Merge pull request #9 from anothersimulacrum/cleanup

Cleanup dead and platform specific/automatically generated files
This commit is contained in:
Simon Clark 2020-09-19 13:19:23 +01:00 committed by GitHub
commit 89db0862d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 5 additions and 25449 deletions

5
.gitignore vendored
View File

@ -427,3 +427,8 @@ TSWLatexianTemp*
*.glstex
# End of https://www.toptal.com/developers/gitignore/api/python,tex
# Platform specific - compiled python (through cython)
claude_*_level_library*.pyd
# and the code it's generated from
claude_*_level_library.c

File diff suppressed because it is too large Load Diff

View File

@ -1,84 +0,0 @@
# claude low level library
import numpy as np
cimport numpy as np
ctypedef np.float64_t DTYPE_f
sigma = 5.67E-8
# define various useful differential functions:
# gradient of scalar field a in the local x direction at point i,j
def scalar_gradient_x(a,dx,nlon,i,j,k):
return (a[i,(j+1)%nlon,k]-a[i,(j-1)%nlon,k])/dx[i]
def scalar_gradient_x_2D(a,dx,nlon,i,j)
return (a[i,(j+1)%nlon]-a[i,(j-1)%nlon])/dx[i]
# gradient of scalar field a in the local y direction at point i,j
def scalar_gradient_y(a,dy,nlat,i,j,k):
if i == 0:
return 2*(a[i+1,j]-a[i,j])/dy
elif i == nlat-1:
return 2*(a[i,j]-a[i-1,j])/dy
else:
return (a[i+1,j]-a[i-1,j])/dy
def scalar_gradient_y_2d(a,dy,nlat,i,j)
if i == 0:
return 2*(a[i+1,j]-a[i,j])/dy
elif i == nlat-1:
return 2*(a[i,j]-a[i-1,j])/dy
else:
return (a[i+1,j]-a[i-1,j])/dy
def scalar_gradient_z(a,dz,i,j,k):
output = np.zeros_like(a)
nlevels = len(dz)
if output.ndim == 1:
if k == 0:
return (a[k+1]-a[k])/dz[k]
elif k == nlevels-1:
return (a[k]-a[k-1])/dz[k]
else:
return (a[k+1]-a[k-1])/(2*dz[k])
else:
if k == 0:
return (a[i,j,k+1]-a[i,j,k])/dz[k]
elif k == nlevels-1:
return (a[i,j,k]-a[i,j,k-1])/dz[k]
else:
return (a[i,j,k+1]-a[i,j,k-1])/(2*dz[k])
def surface_optical_depth(lat):
return 4 + np.cos(lat*np.pi/90)*2.5/2
def thermal_radiation(a):
return sigma*(a**4)
# power incident on (lat,lon) at time t
def solar(insolation, lat, lon, t, day, year, axial_tilt):
sun_longitude = -t % day
sun_longitude *= 360/day
sun_latitude = axial_tilt*np.cos(t*2*np.pi/year)
value = insolation*np.cos((lat-sun_latitude)*np.pi/180)
if value < 0:
return 0
else:
lon_diff = lon-sun_longitude
value *= np.cos(lon_diff*np.pi/180)
if value < 0:
if lat + sun_latitude > 90:
return insolation*np.cos((lat+sun_latitude)*np.pi/180)*np.cos(lon_diff*np.pi/180)
elif lat + sun_latitude < -90:
return insolation*np.cos((lat+sun_latitude)*np.pi/180)*np.cos(lon_diff*np.pi/180)
else:
return 0
else:
return value
def profile(a):
return np.mean(np.mean(a,axis=0),axis=0)

