`~Etn9GupF4tPj6L=i!I8Jk+nk5)0S1Lp-lrqF^4M@Qk`^23i<%+ux|C^2su zA{E*U!4)g0@p#ofl;r=AXMy&H_bcmAbem%YY^=KI1f_4)7rCK0DQJ0FKKSbyeS%(* zxN2#5oCw{yKBM*U@Qze;Bi!UGslMcP5ovysbvToPU+EoM=SB^ESMeh76`qpT}?ZPg7XyFK19Ayb3LXYrY>+Z;9UcmfE1& z+ZcodASWv5sNc{>F>C^m~(t&lG^$=91if+Q6R%y*1s zPGO>{#||}wuP$r`OG-8@hR0YtJ{H)@*13d}fD`_Iesao8M}scR#^%xqSSV-jX z-u4H4Jt0M+pHb6qhY%GmZgtU*3qT78e=9i;T=(I{)0nAV8F>6v!!Zs)G?f1KO{XKl z14mn$f$+FA-daxJp!zpi9i5luir6oBJlDc(Nbhsbt(p4ODq9b{{1*AzMx0DlsWzKf z-7WWj5vu!h^)e}95thxu%C3NraP>wR%_Ztf|ANJXqXb`CUcVg$dGhY5-}$G>tD0+? z;|U=ZskfcXvp>!A(LQ-Iu8WXbq5O<{Zc6hS@}70fY$ktcN;T#9T0sAMRQ#-c@oaoa zvSXTq_NRLuzFe>~=_M(zEEoMVp5P1bM|K5&C@0_7^ork47lfRtwx}KP$eRck;Y{j^ z?aseMjpNYHMbmn09+Z{h$8H6=I0@h)l*5Sk2XvyQVe31`d5|d^j&1}rAXijtekvc! z3$L1-fG{k8lOlaFA3HLfuJR3k;{hIZ{M40YSsqcq2DkyQ-THX z8=#k!iY_Y6gi^m8I)F8d8f_P*-mmV)V)UN~%$!s={Wf%r#i2F&p`2iUMDiXv^Nb$! z?RxV~t%K#zJ6}D1_0u7`7*9;0fBLq6KyV*?*VPI|`U%KL7E+f> zE^7m4!eq-Z41uFnI#c%OiO$D7^O2ZcM)`Xw5~i*GHjoF%x56r55H7)}K-ga=u;3+@)`BxtFxyng3E9`VsBA zfa`(u`ztc0{i&yLce2;fX54id)at?)<^~9SP?-XUqY#6_ImiirS!_r=M{@pbo{^ z_r+&%J+{8iX^U-wu_ow?KX(`Ef~h8df9+mv5gi8$Vtr`@_d%t1viA9OL^hJG>VcAW zn-Vn84jNtESPPJUQ{B33h&cM_8ox)jD3pQQ27@Q)qvdp<8_U3MT0Dw`g`BunwyL{0 zE|=!q%+v8qbM{J!J_y&2i7#@RH@17a)aw^PlwOext9^{rQieU%rIgS8HnkEV$hp%~ znlBprL!PPhXltdGTp>}yIf;3|t#m5?g!;9I{r9&SlOPv=JwY~RHgMs!xfd=C;4<$| zK3sax(T{K0KHHHWB+L-SehXfZ@0Yd`Y+NueEZ|`3w1r#j>@B)cR}GUbmwFS zY01cc{H1w@#rQKb-?W_KHi7G4%US9T*HXt2q0n0!8uSIR(8B{1<-1vnU_bM+ob=Y$ z9w{~5Jles?hV;Ph2NUE~l4Kp~xdi9s{7gQ`qty1VG@~{Qoi-%>a=!yZF}l09=xZBY zXY~;!av2HNKea%Zk-A>oOFT_rW6hvDBkAnWZRy zw|U}dY&$IdF&>HDnu^8QzhcEVT+WQt}>Tl$gZ3nv}!YsAMdYpp_ki>(H-&_*F<8!Nft z8zYWOh)bfLCGkma-bFO~@K+xyMLhX`znw)Dm*lUYi-DW*9gF%J4ia7cU|BS$CDj0j zc8t#OS?pP1vrf&XsS)0nItWZ03 zlXbbv8AKZLV&1a*OZ2HfJ`p6#n_Np{cv8?e@_`yGacznWV<@DxT==PfW>b{rK2vW9 z$DX0p2#sTzR*JT`!tPkr0+2{hHMB zROYL~^lgUPNCMUVAMj{@=&pPpjR`uY@A}PlUHj%9wt)B4^VXaP1B?-6pxx&O4!gGjwJ-se~CT7L(s>heh{fMZ)fefcFV7j6>;%!X2vI> ztPLmGGORr23Go|^TJc;Kh^;1CR|~mMjD+pi+Yf0dAj5}fhaLWZ?imgGu3Dw+0YwJ& zVIB>hGU+>X(Py}$hv4PhQhgqX4JXHvR!?Qm86MUvlD=f4lb8A#lH_QrCC;&ig6r*T zUPojQ24Gto*@|&xR-QCn;b%p3If6}booJ4MAgmf&1b{`UDQyrb?z9p$+<`XF;{eSP z`$%D*?`RtQ?0bBF$exz_+&7`-2`tKweuAqVaYAjeqVbBfb9;y9IqPWhX?6o&@Ooy< z61h!>gBK|*G*WW2b5FWX7^z|T5yAF*K7U52c%H$iiK|UStPDpPmKnFzfug@N*fs8v z)9uUVT%kI6hH9Oe9vI2~nDl95h*ak*jh?9n8)>kc+1bp0@&~dp$EHEDwSiJVlW3Ir z9wd4iX^%tmeSCRJysYWzQ5vzsmtX@q3)9Bkd>n)o{6&-Yhf+Oep#$ece3)Kb9bx=j zbuYX5v^duXFnsQa!%66pI7qWOL;C=OoX~pL+%rm=+QJNafe+;O!zM7c5Xr<_C!5^) z21*CwD&iY|o|@PNBe(|$(Af{usTXkxi<`|*19nS^0H*-_FtRo(X$5QDB47nfy!iG)PGNTX7|grh+nWDa8=*YX;- zAKP%Dnxq6~IKt>(;{6JV)aoVZ;Wm7x#2{`05nNPowI=!b)32&2@5ve;hHG0>T`B2A zviuKq&H6Zl;!#%F}&)|GV3^4;y$<+km z{%VR@Da;Fg^rQAmJRWhk##dNkN)GqBZ;H=QI{Bqv*VfiCzm0o}5-wXK-AHqyx{@&7 zJrv=0#10)u&q+iyjP`@D`N*k1bU$VIpZ&srjhtOF!q%FY;52_sRjZMdlWr1OYf}83 zck$ckmnEP16)zBVj+AWr)~ngcR}|cH`Lb;?o2i6|%c=#`BjG>4nY`gBMupU_1FGr8Sm+ zJ6+V6En7TdZr*qn4#x9|;NdQ8UN0nvb6Iy6-#`^4<{xK$d1L4sFHpZ%r`bcDBa8AMvT(3ZWa7C$jHN^TiEd|#u1~k>J}H5 z@mBxhA!-}1p;v)&c;F#?i8bBSo}ns#$)}d|(sLhO&NapAXfG##k&Om3$@`Gfj2|%^ zyCS3pV0CIW z_EsLI>b$?Ad=ige*yHV^fNg=tK%X676mjw8{V`P4HYNKR2r^{(6!@4eHL!JmeQMjW zO|89dn}8d$nV72ATzDDVr(W5FH=wzy?!^SCko>`qJr>A~jGB&^7PcnbPcJ|YD(g}P z?75AvBIPy2?AN`*S>Xaex1-C%KHf$rPU4omMIeb#@VpVoH zKB09sA*kv?l0k0fMBZ+AP5`!lDL@92H5KiIXe0=H6+End>T|IzWffPkHOOuV6~c|} zV1pv8JjA?0od!ZaX8L(92hw|8`|B4`s1zHE;H*$KjVQz-nqkuludabf-GfiujniZo zK-s%mjQ9quR}d0T2<%H8g!TE+6VHW)ogv6O*?bofp~JYF20Y-l(IudNd<uge3v2ep02OaKc3gTfx z^*{~2oSEo3wKjRvf~|P54C(KP+<04TqY)Fp@oWhERnns^U2#Gktw$+4xbBOY(40ce zYSx)+xZ96UK`}F2Y^=*Ye&dkVd8;uVSyGS@J8^TYhy`4&45ZzEaP>j$36P!