started classifier
This commit is contained in:
parent
512bb4076f
commit
e9585706b9
|
|
@ -0,0 +1,103 @@
|
|||
# Code adapted from Tensorflow Object Detection Framework
|
||||
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
|
||||
# Tensorflow Object Detection Detector
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import cv2
|
||||
|
||||
from Application.Classifiers.ClassifierInterface import ClassifierInterface
|
||||
|
||||
|
||||
class Classifier(ClassifierInterface):
|
||||
def __init__(self):
|
||||
print("1")
|
||||
self.model_path = "./class1.pb"
|
||||
self.odapi = DetectorAPI(path_to_ckpt=self.model_path)
|
||||
self.threshold = 0.6
|
||||
|
||||
def detect(self, stream):
|
||||
cap = cv2.VideoCapture(stream)
|
||||
img = None
|
||||
r, img = cap.read()
|
||||
if img is None:
|
||||
return img
|
||||
# scale the image down for faster processing
|
||||
scale_percent = 60 # percent of original size
|
||||
width = int(img.shape[1] * scale_percent / 100)
|
||||
height = int(img.shape[0] * scale_percent / 100)
|
||||
dim = (width, height)
|
||||
|
||||
img = cv2.resize(img, dim)
|
||||
|
||||
# get the results from the net
|
||||
boxes, scores, classes, num = self.odapi.process_frame(img)
|
||||
res = False
|
||||
for i in range(len(boxes)):
|
||||
# Class 1 represents human
|
||||
# draw recogniction boxes and return resulting image + true/false
|
||||
if classes[i] == 1:
|
||||
if scores[i] > self.threshold:
|
||||
box = boxes[i]
|
||||
cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)
|
||||
res = True
|
||||
return img, res
|
||||
else:
|
||||
res = False
|
||||
return img, res
|
||||
|
||||
|
||||
def tagLayers(self, layers):
|
||||
print("tagging")
|
||||
# Detector API can be changed out given the I/O remains the same
|
||||
# this way you can use a different N-Net if you like to
|
||||
class DetectorAPI:
|
||||
def __init__(self, path_to_ckpt):
|
||||
self.path_to_ckpt = path_to_ckpt
|
||||
|
||||
self.detection_graph = tf.Graph()
|
||||
with self.detection_graph.as_default():
|
||||
od_graph_def = tf.GraphDef()
|
||||
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
|
||||
serialized_graph = fid.read()
|
||||
od_graph_def.ParseFromString(serialized_graph)
|
||||
tf.import_graph_def(od_graph_def, name='')
|
||||
|
||||
self.default_graph = self.detection_graph.as_default()
|
||||
self.sess = tf.Session(graph=self.detection_graph)
|
||||
|
||||
# Definite input and output Tensors for detection_graph
|
||||
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
|
||||
# Each box represents a part of the image where a particular object was detected.
|
||||
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||
# Each score represent how level of confidence for each of the objects.
|
||||
# Score is shown on the result image, together with the class label.
|
||||
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
|
||||
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
|
||||
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
|
||||
|
||||
def process_frame(self, image):
|
||||
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
|
||||
image_np_expanded = np.expand_dims(image, axis=0)
|
||||
# Actual detection.
|
||||
|
||||
(boxes, scores, classes, num) = self.sess.run(
|
||||
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
|
||||
feed_dict={self.image_tensor: image_np_expanded})
|
||||
|
||||
im_height, im_width,_ = image.shape
|
||||
boxes_list = [None for i in range(boxes.shape[1])]
|
||||
for i in range(boxes.shape[1]):
|
||||
boxes_list[i] = (
|
||||
int(boxes[0, i, 0] * im_height),
|
||||
int(boxes[0, i, 1] * im_width),
|
||||
int(boxes[0, i, 2] * im_height),
|
||||
int(boxes[0, i, 3] * im_width)
|
||||
)
|
||||
|
||||
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
|
||||
|
||||
def close(self):
|
||||
self.sess.close()
|
||||
self.default_graph.close()
|
||||
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
|
||||
class ClassifierInterface:
|
||||
def tagLayers(self, layers):
|
||||
"""takes layers, returns list (len(), same as input) of lists with tags for corresponfing layers"""
|
||||
pass
|
||||
Binary file not shown.
