mirror of https://github.com/Askill/AP-SCE.git
- fixed a4.1.1, a4.1.2 and a542 now handels inputs
This commit is contained in:
parent
7bbe3e29f0
commit
9a2d6028b4
89
Mex/a411.cpp
89
Mex/a411.cpp
|
|
@ -7,11 +7,12 @@ void mexFunction(int nlhs, mxArray *plhs[], // Output variables
|
|||
int nrhs, const mxArray *prhs[]) // Input variables
|
||||
{
|
||||
int variables = *mxGetPr(prhs[0]);
|
||||
double inc = *mxGetPr(prhs[1]);
|
||||
|
||||
double* x = (double *)mxCalloc(variables, sizeof(double)); //create solution array
|
||||
|
||||
double* xx = (double *)mxCalloc(variables, sizeof(double));
|
||||
double* yy = (double *)mxCalloc(variables, sizeof(double));
|
||||
double* x_in = (double *)mxCalloc(variables, sizeof(double)); //input x
|
||||
double* y = (double *)mxCalloc(variables, sizeof(double)); //input y
|
||||
|
||||
double** GA = (double **)mxCalloc(variables+1, sizeof(double*)); //create Gauss Array (GA)
|
||||
for (int i = 0; i <= variables; i++){
|
||||
|
|
@ -19,91 +20,81 @@ void mexFunction(int nlhs, mxArray *plhs[], // Output variables
|
|||
}
|
||||
|
||||
for(int i=0;i<variables;i++){
|
||||
xx[i]=mxGetPr(prhs[1])[i];
|
||||
x_in[i]=mxGetPr(prhs[2])[i];
|
||||
}
|
||||
for(int i=0;i<variables;i++){
|
||||
yy[i]=mxGetPr(prhs[2])[i];
|
||||
y[i]=mxGetPr(prhs[3])[i];
|
||||
}
|
||||
|
||||
for(int i=0;i<variables;i++){
|
||||
for(int i=0;i<variables;i++){ //fill GA with the polynoms
|
||||
for(int j=0; j<variables;j++){
|
||||
GA[i][j] = pow(xx[i],j);
|
||||
GA[i][j] = pow(x_in[i],j);
|
||||
}
|
||||
}
|
||||
for(int i=0;i<variables;i++){
|
||||
GA[i][variables] = yy[i];
|
||||
GA[i][variables] = y[i];
|
||||
}
|
||||
|
||||
double len = (x_in[variables-1]-x_in[0])/inc +1;
|
||||
|
||||
double* xx = (double *)mxCalloc(len, sizeof(double)); //return array with x values
|
||||
double* yy = (double *)mxCalloc(len, sizeof(double)); //return array with interpolated y values
|
||||
|
||||
int i, j, k;
|
||||
for (i = 0; i<variables; i++) //Pivotisation
|
||||
for (k = i + 1; k<variables; k++)
|
||||
double temp=x_in[0];
|
||||
for(int i=0;temp <= x_in[variables-1]+inc;i++){ //generate return array with x values
|
||||
xx[i]=temp;
|
||||
temp += inc;
|
||||
}
|
||||
|
||||
// Gauß
|
||||
for (int i = 0; i<variables; i++) //Pivotisation
|
||||
for (int k = i + 1; k<variables; k++)
|
||||
if (abs(GA[i][i])<abs(GA[k][i]))
|
||||
for (j = 0; j <= variables; j++)
|
||||
for (int j = 0; j <= variables; j++)
|
||||
{
|
||||
long double temp = GA[i][j];
|
||||
GA[i][j] = GA[k][j];
|
||||
GA[k][j] = temp;
|
||||
}
|
||||
|
||||
for (i = 0; i<variables - 1; i++) //gauss elimination
|
||||
for (k = i + 1; k<variables; k++)
|
||||
for (int i = 0; i<variables - 1; i++) //gauss elimination
|
||||
for (int k = i + 1; k<variables; k++)
|
||||
{
|
||||
long double t = GA[k][i] / GA[i][i];
|
||||
for (j = 0; j <= variables; j++)
|
||||
for (int j = 0; j <= variables; j++)
|
||||
GA[k][j] = GA[k][j] - t*GA[i][j]; //make the elements below the pivot elements equal to zero or elimnate the variables
|
||||
}
|
||||
|
||||
for (i = variables - 1; i >= 0; i--) //back-substitution
|
||||
for (int i = variables - 1; i >= 0; i--) //back-substitution
|
||||
{ //x is an array whose values correspond to the values of x,y,z..