~a=Og2 zv)*as64Nd+{zaA}UxgKme8{Rtmgi=O8k#pm3oE(F)k7gXZ)fwLEINZJ)8EwPD(_W1 zK2Z2YMbH*~GK%K*991g(Y+W4@Wm+cRPtrJ%Wa|_ii9f$nCDNT4D>YL69XDiHCj19d zcrO3%f^vD?SoI`-V;9w>XSBQDJJGrkl+J8TF}TYom@Qgwqc?cZ)K8W{4-wJ4TwCc& zBnxc$eIxtdGaaDc4vZ?PsGh#e)k~00q00Me*a~wJNn-{nEmM6qQ$hb`(OUidH08HQ zMP1Jl_SZ{#v>qB7-ggCN7iA=pq>JM#$a?v;KtonRN>mY971CdW5I3&}O*kb01}(Y{qdT zTnEx<6BO1Dt#X4rPH{EV#61!POUf=5`5V5dSCask?9oxN1%~)vO4vf0=+l$O6Ok{% z9_(}z>$l({Q#%%_3!bx>*~lR%5B?E%5`dXYP$KBu~!X^lK90B3Ty*GCa_~EitK; zs6Uvv2XSMJD_|Ol>55?`w$+H{=i&YUYthD4!je(~s80i8aEZ*#57G>cY&tie$$x*v z%g3RA+#u5y?Su8D+C|4GC^zR0b}p5K9vg|#^08~%Qa7=KX4{MLTJGj}Dov%>?6VAd zdxbx`S7A140DO<7drknUC3w`#PR1`ceqC6u{B(Ti(*`9brt`h+;m%g#hXQ@$>$L>} z;zNPmgr&_<-j`t0y6B1@tLc#R!n>Cy!9GQQno8kRM~xh&Vb7V8q_hoig`J--&aL5l zYK6^p6wE?sexY*kyZ(487(rpAs7OEjqOWo}mjnTYEUSa?)9-95a>ome8g^&0s(`75 zxk=#4CLK3m@#Sqz38z&}hqZ_6CG|^AVjAf~Vr?qXGD_8N=9NRCdm z?}WdE5LX`HgP0o~XMSlt+dtYU)8UOfD2HB>jC!2QC?+Yk<6~5xlAwYp29m z{jCjp(U%FxE;C^5>F`E_B(#`mW1w!2Osq(xM9)IMRfI%fL63BG0Yh{i@ zb1dd9_G5#^TdiCw-H}kTfkk=QD>Z-jCc} zQW>AqoNPL4JCK6;<VUk83s=T0r>wWdvEgVm^LncbAQi>3TpYJ{@>3OWI`-f^wKrO+!c z_Bp5l_AL$>+Vh@W|L|45SarVINg9onE6S5#crUHVO2pZ&(iWS#ZToB>n~o6|2%V#T)n5OcHu`7oN>o5~KDqoDC0OgCZOROog_&)Cp+HzQi@VO z&dNR9Posa>4NUnVL*h7pvyt2ZjaaSS2Smot!D#V&I-lvK^8X2i0($*UY=s~==;UPd z5Kn#tA?n!mf7v^f6tEJ#Hp)AFCZK@FT(F~w*x$e{_#4|#kyu}Ypsd?z*C@V%%!e@g zRe1#;rlKxJ>gS+nj}Ae>;E>KntV zFByEE@>APo&LuvZ;b*)!v5#SdreR>v?k3ozhK2><%X!!