|
|
@ -3,7 +3,7 @@ class Config:
|
|||
c = {
|
||||
"min_area" : 500,
|
||||
"max_area" : 40000,
|
||||
"threashold" : 10,
|
||||
"threashold" : 5,
|
||||
"resizeWidth" : 512,
|
||||
"inputPath" : None,
|
||||
"outputPath": None,
|
||||
|
|
|
|||
|
|
@ -16,12 +16,18 @@ class Exporter:
|
|||
self.config = config
|
||||
print("Exporter initiated")
|
||||
|
||||
def export(self):
|
||||
fps = self.fps
|
||||
writer = imageio.get_writer(outputPath, fps=fps)
|
||||
for frame in frames:
|
||||
writer.append_data(np.array(frame))
|
||||
writer.close()
|
||||
def export(self, layers, raw = True, layered = False, overlayed = True):
|
||||
|
||||
if raw:
|
||||
self.exportRawData(layers)
|
||||
if layered and overlayed:
|
||||
print("Layered and Individual are mutially exclusive, Individual was choosen automatically")
|
||||
overlayed = False
|
||||
if layered and not overlayed:
|
||||
self.exportLayers(layers)
|
||||
if overlayed and not layered:
|
||||
self.exportOverlayed(layers)
|
||||
|
||||
|
||||
def exportLayers(self, layers):
|
||||
|
||||
|
|
@ -98,7 +104,7 @@ class Exporter:
|
|||
h = int(h * factor)
|
||||
# if exportFrame as index instead of frameCount - layer.startFrame then we have layer after layer
|
||||
frame2 = frames[frameCount - layer.startFrame]
|
||||
frame2[y:y+h, x:x+w] = frame[y:y+h, x:x+w]
|
||||
frame2[y:y+h, x:x+w] = frame2[y:y+h, x:x+w]/2 + frame[y:y+h, x:x+w]/2
|
||||
|
||||
frames[frameCount - layer.startFrame] = np.copy(frame2)
|
||||
cv2.putText(frames[frameCount - layer.startFrame], str(int(frameCount/self.fps)), (int(x+w/2), int(y+h/2)), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255), 2)
|
||||
|
|
|
|||
|
|
@ -90,7 +90,7 @@ class Layer:
|
|||
if y > maxm:
|
||||
maxm = y
|
||||
|
||||
if maxm > len(mapped)*(noiseSensitivity):
|
||||
if maxm > len(mapped)*(noiseSensitivity) and clusterCount+1<=len(kmeans.cluster_centers_):
|
||||
clusterCount += 1
|
||||
else:
|
||||
centers = kmeans.cluster_centers_
|
||||
|
|
|
|||
|
|
@ -22,44 +22,6 @@ class LayerFactory:
|
|||
if data is not None:
|
||||
self.extractLayers(data)
|
||||
|
||||
def removeStaticLayers(self):
|
||||
'''Removes Layers with little to no movement'''
|
||||
layers = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
checks = 0
|
||||
for bound in layer.bounds[0]:
|
||||
if bound[0] is None:
|
||||
continue
|
||||
for bound2 in layer.bounds[-1]:
|
||||
if bound2[0] is None:
|
||||
continue
|
||||
if abs(bound[0] - bound2[0]) < 10:
|
||||
checks += 1
|
||||
if abs(bound[1] - bound2[1]) < 10:
|
||||
checks += 1
|
||||
if checks <= 2:
|
||||
layers.append(layer)
|
||||
self.layers = layers
|
||||
|
||||
|
||||
def freeMin(self):
|
||||
self.data.clear()
|
||||
layers = []
|
||||
for l in self.layers:
|
||||
if l.getLength() > self.minLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
def freeMax(self):
|
||||
layers = []
|
||||
for l in self.layers:
|
||||
if l.getLength() < self.maxLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
|
||||
def extractLayers(self, data = None):
|
||||
if self.data is None:
|
