started classifier

This commit is contained in:
Askill 2020-10-24 00:14:43 +02:00
parent 512bb4076f
commit e9585706b9
10 changed files with 229 additions and 91 deletions

View File

@ -0,0 +1,103 @@
# Code adapted from Tensorflow Object Detection Framework
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
# Tensorflow Object Detection Detector
import numpy as np
import tensorflow as tf
import cv2
from Application.Classifiers.ClassifierInterface import ClassifierInterface
class Classifier(ClassifierInterface):
def __init__(self):
print("1")
self.model_path = "./class1.pb"
self.odapi = DetectorAPI(path_to_ckpt=self.model_path)
self.threshold = 0.6
def detect(self, stream):
cap = cv2.VideoCapture(stream)
img = None
r, img = cap.read()
if img is None:
return img
# scale the image down for faster processing
scale_percent = 60 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
img = cv2.resize(img, dim)
# get the results from the net
boxes, scores, classes, num = self.odapi.process_frame(img)
res = False
for i in range(len(boxes)):
# Class 1 represents human
# draw recogniction boxes and return resulting image + true/false
if classes[i] == 1:
if scores[i] > self.threshold:
box = boxes[i]
cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)
res = True
return img, res
else:
res = False
return img, res
def tagLayers(self, layers):
print("tagging")
# Detector API can be changed out given the I/O remains the same
# this way you can use a different N-Net if you like to
class DetectorAPI:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.default_graph = self.detection_graph.as_default()
self.sess = tf.Session(graph=self.detection_graph)
# Definite input and output Tensors for detection_graph
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
def process_frame(self, image):
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
im_height, im_width,_ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (
int(boxes[0, i, 0] * im_height),
int(boxes[0, i, 1] * im_width),
int(boxes[0, i, 2] * im_height),
int(boxes[0, i, 3] * im_width)
)
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
def close(self):
self.sess.close()
self.default_graph.close()

View File

@ -0,0 +1,6 @@
class ClassifierInterface:
def tagLayers(self, layers):
"""takes layers, returns list (len(), same as input) of lists with tags for corresponfing layers"""
pass

Binary file not shown.

View File

@ -3,7 +3,7 @@ class Config:
c = {
"min_area" : 500,
"max_area" : 40000,
"threashold" : 10,
"threashold" : 5,
"resizeWidth" : 512,
"inputPath" : None,
"outputPath": None,

View File

@ -16,12 +16,18 @@ class Exporter:
self.config = config
print("Exporter initiated")
def export(self):
fps = self.fps
writer = imageio.get_writer(outputPath, fps=fps)
for frame in frames:
writer.append_data(np.array(frame))
writer.close()
def export(self, layers, raw = True, layered = False, overlayed = True):
if raw:
self.exportRawData(layers)
if layered and overlayed:
print("Layered and Individual are mutially exclusive, Individual was choosen automatically")
overlayed = False
if layered and not overlayed:
self.exportLayers(layers)
if overlayed and not layered:
self.exportOverlayed(layers)
def exportLayers(self, layers):
@ -98,7 +104,7 @@ class Exporter:
h = int(h * factor)
# if exportFrame as index instead of frameCount - layer.startFrame then we have layer after layer
frame2 = frames[frameCount - layer.startFrame]
frame2[y:y+h, x:x+w] = frame[y:y+h, x:x+w]
frame2[y:y+h, x:x+w] = frame2[y:y+h, x:x+w]/2 + frame[y:y+h, x:x+w]/2
frames[frameCount - layer.startFrame] = np.copy(frame2)
cv2.putText(frames[frameCount - layer.startFrame], str(int(frameCount/self.fps)), (int(x+w/2), int(y+h/2)), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255), 2)

View File

@ -90,7 +90,7 @@ class Layer:
if y > maxm:
maxm = y
if maxm > len(mapped)*(noiseSensitivity):
if maxm > len(mapped)*(noiseSensitivity) and clusterCount+1<=len(kmeans.cluster_centers_):
clusterCount += 1
else:
centers = kmeans.cluster_centers_

