# Code adapted from Tensorflow Object Detection Framework # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb # Tensorflow Object Detection Detector import numpy as np import tensorflow as tf import cv2 import os import json import imutils from Application.Classifiers.ClassifierInterface import ClassifierInterface class Classifier(ClassifierInterface): def __init__(self): print("1") self.model_path = os.path.join(os.path.dirname(__file__), "./class1.pb") self.odapi = self.DetectorAPI(path_to_ckpt=self.model_path) self.threshold = 0.9 with open(os.path.join(os.path.dirname(__file__), "coco_map.json")) as file: mapping = json.load(file) self.classes = dict() for element in mapping: self.classes[element["id"]] = element["display_name"] def detect(self, img): # get the results from the net boxes, scores, classes, num = self.odapi.process_frame(img) res = False for i in range(len(boxes)): if scores[i] > self.threshold: if classes[i] in self.classes: #print(self.classes[classes[i]]) return self.classes[classes[i]] def tagLayer(self, data): res = [] for cnts in data: for cnt in cnts: if cnt.any(): cv2.imshow("changes x", cnt) cv2.waitKey(10) & 0XFF cnt= imutils.resize(cnt, width=320) x = self.detect(cnt) res.append(x) di = dict() for re in res: if re not in di: di[re] = 0 di[re]+=1 # remove all tags that occour infrequently # if a giraff is only seen in 2 out of 100 frames, there probably wasn't a giraff in the layer # di.pop(None, None) total = 0 for value in di.values(): total += value result = [] for key, value in di.items(): if value > len(data) / len(di) / 2: result.append(key) return result # Detector API can be changed out given the I/O remains the same # this way you can use a different N-Net if you like to class DetectorAPI: def __init__(self, path_to_ckpt): self.path_to_ckpt = path_to_ckpt gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self.default_graph = self.detection_graph.as_default() self.sess = tf.Session(graph=self.detection_graph) # Definite input and output Tensors for detection_graph self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') def process_frame(self, image): # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image, axis=0) # Actual detection. (boxes, scores, classes, num) = self.sess.run( [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], feed_dict={self.image_tensor: image_np_expanded}) im_height, im_width,_ = image.shape boxes_list = [None for i in range(boxes.shape[1])] for i in range(boxes.shape[1]): boxes_list[i] = ( int(boxes[0, i, 0] * im_height), int(boxes[0, i, 1] * im_width), int(boxes[0, i, 2] * im_height), int(boxes[0, i, 3] * im_width) ) return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0]) def close(self): self.sess.close() self.default_graph.close()