File diff suppressed because it is too large Load Diff

View File

@ -1,101 +0,0 @@
# claude_top_level_library
import claude_low_level_library as low_level
import numpy as np
# laplacian of scalar field a
def laplacian(a):
output = np.zeros_like(a)
if output.ndim == 2:
for i in np.arange(1,nlat-1):
for j in range(nlon):
output[i,j] = (scalar_gradient_x_2D(a,i,(j+1)%nlon) - scalar_gradient_x_2D(a,i,(j-1)%nlon))/dx[i] + (scalar_gradient_y_2D(a,i+1,j) - scalar_gradient_y_2D(a,i-1,j))/dy
return output
if output.ndim == 3:
for i in np.arange(1,nlat-1):
for j in range(nlon):
for k in range(nlevels-1):
output[i,j,k] = (scalar_gradient_x(a,i,(j+1)%nlon,k) - scalar_gradient_x(a,i,(j-1)%nlon,k))/dx[i] + (scalar_gradient_y(a,i+1,j,k) - scalar_gradient_y(a,i-1,j,k))/dy + (scalar_gradient_z(a,i,j,k+1)-scalar_gradient_z(a,i,j,k-1))/(2*dz[k])
return output
# divergence of (a*u) where a is a scalar field and u is the atmospheric velocity field
def divergence_with_scalar(a,u,v,dx,dy):
output = np.zeros_like(a)
nlat, nlon, nlevels = output.shape[:]
au = a*u
av = a*v
for i in range(nlat):
for j in range(nlon):
for k in range(nlevels):
output[i,j,k] = low_level.scalar_gradient_x(au,dx,nlon,i,j,k) + low_level.scalar_gradient_y(av,dy,nlat,i,j,k) #+ 0.1*scalar_gradient_z(a*w,i,j,k)
return output
def radiation_calculation(temperature_world, temperature_atmos, air_pressure, air_density, heat_capacity_earth, albedo, insolation, lat, lon, heights, dz, t, dt, day, year, axial_tilt):
# calculate change in temperature of ground and atmosphere due to radiative imbalance
nlat, nlon, nlevels = temperature_atmos.shape[:]
upward_radiation = np.zeros(nlevels)
downward_radiation = np.zeros(nlevels)
optical_depth = np.zeros(nlevels)
Q = np.zeros(nlevels)
for i in range(nlat):
for j in range(nlon):
# calculate optical depth
pressure_profile = air_pressure[i,j,:]
density_profile = air_density[i,j,:]
fl = 0.1
optical_depth = low_level.surface_optical_depth(lat[i])*(fl*(pressure_profile/pressure_profile[0]) + (1-fl)*(pressure_profile/pressure_profile[0])**4)
# calculate upward longwave flux, bc is thermal radiation at surface
upward_radiation[0] = low_level.thermal_radiation(temperature_world[i,j])
for k in np.arange(1,nlevels):
upward_radiation[k] = (upward_radiation[k-1] - (optical_depth[k]-optical_depth[k-1])*(low_level.thermal_radiation(temperature_atmos[i,j,k])))/(1+optical_depth[k-1]-optical_depth[k])
# calculate downward longwave flux, bc is zero at TOA (in model)
downward_radiation[-1] = 0
for k in np.arange(0,nlevels-1)[::-1]:
downward_radiation[k] = (downward_radiation[k+1] - low_level.thermal_radiation(temperature_atmos[i,j,k])*(optical_depth[k+1]-optical_depth[k]))/(1 + optical_depth[k] - optical_depth[k+1])
# gradient of difference provides heating at each level
for k in np.arange(nlevels):
Q[k] = -low_level.scalar_gradient_z_1D(upward_radiation-downward_radiation,dz,0,0,k)/(1E3*density_profile[k])
# make sure model does not have a higher top than 50km!!
# approximate SW heating of ozone
if heights[k] > 20E3:
Q[k] += low_level.solar(5,lat[i],lon[j],t,day, year, axial_tilt)*((((heights[k]-20E3)/1E3)**2)/(30**2))/(24*60*60)
temperature_atmos[i,j,:] += Q*dt
# update surface temperature with shortwave radiation flux
temperature_world[i,j] += dt*((1-albedo[i,j])*(low_level.solar(insolation,lat[i],lon[j],t, day, year, axial_tilt) + downward_radiation[0]) - upward_radiation[0])/heat_capacity_earth[i,j]
return temperature_world, temperature_atmos
def velocity_calculation(u,v,air_pressure,old_pressure,air_density,coriolis,gravity,dx,dy,dt):
# introduce temporary arrays to update velocity in the atmosphere
u_temp = np.zeros_like(u)
v_temp = np.zeros_like(v)
w_temp = np.zeros_like(u)
nlat,nlon,nlevels = air_pressure.shape[:]
# calculate acceleration of atmosphere using primitive equations on beta-plane
for i in np.arange(1,nlat-1):
for j in range(nlon):
for k in range(nlevels):
u_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(u,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(u,dy,nlat,i,j,k) + coriolis[i]*v[i,j,k] - low_level.scalar_gradient_x(air_pressure,dx,nlon,i,j,k)/air_density[i,j,k] )
v_temp[i,j,k] += dt*( -u[i,j,k]*low_level.scalar_gradient_x(v,dx,nlon,i,j,k) - v[i,j,k]*low_level.scalar_gradient_y(v,dy,nlat,i,j,k) - coriolis[i]*u[i,j,k] - low_level.scalar_gradient_y(air_pressure,dy,nlat,i,j,k)/air_density[i,j,k] )
w_temp[i,j,k] += -(air_pressure[i,j,k]-old_pressure[i,j,k])/(dt*air_density[i,j,k]*gravity)
u += u_temp
v += v_temp
w = w_temp
# approximate friction
u *= 0.95
v *= 0.95
return u,v,w