This commit is contained in:
parent
39635ded4c
commit
c1bd5bb5d0
|
|
@ -2,3 +2,5 @@
|
|||
generate test footage/images/
|
||||
|
||||
generate test footage/3.MP4
|
||||
|
||||
short.mp4
|
||||
|
|
|
|||
|
|
@ -1,3 +1,3 @@
|
|||
class Analyzer:
|
||||
def __init__(self):
|
||||
def __init__(self, footage):
|
||||
print("Analyzer constructed")
|
||||
|
|
@ -10,6 +10,10 @@ import traceback
|
|||
import _thread
|
||||
import imageio
|
||||
import numpy as np
|
||||
from threading import Thread
|
||||
from multiprocessing import Queue, Process, Pool
|
||||
from multiprocessing.pool import ThreadPool
|
||||
import concurrent.futures
|
||||
|
||||
class ContourExtractor:
|
||||
|
||||
|
|
@ -28,9 +32,7 @@ class ContourExtractor:
|
|||
print("ContourExtractor initiated")
|
||||
|
||||
def extractContours(self, videoPath, resizeWidth):
|
||||
min_area = self.min_area
|
||||
max_area = self.max_area
|
||||
threashold = self.threashold
|
||||
|
||||
|
||||
# initialize the first frame in the video stream
|
||||
vs = cv2.VideoCapture(videoPath)
|
||||
|
|
@ -40,58 +42,73 @@ class ContourExtractor:
|
|||
self.yDim = image.shape[0]
|
||||
firstFrame = None
|
||||
# loop over the frames of the video
|
||||
frameCount = 0
|
||||
frameCount = -1
|
||||
extractedContours = dict()
|
||||
|
||||
results = []
|
||||
extractedContours = dict()
|
||||
while res:
|
||||
res, frame = vs.read()
|
||||
# resize the frame, convert it to grayscale, and blur it
|
||||
if frame is None:
|
||||
print("ContourExtractor: frame was None")
|
||||
break
|
||||
|
||||
frame = imutils.resize(frame, width=resizeWidth)
|
||||
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
|
||||
gray = np.asarray(gray[:,:,1]/2 + gray[:,:,2]/2).astype(np.uint8)
|
||||
|
||||
#gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
|
||||
# if the first frame is None, initialize it
|
||||
if firstFrame is None:
|
||||
firstFrame = gray
|
||||
continue
|
||||
|
||||
frameDelta = cv2.absdiff(gray, firstFrame)
|
||||
|
||||
thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1]
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
thresh = cv2.dilate(thresh, None, iterations=3)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
contours = []
|
||||
for c in cnts:
|
||||
ca = cv2.contourArea(c)
|
||||
if ca < min_area or ca > max_area:
|
||||
continue
|
||||
(x, y, w, h) = cv2.boundingRect(c)
|
||||
#print((x, y, w, h))
|
||||
contours.append((x, y, w, h))
|
||||
imageBuffer = []
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor() as executor:
|
||||
while res:
|
||||
frameCount += 1
|
||||
if frameCount % (60*30) == 0:
|
||||
print("Minutes processed: ", frameCount/(60*30))
|
||||
|
||||
#cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
||||
if len(contours) != 0:
|
||||
extractedContours[frameCount] = contours
|
||||
|
||||
if frameCount % (60*30) == 0:
|
||||
print("Minutes processed: ", frameCount/(60*30))
|
||||
frameCount += 1
|
||||
res, frame = vs.read()
|
||||
# resize the frame, convert it to grayscale, and blur it
|
||||
if frame is None:
|
||||
print("ContourExtractor: frame was None")
|
||||
break
|
||||
|
||||
#cv2.imshow( "annotated", thresh )
|
||||
#cv2.waitKey(10) & 0XFF
|
||||
frame = imutils.resize(frame, width=resizeWidth)
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
|
||||
|
||||
# if the first frame is None, initialize it
|
||||
if firstFrame is None:
|
||||
gray = np.asarray(gray[:,:,1]/2 + gray[:,:,2]/2).astype(np.uint8)