~f&S@0^I~3%3~t(~CZg)J zOL0-&N_G`lP$t^x&O^wR9ey*TcfZbuSVP2{gldZa@nXwR8XHGfHOj~>Juy9Y^_s(B@{L|V5&voBuw>M6;2yD z@Y)p4IT)-RE*A=o-5drRXtfe38z4b%#uR}&Y;i?U4whj;0feE&iXsH4NX`qvg%<-6 z0@M`u1+GDGtw>_18LJ8@vCRe!Z8#2LkVZo-z}l1mD%gJw^aRvIFog&XYDz*+uu#+5 z4rIV_23Ddt_FCwXfSeE>#wkz+Ow|CnK}8@v14)S&jDON3eD0>FZW;lLZ!XSfGrh0z9}Ej%sR+5wms ztOocx9IOCfi-Wbb1p;FXbXgp1(NJ-)g@vM=#sPmKD6BynMp=!AE)>;r&Ic%|{DokT~$<^L6gNbxC9$q0|SFg@Zj$5?w-N<7@Xkl z79<4C;K3adBmokf;O+^o%YV-9zU;%k^y%uZ>VE3(I=8xRMPIrpLl~QDCFwD}`4I@@ zOT%D(7Xxt#HPW&nIhxd-gf-9RW$iStj2PL!+6`zMVu z^6BBjCvQ{LlF#HrtyA+;4q`PwF>##HUf2-64}9qD>J{lLaxL{H&~TC@ghX6^bVZRF z_IAKb98mZ{G9Am~Xc$`Zj>ZL(iiNl&w#_(+fxZF82a7?dlEDrHTuVBm-al9C3AG%{busEHs z&fHN`-B2c+F;Qe{rscHMo8)W31>d9O%CTmsLGqG!2p?I2h8iV0MR!|8og`aVB8$8i z%3);;v~|8o9e$d9%!^Q?Qu#QhM1_0e1&12zRqyBO1$cz6Om0+=3Ws$Z3(XPgokG2a zV)9Ayrw<33d+tI3yPS&0hR4Ze}? zG4|r#2u@j5iZvDJaH8_f9Ww(V)_d1WtRiha;q zBBE8|FjB{h$43BTyjWA|Ef;#{`Tb-6CIX%@p39E_B(1buq+GPh0jc75L^FJx_)*F9 zLrxsE?mm%0T6|iuw9nGDW0focSc~PcA@Jt%%TQaFSfdjE%lY|woVs@dugo1k@5f;b z1?Z*%NwM&`I9cN1T;xyje{ku!ElI}ai!K!7I}EBfu6tNhzHdl){Uk+9vUTyqdW@`k zf5;b!rraSXJH$p2DO@sm6l$mR0mXs=X7?GjOQ`Xqs$tX=zbjSw+1`NbqZKQrBZ}Kx zt{@{a3%e5UYkqRp%g^_YXwBp??+gDB1mtQa0Uv^~nKYbaE-Sb=1!t`lA0*)(0iVK*i*1yl^F*W93H`MWQOr74B+@}H2ylRhEa_U9IPfoY+PL;L_1IhRIrB3T< z0-C+aFnb@fOMM+jsP1+41qJL|(3Zw|8IML)VM}k{EA4EQ*zJHtLN@v1@=Kk6@Ge^d zVoi1z1^wU4>C6d+d*G;dEAeH2ST$?3Z|~Q3i_niAibfhN0@I>z^Sq#9AhAi78N@Cc zywj51qk+TvBK4<#cMjLm9(!bX?)H(100Y#QWi@WKWzD6XiF+V?lVJzigEv2U)E<;= z{axImK04`sd+!R@tP2FO2@f_#dW*L+aK0C?yACxWm3(qB`vVLk2wA-T&8YA-ba=%h zKyNaxXdZXTwtj)~D)Sib>rw>z@(wzfxF8ShS6d)|YhN_~TEJ#tp))_x4*22>K*h+_ zspoOn$u(`ZuMf}93WKdz<$#Q%r7g$rZVMnvxWs(+N+bFeB!G1xLbW)^1`y9^yv4wH zxaE^dRj~YS=c4zdEB<9+?