import json import os import cv2 import numpy as np import tensorflow as tf from Application.Classifiers.ClassifierInterface import ClassifierInterface class Classifier(ClassifierInterface): def __init__(self): self.threshold = 0.5 with open(os.path.join(os.path.dirname(__file__), "coco_map.json")) as file: mapping = json.load(file) self.classes = dict() for element in mapping: self.classes[element["id"] - 1] = element["display_name"] self.net = cv2.dnn.readNet( os.path.join(os.path.dirname(__file__), "yolov4.weights"), os.path.join(os.path.dirname(__file__), "yolov4.cfg"), ) # self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) # self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) self.layer_names = self.net.getLayerNames() self.outputlayers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] print("Classifier Initiated") def tagLayer(self, imgs): # get the results from the net results = [] for i, contours in enumerate(imgs[19:20]): # print(i) for contour in contours: height, width, channels = contour.shape dim = max(height, width) if dim > 320: img2 = np.zeros(shape=[dim, dim, 3], dtype=np.uint8) else: img2 = np.zeros(shape=[320, 320, 3], dtype=np.uint8) img2[:height, :width] = contour blob = cv2.dnn.blobFromImage(img2, 1 / 256, (320, 320), (0, 0, 0), True, crop=False) # reduce 416 to 320 self.net.setInput(blob) outs = self.net.forward(self.outputlayers) for out in outs: for detection in out: scores = detection class_id = np.argmax(scores) confidence = scores[class_id] if confidence > self.threshold: if self.classes[class_id] not in results: cv2.imshow("changes x", img2) cv2.waitKey(10) & 0xFF results.append(self.classes[class_id]) # print(self.classes[x], score) return results