View File

@ -22,44 +22,6 @@ class LayerFactory:
if data is not None:
self.extractLayers(data)
def removeStaticLayers(self):
'''Removes Layers with little to no movement'''
layers = []
for i, layer in enumerate(self.layers):
checks = 0
for bound in layer.bounds[0]:
if bound[0] is None:
continue
for bound2 in layer.bounds[-1]:
if bound2[0] is None:
continue
if abs(bound[0] - bound2[0]) < 10:
checks += 1
if abs(bound[1] - bound2[1]) < 10:
checks += 1
if checks <= 2:
layers.append(layer)
self.layers = layers
def freeMin(self):
self.data.clear()
layers = []
for l in self.layers:
if l.getLength() > self.minLayerLength:
layers.append(l)
self.layers = layers
self.removeStaticLayers()
def freeMax(self):
layers = []
for l in self.layers:
if l.getLength() < self.maxLayerLength:
layers.append(l)
self.layers = layers
self.removeStaticLayers()
def extractLayers(self, data = None):
if self.data is None:
if data is None:
@ -86,10 +48,6 @@ class LayerFactory:
#for x in tmp:
#self.getLayers(x)
self.freeMin()
self.sortLayers()
self.cleanLayers()
self.freeMax()
return self.layers
@ -128,38 +86,3 @@ class LayerFactory:
if(l1[1] <= r2[1] or l2[1] <= r1[1]):
return False
return True
def fillLayers(self):
listOfFrames = Exporter(self.config).makeListOfFrames(self.layers)
videoReader = VideoReader(self.config, listOfFrames)
videoReader.fillBuffer()
while not videoReader.videoEnded():
frameCount, frame = videoReader.pop()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
for i, layer in enumerate(self.layers):
if i % 20 == 0:
print(f"filled {int(round(i/len(self.layers),2)*100)}% of all Layers")
if layer.startFrame <= frameCount and layer.startFrame + len(layer.bounds) > frameCount:
data = []
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
if x is None:
break
factor = videoReader.w / self.resizeWidth
x = int(x * factor)
y = int(y * factor)
w = int(w * factor)
h = int(h * factor)
data.append(np.copy(frame[y:y+h, x:x+w]))
layer.data.append(data)
videoReader.thread.join()
def sortLayers(self):
self.layers.sort(key = lambda c:c.startFrame)
def cleanLayers(self):
for layer in self.layers:
layer.clusterDelete()

View File

@ -0,0 +1,98 @@
from Application.Layer import Layer
from Application.Config import Config
from Application.VideoReader import VideoReader
from Application.Exporter import Exporter
from multiprocessing.pool import ThreadPool
import cv2
import numpy as np
class LayerManager:
def __init__(self, config, layers):
self.data = {}
self.layers = layers
self.tolerance = config["tolerance"]
self.ttolerance = config["ttolerance"]
self.minLayerLength = config["minLayerLength"]
self.maxLayerLength = config["maxLayerLength"]
self.resizeWidth = config["resizeWidth"]
self.footagePath = config["inputPath"]
self.config = config
print("LayerManager constructed")
def cleanLayers(self):
self.freeMin()
self.sortLayers()
self.cleanLayers()
self.freeMax()
def removeStaticLayers(self):
'''Removes Layers with little to no movement'''
layers = []
for i, layer in enumerate(self.layers):
checks = 0
for bound in layer.bounds[0]:
if bound[0] is None:
continue
for bound2 in layer.bounds[-1]:
if bound2[0] is None:
continue
if abs(bound[0] - bound2[0]) < 10:
checks += 1
if abs(bound[1] - bound2[1]) < 10:
checks += 1
if checks <= 2:
layers.append(layer)
self.layers = layers
def freeMin(self):
self.data.clear()
layers = []
for l in self.layers:
if l.getLength() > self.minLayerLength:
layers.append(l)
self.layers = layers
self.removeStaticLayers()
def freeMax(self):
layers = []
for l in self.layers:
if l.getLength() < self.maxLayerLength:
layers.append(l)
self.layers = layers
self.removeStaticLayers()
def fillLayers(self):
listOfFrames = Exporter(self.config).makeListOfFrames(self.layers)
videoReader = VideoReader(self.config, listOfFrames)
videoReader.fillBuffer()
while not videoReader.videoEnded():
frameCount, frame = videoReader.pop()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
for i, layer in enumerate(self.layers):
if i % 20 == 0:
print(f"filled {int(round(i/len(self.layers),2)*100)}% of all Layers")
if layer.startFrame <= frameCount and layer.startFrame + len(layer.bounds) > frameCount:
data = []
for (x, y, w, h) in layer.bounds[frameCount - layer.startFrame]:
if x is None:
break
factor = videoReader.w / self.resizeWidth
x = int(x * factor)
y = int(y * factor)
w = int(w * factor)
h = int(h * factor)
data.append(np.copy(frame[y:y+h, x:x+w]))
layer.data.append(data)
videoReader.thread.join()
def sortLayers(self):
self.layers.sort(key = lambda c:c.startFrame)
def cleanLayers(self):
for layer in self.layers:
layer.clusterDelete()

12
main.py
View File

@ -7,6 +7,8 @@ from Application.Analyzer import Analyzer
from Application.Config import Config
from Application.Importer import Importer
from Application.VideoReader import VideoReader
from Application.LayerManager import LayerManager
from Application.Classifiers import *
#TODO
# finden von relevanten Stellen anhand von zu findenen metriken für vergleichsbilder
@ -15,9 +17,8 @@ def demo():
start = time.time()
config = Config()
config["inputPath"] = os.path.join(os.path.dirname(__file__), "generate test footage/3.mp4")
#config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
config["importPath"] = os.path.join(os.path.dirname(__file__), "output/short.txt")
config["outputPath"] = os.path.join(os.path.dirname(__file__), "output/short.mp4")
vr = VideoReader(config)
@ -31,13 +32,14 @@ def demo():
layerFactory = LayerFactory(config)
layers = layerFactory.extractLayers(contours)
#layerFactory.fillLayers()
layerManager = LayerManager(config, layers)
layerManager.cleanLayers()
layers = layerManager.layers
else:
layers = Importer(config).importRawData()
exporter = Exporter(config)
exporter.exportRawData(layers)
exporter.exportLayers(layers)
exporter.export(layers)
print("Total time: ", time.time() - start)

Binary file not shown.