`>Y=?Mf5J!ow+MpcMe`S@6BWyEhju==>mboFFN3LDMM& zdiXom=poT9D)A6N;h81Y#y$vu+yiy|$d~25p<%N0FAXvSK#Lb{fV!O-mIQ-Ri^(om$K*MetO)8o($}*J#@-5(n-=s zPQK=nceQerZmPjCcTOowcTH*W@Rl!e*&{gsXU}nyk!I@}zxkS|6MfIp5x7hHdrGRP zFuf-K_1qJBo6Z!=5Hr3un`nR|{?V6AsvYCttbTquYQDJ^xNhxcp6Cf<>vy zDRY~lTx%~<%jg+qiz22=DtKDXv_AZ9a<_iBXcFW73}(9*$&OO=>weKQvvGp1;T{IQ zB-)4kh-3WsV6Mmgi4HvT(#pD}?m>D1k#p&f0aNU6DD?SihHHSRYE?%|$!ijxq?M~F zJFQ?^;z;Lnda+!nBYEhC*C`=rf%@naQ}@|Z>FCU`1RfG%>Gm#YK-sVt}~zc z4aHOaQQ-?IH|NGBrB(n@^OPuQ%00u^7$PWAHyy>eFdaeH6l#Z!`O^7=lSt=NX}&gJ z-2wL%XKGF4=ih+T^E%pq$L;Qn$MPgXcLLd?B|YS16qQuZU!t=RX`MecY~*|%=&ag+}W?o|lN17Z*3jgU>H=4X?6Fy+u`uuIAfK zY~*e-B7rRYAGIIwxdn=^PkoQ#8ohr7B#b`xllY2QHN|cPExUsPz^neAL7qXe(djdV z4^m(^`nF9j0bdn(Yh;s*vT?4qAium4*lznjRqrzCwm@KST|c zo^#n)eZ^KYyO8#tXaAzI!?(j^_;{ze5MEES?uf~OosFF4<&$rJmacuG{h9Hhc|0GStdW; zmTX^tz6D>&V%I*n=$e*7SBu40%rmrwdL;nSf7I`PZ?ok;(YS>!UfLMdiD2Y3iyqXw zPxf?%To;u#u9W`4Bki@~w+Yg6)J4fLsAmkBc+b|4`FFkMR$SUoAJ5R3}#R!SKG|QUgp@(SquMTD%I}ljl*#f?}-2YwS%To?9!LAvMcys8n1bSaDm8D^4g@} zS@UsRR(z{jgHS;LMcUt;JfZdrJ;vRx#XmA(!mGXWOZr&Cr!=>1KA&9IHvcvP(8-W* zfBckv3Sv%XcMCy|-aD2||76ZosZ8!WbKn9S{xxE)hmDhyVZw(QvlY`Z-H02vbYT0J zx)2R>%L4df5|3L)Su?^jl)nW$j{WZj|5}(408*)Ta}sZwTAMDZ*flp zcsjxM$ua7MXJta6*KBrYHv>!n{k^3RFM9})=AiU&z1^B``^HSp%>{A8871`QA()6- zNsn*iQVP~1Txvg9^OGC0o+Ku)Q&L(^ym)&P&xruMA}r#TXH_v7kQ0rMo1f3_>hpj5 z-O~1wS|Sfz^M{JvncZk|*nU~(ruq4%#;@%rcJ>W*RZ?`d&rxS(p~TDkho|Y;u$A%m zW5XW0H;N1X?|$}=6>)nbpKkpwLVdnf#bx8AXwKkm?SUImBpS0tat9nWIfD9dpJ>5) z?6(IwEHi((?#@lyDXSK$awhaA>fG2CxbyYTuU$b+q@E7w0CY~ZI(MZxRTgDrp@DzN zIHRuYj`UxU5Nt3_pKLfo&)fxnmi zk1G4*iAk(WaVC_>ptG59CCm*z{(bUBY0svVhOH6R7n7B;GSa+R<`1FZOr47>>cS$H zF}*b##bb<$L}xk8lx^t8shG8u#!W)mEIGeYf^H=SU4bvjnXP322{Z=)(L**smqSJYZzh}2z zxOq8h(OqfesHZF4@4k)lrL~}1#Gdcg3+aZtADwO6T6kOz!c3zVz8bw&tIy79XIQnw zt&5sJ58)B`?J(yAxZrd*7ual!Cr;QqGakQTG`1XU&CgLC2zBq^Dd4VN7jSJeCa7m0 z<_Fz?xMx5`$Kcy{Q`3@&jjw^$rtwW!vZk~crcl32M(9Dv8@68snmw^4opDO9&_D`;h1S2X)W6#MONV)9GTH3R%S^bb zO|_P>58@@!4n6NrYy}*;i04n5lYA7Be{6bo<;jsy+1YOK)2$@ip4Pj?0#?