Video-Summary/ContourExctractor.py

108 lines
3.4 KiB
Python

from imutils.video import VideoStream
import argparse
import datetime
import imutils
import time
import cv2
import os
import numpy as np
import traceback
import _thread
import imageio
import numpy as np
class ContourExtractor:
#X = {frame_number: [(contour, (x,y,w,h)), ...], }
extractedContours = dict()
min_area = 990
max_area = 30000
threashold = 25
xDim = 0
yDim = 0
def getextractedContours(self):
return self.extractedContours
def __init__(self, videoPath):
print("ContourExtractor initiated")
min_area = self.min_area
max_area = self.max_area
threashold = self.threashold
# initialize the first frame in the video stream
vs = cv2.VideoCapture(videoPath)
res, image = vs.read()
self.xDim = image.shape[1]
self.yDim = image.shape[0]
firstFrame = None
# loop over the frames of the video
frameCount = 0
while res:
res, frame = vs.read()
# resize the frame, convert it to grayscale, and blur it
if frame is None:
print("ContourExtractor: frame was None")
return
frame = imutils.resize(frame, width=500)
cv2.imshow( "frame", frame)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
# if the first frame is None, initialize it
if firstFrame is None:
firstFrame = gray
continue
frameDelta = cv2.absdiff(gray, firstFrame)
thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
thresh = cv2.dilate(thresh, None, iterations=3)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
contours = []
for c in cnts:
if cv2.contourArea(c) < min_area or cv2.contourArea(c) > max_area:
continue
(x, y, w, h) = cv2.boundingRect(c)
contours.append((frame[y:y+h, x:x+w], (x, y, w, h)))
#cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
self.extractedContours[frameCount] = contours
frameCount += 1
#cv2.imshow( "annotated", frame )
#cv2.waitKey(10) & 0XFF
def displayContours(self):
values = self.extractedContours.values()
for xx in values:
for v1 in xx:
(x, y, w, h) = v1[1]
v = v1[0]
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
frame = imutils.resize(frame, width=512)
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
cv2.imshow("changes overlayed", frame)
cv2.waitKey(10) & 0XFF
cv2.destroyAllWindows()
def exportContours(self):
values = self.extractedContours.values()
frames = []
for xx in values:
for v1 in xx:
(x, y, w, h) = v1[1]
v = v1[0]
frame = np.zeros(shape=[self.yDim, self.xDim, 3], dtype=np.uint8)
frame = imutils.resize(frame, width=512)
frame[y:y+v.shape[0], x:x+v.shape[1]] = v
frames.append(frame)
return frames