# USAGE # python motion_detector.py # python motion_detector.py --video videos/example_01.mp4 # import the necessary packages from imutils.video import VideoStream import argparse import datetime import imutils import time import cv2 import com import config def increase_brightness(img, value=30): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) lim = 255 - value v[v > lim] = 255 v[v <= lim] += value final_hsv = cv2.merge((h, s, v)) img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR) return img def compare(): url = config.stream # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the video file") ap.add_argument("-amin", "--min-area", type=int, default=3000, help="minimum area size") ap.add_argument("-amax", "--max-area", type=int, default=10000, help="minimum area size") args = vars(ap.parse_args()) # if the video argument is None, then we are reading from webcam args["video"] = url #args["video"] = "./videos/example_02.mp4" vs = cv2.VideoCapture(args["video"]) counter = 0 threashold = 18 delay = .3 framerate = 30 # initialize the first frame in the video stream firstFrame = None # loop over the frames of the video while True: try: # grab the current frame and initialize the occupied/unoccupied # text frame = vs.read() frame = frame if args.get("video", None) is None else frame[1] text = "Unoccupied" # if the frame could not be grabbed, then we have reached the end # of the video if frame is None: break # resize the frame, convert it to grayscale, and blur it frame = imutils.resize(frame, width=500) #frame = increase_brightness(frame, value=50) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (31, 31), 0) # if the first frame is None, initialize it if firstFrame is None: firstFrame = gray continue # compute the absolute difference between the current frame and # first frame frameDelta = cv2.absdiff(gray, firstFrame) thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1] # dilate the thresholded image to fill in holes, then find contours # on thresholded image thresh = cv2.dilate(thresh, None, iterations=2) cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) # loop over the contours for c in cnts: # if the contour is too small, ignore it if cv2.contourArea(c) < args["min_area"]: continue if cv2.contourArea(c) > args["max_area"]: continue # compute the bounding box for the contour, draw it on the frame, # and update the text (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied" # draw the text and timestamp on the frame cv2.putText(frame, "Room Status: {}".format(text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) if text == "Occupied" and config.monitor: img = frame location = com.saveImage(img) com.notify(location) print(text) key = cv2.waitKey(1) & 0xFF counter+=1 if counter % (framerate * delay) == 0: firstFrame = gray except Exception as e: print(e) # cleanup the camera and close any open windows #vs.stop() if args.get("video", None) is None else vs.release()