#ntMqTu z20C?n!U~$WWcoUhKAC_h=GXT^_M5QU=}hOS}=zYk07@& zzW}!|JA{V?0%2jp;!<_Dk+Jl#rDc^7;eqf#Apfh9RfC3>_5uhAq!Bz(Qt-b(Kyr>= z-afQ^|LLmOy4m|U(DJ;n;=Z6kY=EJ15<@FN_o4n78S2@qRlHsZZ4DyB=-3(ar`~9@ z&-N{dieP22Se71fU6+*AN{5zM*}hX6%q4Uf^R0~YY#$J9M4f+w$5l87@&yS-nFYj zfq!8J*|%5@{ALsS>|dWvi0BeHkxqIu0I`*w_jAwrD~+^~y+d{BSHUFD2&qNdLkwI* z@jxYWc>U@jSp|IySt;QsEfpUxp=$4!sYSP-FXP!lE8LrWYS*ti5!K&WWWF;&iZ)P4 zkU(i%6uP0yY0ezL8>(sjunwS%&?&$ucOu|D}h$0Xler^Al_j|r_MzG{osXE?nijRNk( z3E_q&u<(pB>c?6gxok@ePiA_il67bdYg--dNUm_N)yc3`KuD$P&zqJ^yb?b3uSKS& zy)--;SQrNLOsHr;U*pHr@U;aeZek61VLiUCVOZGK8%>PDYCSXmK_%;6#jjegSfy&; z&{~v9v!UMcn=|dV4st=a4#hXX6mMn>xToJ%)=D#37atnXo+~VT5m^H{rL1 zG0UljOnR90DP)`}_6}zIt>t2HT4s|k>ytdT)^^5p(n?HuttHJ^p7RX>JE>~TS0_y| zxR)kb^;}IbFoE4z%PjhrUQgU@X^E#~rez6F`}yKr zU1NJEwM!cGqf$0KIT3l~TpJ)uF&X9ao$J1bm|Txgb8vhPrn&XIT{hp08JD}FeTD|W zQvP+15S5ULLfxaEqAjI|#c9au2mGkqgkV&-r~^ts_wi(j#A?)ju%L<5dV~IM%KG;9 zu|T|iO+Pc`9^g+oxmoY`w42y%lDHy#mlFMOx!Cjk3q(uTJhry}(|3eMQB#w?Ys^t%&UY%M|HqV3`k}D+eMM(A~2l1wQvumHXATPTA`M>mMeN%@)6-kI&D{sYP0dqD)K|O zi238Ub+L4@Uy32}%NnA8-xDVVR0d+LUk2s+XAsSH%?~-GEW+c|l98I?d};0ZhWIxM zH`;#XRwX&jD$mr7SDKDRD_>L8FVHiJ@b4T~R+o(x)$de&#(8hDH-aaK{|x3CO%nfruq`!>Uvd7bha>lA6Qd@HUW6DUrs(5XwJ??5S_x3$qR^MdbcAWbe_oy90;rNB@mYWxWQ(Awx!Or3t z2In;MT26i_<%Ph>Spr@jIXvB)_P8Zs%$o>R?PYuqEX5i zytQGpxfkd3yoH!`UJ4%XIm=y?Jp>ClNQEsoqVx`QCGm@;c*RG?mn^&tIne_0zSf zziwE$dE}~xOnOa`^#bH!0YppOQwkG)gK@)JCp(~jtP>_(0v+{7dGj6^cTnTFU%jTg zMbXHk_ZM9wpROs3GM7Ga{`yog`*vC=NaCdDR_OiQ=SMK(zPe*rQOIu3n@3fscDtW_ z&l7ogryr*P;jYi}UAj|<8+1c|UMMooqvTqGAy)SrKpo76(O&>sp*X4#%&cm68HfCd5{zWO9Vq z65wgK);z*;v0UPm9+{OTg!