||||
if data is None:
|
||||
|
|
@ -86,10 +48,6 @@ class LayerFactory:
|
|||
#for x in tmp:
|
||||
#self.getLayers(x)
|
||||
|
||||
self.freeMin()
|
||||
self.sortLayers()
|
||||
self.cleanLayers()
|
||||
self.freeMax()
|
||||
|
||||
|
||||
return self.layers
|
||||
|
|
@ -128,38 +86,3 @@ class LayerFactory:
|
|||
if(l1[1] <= r2[1] or l2[1] <= r1[1]):
|
||||
return False
|
||||
return True
|
||||
|
||||
def fillLayers(self):
|
||||
|
||||
listOfFrames = Exporter(self.config).makeListOfFrames(self.layers)
|
||||
videoReader = VideoReader(self.config, listOfFrames)
|
||||
videoReader.fillBuffer()
|
||||
|
||||
while not videoReader.videoEnded():
|
||||
frameCount, frame = videoReader.pop()
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i % 20 == 0:
|
||||
print(f"filled {int(round(i/len(self.layers),2)*100)}% of all Layers")
|
||||
|
||||
if layer.startFrame <= frameCount and layer.startFrame + len(layer.bounds) > frameCount:
|
||||
data = []
|
||||
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
|
||||
if x is None:
|
||||
break
|
||||
factor = videoReader.w / self.resizeWidth
|
||||
x = int(x * factor)
|
||||
y = int(y * factor)
|
||||
w = int(w * factor)
|
||||
h = int(h * factor)
|
||||
data.append(np.copy(frame[y:y+h, x:x+w]))
|
||||
layer.data.append(data)
|
||||
|
||||
videoReader.thread.join()
|
||||
|
||||
def sortLayers(self):
|
||||
self.layers.sort(key = lambda c:c.startFrame)
|
||||
|
||||
def cleanLayers(self):
|
||||
for layer in self.layers:
|
||||
layer.clusterDelete()
|
||||
|
|
|
|||
|
|
@ -0,0 +1,98 @@
|
|||
from Application.Layer import Layer
|
||||
from Application.Config import Config
|
||||
from Application.VideoReader import VideoReader
|
||||
from Application.Exporter import Exporter
|
||||
from multiprocessing.pool import ThreadPool
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
class LayerManager:
|
||||
def __init__(self, config, layers):
|
||||
self.data = {}
|
||||
self.layers = layers
|
||||
self.tolerance = config["tolerance"]
|
||||
self.ttolerance = config["ttolerance"]
|
||||
self.minLayerLength = config["minLayerLength"]
|
||||
self.maxLayerLength = config["maxLayerLength"]
|
||||
self.resizeWidth = config["resizeWidth"]
|
||||
self.footagePath = config["inputPath"]
|
||||
self.config = config
|
||||
print("LayerManager constructed")
|
||||
|
||||
def cleanLayers(self):
|
||||
self.freeMin()
|
||||
self.sortLayers()
|
||||
self.cleanLayers()
|
||||
self.freeMax()
|
||||
|
||||
def removeStaticLayers(self):
|
||||
'''Removes Layers with little to no movement'''
|
||||
layers = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
checks = 0
|
||||
for bound in layer.bounds[0]:
|
||||
if bound[0] is None:
|
||||
continue
|
||||
for bound2 in layer.bounds[-1]:
|
||||
if bound2[0] is None:
|
||||
continue
|
||||
if abs(bound[0] - bound2[0]) < 10:
|
||||
checks += 1
|
||||
if abs(bound[1] - bound2[1]) < 10:
|
||||
checks += 1
|
||||
if checks <= 2:
|
||||
layers.append(layer)
|
||||
self.layers = layers
|
||||
|
||||
|
||||
def freeMin(self):
|
||||
self.data.clear()
|
