Video-Summary/Application/LayerManager.py

123 lines
4.2 KiB
Python

import time
from multiprocessing.pool import ThreadPool
import cv2
import numpy as np
from Application.Classifiers.Classifier import Classifier
from Application.Config import Config
from Application.Exporter import Exporter
from Application.Layer import Layer
from Application.VideoReader import VideoReader
class LayerManager:
def __init__(self, config, layers):
self.data = {}
self.layers = layers
self.tolerance = config["tolerance"]
self.ttolerance = config["ttolerance"]
self.min_layer_length = config["minLayerLength"]
self.max_layer_length = config["maxLayerLength"]
self.resize_width = config["resizeWidth"]
self.footage_path = config["inputPath"]
self.config = config
# self.classifier = Classifier()
self.tags = []
print("LayerManager constructed")
def clean_layers(self):
print("'Cleaning' Layers")
print("Before deleting short layers ", len(self.layers))
self.free_min()
print("Before deleting long layers ", len(self.layers))
self.free_max()
self.sort_layers()
print("Before deleting sparse layers ", len(self.layers))
self.delete_sparse()
print("after deleting sparse layers ", len(self.layers))
#self.calcTimeOffset()
def delete_sparse(self):
to_delete = []
for i, l in enumerate(self.layers):
empty = l.bounds.count([])
if empty / len(l) > 0.5:
to_delete.append(i)
for i, id in enumerate(to_delete):
del self.layers[id - i]
def free_min(self):
self.data.clear()
layers = []
for l in self.layers:
if len(l) > self.min_layer_length:
layers.append(l)
self.layers = layers
def free_max(self):
layers = []
for l in self.layers:
if len(l) < self.max_layer_length:
layers.append(l)
self.layers = layers
def tag_layers(self):
"""Use classifieres the tag all Layers, by reading the contour content from the original video, then applying the classifier"""
print("Tagging Layers")
exporter = Exporter(self.config)
start = time.time()
for i, layer in enumerate(self.layers):
print(f"{round(i/len(self.layers)*100,2)} {round((time.time() - start), 2)}")
start = time.time()
if len(layer.bounds[0]) == 0:
continue
list_of_frames = exporter.make_list_of_frames([layer])
video_reader = VideoReader(self.config, list_of_frames)
video_reader.fill_buffer()
while not video_reader.video_ended():
frame_count, frame = video_reader.pop()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
data = []
for (x, y, w, h) in layer.bounds[frame_count - layer.start_frame]:
if x is None:
break
factor = video_reader.w / self.resize_width
x = int(x * factor)
y = int(y * factor)
w = int(w * factor)
h = int(h * factor)
data.append(np.copy(frame[y : y + h, x : x + w]))
layer.data.append(data)
tags = self.classifier.tagLayer(layer.data)
print(tags)
self.tags.append(tags)
video_reader.thread.join()
def sort_layers(self):
self.layers.sort(key=lambda c: c.start_frame)
def calc_time_offset(self):
len_l = len(self.layers)
for i in range(1, len(self.layers)):
layer = self.layers[i]
print(f"\r {i}/{len_l}", end="\r")
overlap = True
tries = 1
while overlap:
overlap = False
for l in self.layers[:i:-1]:
if layer.timeOverlaps(l) and layer.spaceOverlaps(l):
overlap = True
break
if overlap:
self.layers[i].export_offset += 20 * tries
tries += 1
# if self.layers[i].export_offset >= 300000:
# break