@{e=7xhbi~bgsIm-Uti}DLeamxrmr1<$|dAT9)qy>2e zg$1|;WFb7fGJL{va^kfAzY5OFM*rhqar385S+fC5*@`ZviX>5|{^7g+SMRAtpv+5f zqPMXHuSduWpoDM3j|UTZ7dWr6J{!Nn7Enmg00+!;l`-KNy0Pcq*wiH<5`(ZG6Ld8 zMzsRG2ci3s*LjC^K-MxW4mWE&vE zmwb{!O9$^_RzAK(8;%7NbSU~FQ87Rh=CM{3A+jpYUsSGzgrroQJ;G1;vOf<8f#8Qe z>S5Z02eGE5ffVC}GY^@2lQ7=F^rY53y03;DBsFuOfQ($6Ib>*MsUSBCU<2%ZV(fQfKuOsoqFJ7 zAED%d>`w0R(vMK$dsZi!W*F%h(4e;xIzgQ0hs(4LF$I4MfneBNv5g4;%>3vxdjSQ z|Ea_bjvO|*!8RqWi`56KV>}3m7(U4P#4CVOAPqS52eKk~NA zPs^0W&J*i%xSD@5Akbxn?zu^CvL@??XNu)^zRVmy=@UZX!X$$M?7pXJZ|)&`nVyO!%}&+ z=1&Pb{e~vwsL_3zkl|P9k8juBz}Y;g@)2e%(DG3}g%)m#3ZVnc9D%3h!`Z0bl1aLV z_ORhL8RZeeU88n|Ya|Wj9y2uk(1v2nE>yR$Dpi^XGh{IAa1HGzc}1*y=)I(J5PD4* z{}T1N;icL#v~n0Z7c?TtvwxhteWSh5gyUAiOw{OD+}^ z2t(=m^v#EMw`8C}{l~tZ0?`@M9!Ub}I_>7)3gsF{+FjTq0X~}w!WPyjiNR4QlN2x0 zH%sc|8;`+;)sPz4PZkTc-uzHuL}jE*lnYF3gghi36dM3z6hE1c_MHJD$yms>j^I#2 zC?%pG5>JG4Xjz0UwPnsMvIjQpJIScfSBT{QF~Haov{2JXJ=JEjku)5N@tA3lkeFLD zMhHf_ds(%^#01T26RQ@96{#HhqoLOMv941exKFfWn+{z65 zz+pxt%+-{CZ7gmz3*y7cF#e@~t0<|PQ8WyB1m|vdzViNF+1ZbG@b~1Kd$?+`j!QVI zQU6E5rWca1n_$twR`x-;vLlP2^g_flCNLXoIZMTM_1Hoi5n%oM8J%W?kU zU7DYD;J52xol#;G-Z#;P#}H66h|2lJpOLL|_owNq>xmg&lC8@lWcqQOm(6a%>Z|?& zlQjGk)_y_f!3d6`(>I8JOOUc20=)J$htfnP9Ig_$e2{g{4L0C|*0K7kweK~Vf+;FP zn0w3w%c=iXW%zUX>5gvAr5UM9Kc+9B7f`%=&z*Bs6_xUvi$_9?E9c5)(K#m*p`NT> zDJqW{XHqF(`j~s%I-BL3n&E+h_P+242%J8y&J5bMo{;2mLG(JAnkr3~r!b$m#Va}# z@hbe~WhZeTYxMiqljS>1*{FzDnB;^!j0L27X+n5fVh#unDWfVpjpiX`l$9+7h&68g zF%blq41{uJoFTf+->jLmGDqdY|KCw>z$Kf{%BG({bnDl7(=Pp<;qT{XV$>-gv;r-(R$vh zUiBo_>Z3|+0K4d8k`a#H&3!Upl%RL?{J}_7&*T|qG@