||||
layers = []
|
||||
for l in self.layers:
|
||||
if l.getLength() > self.minLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
def freeMax(self):
|
||||
layers = []
|
||||
for l in self.layers:
|
||||
if l.getLength() < self.maxLayerLength:
|
||||
layers.append(l)
|
||||
self.layers = layers
|
||||
self.removeStaticLayers()
|
||||
|
||||
def fillLayers(self):
|
||||
|
||||
listOfFrames = Exporter(self.config).makeListOfFrames(self.layers)
|
||||
videoReader = VideoReader(self.config, listOfFrames)
|
||||
videoReader.fillBuffer()
|
||||
|
||||
while not videoReader.videoEnded():
|
||||
frameCount, frame = videoReader.pop()
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i % 20 == 0:
|
||||
print(f"filled {int(round(i/len(self.layers),2)*100)}% of all Layers")
|
||||
|
||||
if layer.startFrame <= frameCount and layer.startFrame + len(layer.bounds) > frameCount:
|
||||
data = []
|
||||
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
|
||||
if x is None:
|
||||
break
|
||||
factor = videoReader.w / self.resizeWidth
|
||||
x = int(x * factor)
|
||||
y = int(y * factor)
|
||||
w = int(w * factor)
|
||||
h = int(h * factor)
|
||||
data.append(np.copy(frame[y:y+h, x:x+w]))
|
||||
layer.data.append(data)
|
||||
|
||||
videoReader.thread.join()
|
||||
|
||||
def sortLayers(self):
|
||||
self.layers.sort(key = lambda c:c.startFrame)
|
||||
|
||||
def cleanLayers(self):
|
||||
for layer in self.layers:
|
||||
layer.clusterDelete()
|
||||
12
main.py
12
main.py
|
|
@ -7,6 +7,8 @@ from Application.Analyzer import Analyzer
|
|||
from Application.Config import Config
|
||||
from Application.Importer import Importer
|
||||
from Application.VideoReader import VideoReader
|
||||
from Application.LayerManager import LayerManager
|
||||
from Application.Classifiers import *
|
||||
#TODO
|
||||
# finden von relevanten Stellen anhand von zu findenen metriken für vergleichsbilder
|
||||
|
||||
|
|
@ -15,9 +17,8 @@ def demo():
|
|||
start = time.time()
|
||||
config = Config()
|
||||
|
||||
|
||||
config["inputPath"] = os.path.join(os.path.dirname(__file__), "generate test footage/3.mp4")
|
||||
#config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
|
||||
config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
|
||||
config["outputPath"] = os.path.join(os.path.dirname(__file__), "output/short.mp4")
|
||||
|
||||
vr = VideoReader(config)
|
||||
|
|
@ -31,13 +32,14 @@ def demo():
|
|||
layerFactory = LayerFactory(config)
|
||||
|
||||
layers = layerFactory.extractLayers(contours)
|
||||
#layerFactory.fillLayers()
|
||||
layerManager = LayerManager(config, layers)
|
||||
layerManager.cleanLayers()
|
||||
layers = layerManager.layers
|
||||
else:
|
||||
layers = Importer(config).importRawData()
|
||||
|
||||
exporter = Exporter(config)
|
||||
exporter.exportRawData(layers)
|
||||
exporter.exportLayers(layers)
|
||||
exporter.export(layers)
|
||||
|
||||
print("Total time: ", time.time() - start)
|
||||
|
||||
|
|
|
|||
BIN
output/short.txt
BIN
output/short.txt
Binary file not shown.
Loading…
Reference in New Issue