# Code adapted from Tensorflow Object Detection Framework # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb # Tensorflow Object Detection Detector import numpy as np import tensorflow as tf import cv2 from Application.Classifiers.ClassifierInterface import ClassifierInterface class Classifier(ClassifierInterface): def __init__(self): print("1") self.model_path = "./class1.pb" self.odapi = DetectorAPI(path_to_ckpt=self.model_path) self.threshold = 0.6 def detect(self, stream): cap = cv2.VideoCapture(stream) img = None r, img = cap.read() if img is None: return img # scale the image down for faster processing scale_percent = 60 # percent of original size width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) dim = (width, height) img = cv2.resize(img, dim) # get the results from the net boxes, scores, classes, num = self.odapi.process_frame(img) res = False for i in range(len(boxes)): # Class 1 represents human # draw recogniction boxes and return resulting image + true/false if classes[i] == 1: if scores[i] > self.threshold: box = boxes[i] cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2) res = True return img, res else: res = False return img, res def tagLayers(self, layers): print("tagging") # Detector API can be changed out given the I/O remains the same # this way you can use a different N-Net if you like to class DetectorAPI: def __init__(self, path_to_ckpt): self.path_to_ckpt = path_to_ckpt self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self.default_graph = self.detection_graph.as_default() self.sess = tf.Session(graph=self.detection_graph) # Definite input and output Tensors for detection_graph self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') def process_frame(self, image): # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image, axis=0) # Actual detection. (boxes, scores, classes, num) = self.sess.run( [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], feed_dict={self.image_tensor: image_np_expanded}) im_height, im_width,_ = image.shape boxes_list = [None for i in range(boxes.shape[1])] for i in range(boxes.shape[1]): boxes_list[i] = ( int(boxes[0, i, 0] * im_height), int(boxes[0, i, 1] * im_width), int(boxes[0, i, 2] * im_height), int(boxes[0, i, 3] * im_width) ) return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0]) def close(self): self.sess.close() self.default_graph.close()