|
||||
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
firstFrame = gray
|
||||
continue
|
||||
|
||||
results.append(executor.submit(self.getContours, frameCount, gray, firstFrame))
|
||||
|
||||
#contours = self.getContours(frameCount, gray, firstFrame)
|
||||
|
||||
for f in concurrent.futures.as_completed(results):
|
||||
x=f.result()
|
||||
if x is not None:
|
||||
extractedContours = {**extractedContours, **x}
|
||||
|
||||
self.extractedContours = extractedContours
|
||||
return extractedContours
|
||||
|
||||
|
||||
def getContours(self, frameCount, gray, firstFrame):
|
||||
gray = np.asarray(gray[:,:,1]/2 + gray[:,:,2]/2).astype(np.uint8)
|
||||
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
frameDelta = cv2.absdiff(gray, firstFrame)
|
||||
thresh = cv2.threshold(frameDelta, self.threashold, 255, cv2.THRESH_BINARY)[1]
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
thresh = cv2.dilate(thresh, None, iterations=3)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
contours = []
|
||||
for c in cnts:
|
||||
ca = cv2.contourArea(c)
|
||||
if ca < self.min_area or ca > self.max_area:
|
||||
continue
|
||||
(x, y, w, h) = cv2.boundingRect(c)
|
||||
#print((x, y, w, h))
|
||||
contours.append((x, y, w, h))
|
||||
|
||||
if len(contours) != 0:
|
||||
return {frameCount: contours}
|
||||
else:
|
||||
return None
|
||||
|
||||
def displayContours(self):
|
||||
values = self.extractedContours.values()
|
||||
for xx in values:
|
||||
|
|
|
|||
|
|
@ -35,7 +35,8 @@ class LayerFactory:
|
|||
layers.append(Layer(frameNumber, contour))
|
||||
|
||||
# inserts all the fucking contours as layers?
|
||||
for frameNumber, contours in data.items():
|
||||
for frameNumber in sorted(data):
|
||||
contours = data[frameNumber]
|
||||
for (x,y,w,h) in contours:
|
||||
foundLayer = False
|
||||
i = 0
|
||||
|
|
|
|||
Binary file not shown.
Binary file not shown.
Binary file not shown.
8
main.py
8
main.py
|
|
@ -3,17 +3,19 @@ import time
|
|||
from ContourExctractor import ContourExtractor
|
||||
from Exporter import Exporter
|
||||
from LayerFactory import LayerFactory
|
||||
from Analyzer import Analyzer
|
||||
import cv2
|
||||
#TODO
|
||||
# finden von relevanten Stellen anhand von zu findenen metriken für vergleichsbilder
|
||||
|
||||
def demo():
|
||||
print("startup")
|
||||
resizeWidth = 512
|
||||
resizeWidth = 1024
|
||||
maxLayerLength = 1*60*30
|
||||
start = time.time()
|
||||
|
||||
footagePath = os.path.join(os.path.dirname(__file__), "./generate test footage/out.mp4")
|
||||
footagePath = os.path.join(os.path.dirname(__file__), "./generate test footage/3.MP4")
|
||||
analyzer = Analyzer(footagePath)
|
||||
contours = ContourExtractor().extractContours(footagePath, resizeWidth)
|
||||
print("Time consumed in working: ", time.time() - start)
|
||||
layerFactory = LayerFactory(contours)
|
||||
|
|
@ -21,7 +23,7 @@ def demo():
|
|||
layerFactory.sortLayers()
|
||||
layerFactory.fillLayers(footagePath)
|
||||
underlay = cv2.VideoCapture(footagePath).read()[1]
|
||||
Exporter().exportLayers(underlay, layerFactory.layers, os.path.join(os.path.dirname(__file__), "./short.mp4"), resizeWidth)
|
||||
Exporter().exportOverlayed(underlay, layerFactory.layers, os.path.join(os.path.dirname(__file__), "./short.mp4"), resizeWidth)
|
||||
print("Total time: ", time.time() - start)
|
||||
def init():
|
||||
print("not needed yet")
|
||||
|
|
|
|||
Loading…
Reference in New Issue