import time from multiprocessing.pool import ThreadPool import cv2 import numpy as np from Application.Classifiers.Classifier import Classifier from Application.Config import Config from Application.Exporter import Exporter from Application.Layer import Layer from Application.VideoReader import VideoReader class LayerManager: def __init__(self, config, layers): self.data = {} self.layers = layers self.tolerance = config["tolerance"] self.ttolerance = config["ttolerance"] self.minLayerLength = config["minLayerLength"] self.maxLayerLength = config["maxLayerLength"] self.resizeWidth = config["resizeWidth"] self.footagePath = config["inputPath"] self.config = config # self.classifier = Classifier() self.tags = [] print("LayerManager constructed") def cleanLayers(self): print("'Cleaning' Layers") print("Before deleting short layers ", len(self.layers)) self.freeMin() print("Before deleting long layers ", len(self.layers)) self.freeMax() self.sortLayers() print("Before deleting sparse layers ", len(self.layers)) self.deleteSparse() print("after deleting sparse layers ", len(self.layers)) #self.calcTimeOffset() def deleteSparse(self): toDelete = [] for i, l in enumerate(self.layers): empty = l.bounds.count([]) if empty / len(l) > 0.5: toDelete.append(i) for i, id in enumerate(toDelete): del self.layers[id - i] def freeMin(self): self.data.clear() layers = [] for l in self.layers: if len(l) > self.minLayerLength: layers.append(l) self.layers = layers def freeMax(self): layers = [] for l in self.layers: if len(l) < self.maxLayerLength: layers.append(l) self.layers = layers def tagLayers(self): """Use classifieres the tag all Layers, by reading the contour content from the original video, then applying the classifier""" print("Tagging Layers") exporter = Exporter(self.config) start = time.time() for i, layer in enumerate(self.layers): print(f"{round(i/len(self.layers)*100,2)} {round((time.time() - start), 2)}") start = time.time() if len(layer.bounds[0]) == 0: continue listOfFrames = exporter.makeListOfFrames([layer]) videoReader = VideoReader(self.config, listOfFrames) videoReader.fillBuffer() while not videoReader.videoEnded(): frameCount, frame = videoReader.pop() frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) data = [] for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]: if x is None: break factor = videoReader.w / self.resizeWidth x = int(x * factor) y = int(y * factor) w = int(w * factor) h = int(h * factor) data.append(np.copy(frame[y : y + h, x : x + w])) layer.data.append(data) tags = self.classifier.tagLayer(layer.data) print(tags) self.tags.append(tags) videoReader.thread.join() def sortLayers(self): self.layers.sort(key=lambda c: c.startFrame) def calcTimeOffset(self): lenL = len(self.layers) for i in range(1, len(self.layers)): layer = self.layers[i] print(f"\r {i}/{lenL}", end="\r") overlap = True tries = 1 while overlap: overlap = False for l in self.layers[:i:-1]: if layer.timeOverlaps(l) and layer.spaceOverlaps(l): overlap = True break if overlap: self.layers[i].exportOffset += 20 * tries tries += 1 # if self.layers[i].exportOffset >= 300000: # break