Video-Summary/Application/LayerManager.py

112 lines
3.7 KiB
Python

from Application.Layer import Layer
from Application.Config import Config
from Application.VideoReader import VideoReader
from Application.Exporter import Exporter
from multiprocessing.pool import ThreadPool
from Application.Classifiers.Classifier import Classifier
import cv2
import numpy as np
import time
class LayerManager:
def __init__(self, config, layers):
self.data = {}
self.layers = layers
self.tolerance = config["tolerance"]
self.ttolerance = config["ttolerance"]
self.minLayerLength = config["minLayerLength"]
self.maxLayerLength = config["maxLayerLength"]
self.resizeWidth = config["resizeWidth"]
self.footagePath = config["inputPath"]
self.config = config
self.classifier = Classifier()
self.tags = []
print("LayerManager constructed")
def transformLayers(self):
print("'Cleaning' Layers")
self.freeMin()
self.freeMax()
self.sortLayers()
self.calcStats()
def calcStats(self):
for layer in self.layers:
layer.calcStats()
def removeStaticLayers(self):
'''Removes Layers with little to no movement'''
layers = []
for i, layer in enumerate(self.layers):
checks = 0
for bound in layer.bounds[0]:
if bound[0] is None:
continue
for bound2 in layer.bounds[-1]:
if bound2[0] is None:
continue
if abs(bound[0] - bound2[0]) < 10:
checks += 1
if abs(bound[1] - bound2[1]) < 10:
checks += 1
if checks <= 2:
layers.append(layer)
self.layers = layers
def freeMin(self):
self.data.clear()
layers = []
for l in self.layers:
if l.getLength() > self.minLayerLength:
layers.append(l)
self.layers = layers
def freeMax(self):
layers = []
for l in self.layers:
if l.getLength() < self.maxLayerLength:
layers.append(l)
self.layers = layers
def tagLayers(self):
'''Use classifieres the tag all Layers, by reading the contour content from the original video, then applying the classifier'''
print("Tagging Layers")
exporter = Exporter(self.config)
start = time.time()
for i, layer in enumerate(self.layers[20:]):
print(f"{round(i/len(self.layers)*100,2)} {round((time.time() - start), 2)}")
start = time.time()
if len(layer.bounds[0]) == 0:
continue
listOfFrames = exporter.makeListOfFrames([layer])
videoReader = VideoReader(self.config, listOfFrames)
videoReader.fillBuffer()
while not videoReader.videoEnded():
frameCount, frame = videoReader.pop()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
data = []
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
if x is None:
break
factor = videoReader.w / self.resizeWidth
x = int(x * factor)
y = int(y * factor)
w = int(w * factor)
h = int(h * factor)
data.append(np.copy(frame[y:y+h, x:x+w]))
layer.data.append(data)
tags = self.classifier.tagLayer(layer.data)
print(tags)
self.tags.append(tags)
videoReader.thread.join()
def sortLayers(self):
self.layers.sort(key = lambda c:c.startFrame)