init
This commit is contained in:
parent
f995e1b5ba
commit
8196191c89
|
|
@ -0,0 +1,2 @@
|
||||||
|
|
||||||
|
\.vscode/
|
||||||
|
|
@ -0,0 +1,52 @@
|
||||||
|
import face_recognition
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# This is a demo of blurring faces in video.
|
||||||
|
|
||||||
|
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
|
||||||
|
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
|
||||||
|
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
|
||||||
|
|
||||||
|
# Get a reference to webcam #0 (the default one)
|
||||||
|
video_capture = cv2.VideoCapture("http://192.168.178.53:8000/stream.mjpg")
|
||||||
|
|
||||||
|
# Initialize some variables
|
||||||
|
face_locations = []
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# Grab a single frame of video
|
||||||
|
ret, frame = video_capture.read()
|
||||||
|
|
||||||
|
# Resize frame of video to 1/4 size for faster face detection processing
|
||||||
|
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
|
||||||
|
|
||||||
|
# Find all the faces and face encodings in the current frame of video
|
||||||
|
face_locations = face_recognition.face_locations(small_frame, model="cnn")
|
||||||
|
|
||||||
|
# Display the results
|
||||||
|
for top, right, bottom, left in face_locations:
|
||||||
|
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
||||||
|
top *= 4
|
||||||
|
right *= 4
|
||||||
|
bottom *= 4
|
||||||
|
left *= 4
|
||||||
|
|
||||||
|
# Extract the region of the image that contains the face
|
||||||
|
face_image = frame[top:bottom, left:right]
|
||||||
|
|
||||||
|
# Blur the face image
|
||||||
|
face_image = cv2.GaussianBlur(face_image, (99, 99), 30)
|
||||||
|
|
||||||
|
# Put the blurred face region back into the frame image
|
||||||
|
frame[top:bottom, left:right] = face_image
|
||||||
|
|
||||||
|
# Display the resulting image
|
||||||
|
cv2.imshow('Video', frame)
|
||||||
|
|
||||||
|
# Hit 'q' on the keyboard to quit!
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Release handle to the webcam
|
||||||
|
video_capture.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
|
@ -0,0 +1,132 @@
|
||||||
|
# USAGE
|
||||||
|
# python motion_detector.py
|
||||||
|
# python motion_detector.py --video videos/example_01.mp4
|
||||||
|
|
||||||
|
# import the necessary packages
|
||||||
|
from imutils.video import VideoStream
|
||||||
|
import argparse
|
||||||
|
import datetime
|
||||||
|
import imutils
|
||||||
|
import time
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def increase_brightness(img, value=30):
|
||||||
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||||||
|
h, s, v = cv2.split(hsv)
|
||||||
|
|
||||||
|
lim = 255 - value
|
||||||
|
v[v > lim] = 255
|
||||||
|
v[v <= lim] += value
|
||||||
|
|
||||||
|
final_hsv = cv2.merge((h, s, v))
|
||||||
|
img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
# construct the argument parser and parse the arguments
|
||||||
|
ap = argparse.ArgumentParser()
|
||||||
|
ap.add_argument("-v", "--video", help="path to the video file")
|
||||||
|
ap.add_argument("-amin", "--min-area", type=int, default=3000, help="minimum area size")
|
||||||
|
ap.add_argument("-amax", "--max-area", type=int, default=10000, help="minimum area size")
|
||||||
|
args = vars(ap.parse_args())
|
||||||
|
|
||||||
|
time.sleep(5)
|
||||||
|
|
||||||
|
# if the video argument is None, then we are reading from webcam
|
||||||
|
args["video"] = "http://192.168.178.53:8000/stream.mjpg"
|
||||||
|
#args["video"] = "./videos/example_02.mp4"
|
||||||
|
vs = cv2.VideoCapture(args["video"])
|
||||||
|
counter = 0
|
||||||
|
threashold = 50
|
||||||
|
delay = 2
|
||||||
|
framerate = 30
|
||||||
|
|
||||||
|
# initialize the first frame in the video stream
|
||||||
|
firstFrame = None
|
||||||
|
|
||||||
|
# loop over the frames of the video
|
||||||
|
while True:
|
||||||
|
# grab the current frame and initialize the occupied/unoccupied
|
||||||
|
# text
|
||||||
|
frame = vs.read()
|
||||||
|
frame = frame if args.get("video", None) is None else frame[1]
|
||||||
|
text = "Unoccupied"
|
||||||
|
|
||||||
|
# if the frame could not be grabbed, then we have reached the end
|
||||||
|
# of the video
|
||||||
|
if frame is None:
|
||||||
|
break
|
||||||
|
|
||||||
|
# resize the frame, convert it to grayscale, and blur it
|
||||||
|
frame = imutils.resize(frame, width=500)
|
||||||
|
#frame = increase_brightness(frame, value=50)
|
||||||
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||||
|
gray = cv2.GaussianBlur(gray, (31, 31), 0)
|
||||||
|
|
||||||
|
# if the first frame is None, initialize it
|
||||||
|
if firstFrame is None:
|
||||||
|
firstFrame = gray
|
||||||
|
continue
|
||||||
|
|
||||||
|
# compute the absolute difference between the current frame and
|
||||||
|
# first frame
|
||||||
|
frameDelta = cv2.absdiff(gray, firstFrame)
|
||||||
|
|
||||||
|
thresh = cv2.threshold(frameDelta, threashold, 255, cv2.THRESH_BINARY)[1]
|
||||||
|
|
||||||
|
# dilate the thresholded image to fill in holes, then find contours
|
||||||
|
# on thresholded image
|
||||||
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||||
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cnts = imutils.grab_contours(cnts)
|
||||||
|
|
||||||
|
# loop over the contours
|
||||||
|
for c in cnts:
|
||||||
|
# if the contour is too small, ignore it
|
||||||
|
if cv2.contourArea(c) < args["min_area"]:
|
||||||
|
continue
|
||||||
|
if cv2.contourArea(c) > args["max_area"]:
|
||||||
|
continue
|
||||||
|
# compute the bounding box for the contour, draw it on the frame,
|
||||||
|
# and update the text
|
||||||
|
|
||||||
|
print(cv2.contourArea(c))
|
||||||
|
|
||||||
|
(x, y, w, h) = cv2.boundingRect(c)
|
||||||
|
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
||||||
|
text = "Occupied"
|
||||||
|
|
||||||
|
# draw the text and timestamp on the frame
|
||||||
|
cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||||
|
cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),
|
||||||
|
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
|
||||||
|
|
||||||
|
# show the frame and record if the user presses a key
|
||||||
|
cv2.imshow("Security Feed", frame)
|
||||||
|
cv2.imshow("Thresh", thresh)
|
||||||
|
cv2.imshow("Frame Delta", frameDelta)
|
||||||
|
|
||||||
|
img_yuv = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)
|
||||||
|
# equalize the histogram of the Y channel
|
||||||
|
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
|
||||||
|
# convert the YUV image back to RGB format
|
||||||
|
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
|
||||||
|
|
||||||
|
cv2.imshow("equalized", img_output)
|
||||||
|
|
||||||
|
key = cv2.waitKey(1) & 0xFF
|
||||||
|
|
||||||
|
# if the `q` key is pressed, break from the lop
|
||||||
|
if key == ord("q"):
|
||||||
|
break
|
||||||
|
counter+=1
|
||||||
|
#if counter % (framerate * delay) == 0:
|
||||||
|
# firstFrame = gray
|
||||||
|
|
||||||
|
# cleanup the camera and close any open windows
|
||||||
|
vs.stop() if args.get("video", None) is None else vs.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue