Video-Summary/Application/LayerManager.py

124 lines
4.2 KiB
Python

from Application.Layer import Layer
from Application.Config import Config
from Application.VideoReader import VideoReader
from Application.Exporter import Exporter
from multiprocessing.pool import ThreadPool
from Application.Classifiers.Classifier import Classifier
import cv2
import numpy as np
import time
class LayerManager:
def __init__(self, config, layers):
self.data = {}
self.layers = layers
self.tolerance = config["tolerance"]
self.ttolerance = config["ttolerance"]
self.minLayerLength = config["minLayerLength"]
self.maxLayerLength = config["maxLayerLength"]
self.resizeWidth = config["resizeWidth"]
self.footagePath = config["inputPath"]
self.config = config
#self.classifier = Classifier()
self.tags = []
print("LayerManager constructed")
def transformLayers(self):
print("'Cleaning' Layers")
print("Before deleting short layers ", len(self.layers))
self.freeMin()
print("Before deleting long layers ", len(self.layers))
self.freeMax()
self.sortLayers()
self.calcStats()
print("Before deleting sparse layers ", len(self.layers))
self.deleteSparse()
print("after deleting sparse layers ", len(self.layers))
self.calcTimeOffset()
def deleteSparse(self):
toDelete = []
for i, l in enumerate(self.layers):
empty = l.bounds.count([])
if empty / len(l) > 0.5:
toDelete.append(i)
for i, id in enumerate(toDelete):
del self.layers[id - i]
def calcStats(self):
for layer in self.layers:
layer.calcStats()
def freeMin(self):
self.data.clear()
layers = []
for l in self.layers:
if len(l) > self.minLayerLength:
layers.append(l)
self.layers = layers
def freeMax(self):
layers = []
for l in self.layers:
if len(l) < self.maxLayerLength:
layers.append(l)
self.layers = layers
def tagLayers(self):
'''Use classifieres the tag all Layers, by reading the contour content from the original video, then applying the classifier'''
print("Tagging Layers")
exporter = Exporter(self.config)
start = time.time()
for i, layer in enumerate(self.layers):
print(f"{round(i/len(self.layers)*100,2)} {round((time.time() - start), 2)}")
start = time.time()
if len(layer.bounds[0]) == 0:
continue
listOfFrames = exporter.makeListOfFrames([layer])
videoReader = VideoReader(self.config, listOfFrames)
videoReader.fillBuffer()
while not videoReader.videoEnded():
frameCount, frame = videoReader.pop()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
data = []
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
if x is None:
break
factor = videoReader.w / self.resizeWidth
x = int(x * factor)
y = int(y * factor)
w = int(w * factor)
h = int(h * factor)
data.append(np.copy(frame[y:y+h, x:x+w]))
layer.data.append(data)
tags = self.classifier.tagLayer(layer.data)
print(tags)
self.tags.append(tags)
videoReader.thread.join()
def sortLayers(self):
self.layers.sort(key = lambda c:c.startFrame)
def calcTimeOffset(self):
for i, layer in enumerate(self.layers):
overlap = True
while overlap:
overlap = False
for l in self.layers[i:]:
if layer.timeOverlaps(l):
if layer.spaceOverlaps(l):
overlap = True
if overlap:
self.addDelay(i, 10)
if self.layers[i].exportOffset >= 180:
break
def addDelay(self, index, frames):
for layer in self.layers[index:]:
layer.exportOffset += frames