|
||||
x[i] = GA[i][variables]; //make the variable to be calculated equal to the rhs of the last equation
|
||||
for (j = i + 1; j<variables; j++)
|
||||
for (int j = i + 1; j<variables; j++)
|
||||
if (j != i) //then subtract all the lhs values except the coefficient of the variable whose value is being calculated
|
||||
x[i] = x[i] - GA[i][j] * x[j];
|
||||
x[i] = x[i] / GA[i][i]; //now finally divide the rhs by the coefficient of the variable to be calculated
|
||||
}
|
||||
|
||||
nlhs = variables;
|
||||
for(int j=0; j < variables; j++){
|
||||
plhs[j]=mxCreateDoubleScalar(x[j]);
|
||||
//polyval: filling yy with the interpolated values
|
||||
|
||||
for (int i = 0; i < len; i++){
|
||||
double tmp = 0;
|
||||
for (int j = 0; j < variables; j++){
|
||||
tmp += pow(xx[i], j) * x[j];
|
||||
}
|
||||
for(int l=0;l<variables;l++){
|
||||
char temp;
|
||||
|
||||
if(x[variables-1-l] != 0)
|
||||
{
|
||||
if(l!=0){
|
||||
mexPrintf("+");
|
||||
}
|
||||
if(x[variables-1-l] < 0 ){
|
||||
mexPrintf("-");
|
||||
x[variables-l] *= -1;
|
||||
}
|
||||
temp=(char)(48+x[variables-1-l]);
|
||||
mexPrintf("%c",temp);
|
||||
|
||||
if(variables-1-l != 0){
|
||||
mexPrintf("*");
|
||||
mexPrintf("x");
|
||||
mexPrintf("^");
|
||||
temp=(char)(48+variables-1-l);
|
||||
mexPrintf("%c",temp);
|
||||
yy[i]=tmp;
|
||||
}
|
||||
|
||||
}
|
||||
//return values
|
||||
nlhs = 2;
|
||||
|
||||
}
|
||||
mexPrintf("\n");
|
||||
plhs[0] = mxCreateDoubleMatrix(1, len, mxREAL);
|
||||
memcpy(mxGetPr(plhs[0]), xx, len*sizeof(double));
|
||||
|
||||
plhs[1] = mxCreateDoubleMatrix(1, len, mxREAL);
|
||||
memcpy(mxGetPr(plhs[1]), yy, len*sizeof(double));
|
||||
|
||||
for (int i = 0; i <= variables; i++ ){
|
||||
free(GA[i]);
|
||||
}
|
||||
|
||||
free(GA);
|
||||
free(x);
|
||||
//free memory
|
||||
|
||||
// causes errors
|
||||
return;
|
||||
}
|
||||
118
Mex/a412.cpp
118
Mex/a412.cpp
|
|
@ -7,103 +7,69 @@ void mexFunction(int nlhs, mxArray *plhs[], // Output variables
|
|||
int nrhs, const mxArray *prhs[]) // Input variables
|
||||
{
|
||||
int variables = *mxGetPr(prhs[0]);
|
||||
variables++;
|
||||
double inc = *mxGetPr(prhs[1]);
|
||||
|
||||
double* x = (double *)mxCalloc(variables, sizeof(double)); //create solution array
|
||||
|
||||
double* xx = (double *)mxCalloc(variables, sizeof(double));
|
||||
double* yy = (double *)mxCalloc(variables, sizeof(double));
|
||||
double* x = (double *)mxCalloc(variables, sizeof(double));
|
||||
double* y = (double *)mxCalloc(variables, sizeof(double));
|
||||
|
||||
double** GA = (double **)mxCalloc(variables+1, sizeof(double*)); //create Gauss Array (GA)
|
||||
for (int i = 0; i <= variables; i++){
|
||||
GA[i] = (double *)mxCalloc(variables+1, sizeof(double));
|
||||
for(int i=0;i<variables-1;i++){
|
||||
x[i]=mxGetPr(prhs[2])[i];
|
||||
}
|
||||
x[variables-1]=x[variables-2];
|
||||
x[variables-1]+=inc;
|
||||
|
||||
for(int i=0;i<variables-1;i++){
|
||||
y[i]=mxGetPr(prhs[3])[i];
|
||||
}
|
||||
|
||||
for(int i=0;i<variables;i++){
|
||||
xx[i]=mxGetPr(prhs[1])[i];
|
||||
}
|
||||
for(int i=0;i<variables;i++){
|
||||
yy[i]=mxGetPr(prhs[2])[i];
|
||||
}
|
||||
y[variables-1]=y[variables-2];
|
||||
|
||||
for(int i=0;i<variables;i++){
|
||||
for(int j=0; j<variables;j++){
|
||||
GA[i][j] = pow(xx[i],j);
|
||||
}
|
||||
}
|
||||
for(int i=0;i<variables;i++){
|
||||
GA[i][variables] = yy[i];
|
||||
|
||||
double len = (x[variables-1]-x[0])/inc +1;
|
||||
|
||||
double* xx = (double *)mxCalloc(len, sizeof(double));
|
||||
double* yy = (double *)mxCalloc(len, sizeof(double));
|
||||
|
||||
double temp=x[0];
|
||||
for(int i=0;temp <= x[variables-1]+inc;i++){
|
||||
xx[i]=temp;
|
||||
temp += inc;
|
||||
}
|
||||
|
||||
|
||||
//Code von Marvin Lehmann start
|
||||
unsigned int savepoint = 0;
|
||||
|
||||
int i, j, k;
|
||||
for (i = 0; i<variables; i++) //Pivotisation
|
||||
for (k = i + 1; k<variables; k++)
|
||||
if (abs(GA[i][i])<abs(GA[k][i]))
|
||||
for (j = 0; j <= variables; j++)
|
||||
// Zwischen jeweils 2 Punkten
|
||||
for (unsigned int i = 0; i < variables-1; i++)
|
||||
{
|
||||
long double temp = GA[i][j];
|
||||
GA[i][j] = GA[k][j];
|
||||
GA[k][j] = temp;
|
||||
}
|
||||
|
||||
for (i = 0; i<variables - 1; i++) //gauss elimination
|
||||
for (k = i + 1; k<variables; k++)
|
||||
// Für alle Zwischenwerte (xx) y interpolieren (yy)
|
||||
for (unsigned int j = savepoint; j < len; j++)
|
||||
{
|
||||
long double t = GA[k][i] / GA[i][i];
|
||||
for (j = 0; j <= variables; j++)
|
||||
GA[k][j] = GA[k][j] - t*GA[i][j]; //make the elements below the pivot elements equal to zero or elimnate the variables
|
||||
}
|
||||
|
||||
for (i = variables - 1; i >= 0; i--) //back-substitution
|
||||
{ //x is an array whose values correspond to the values of x,y,z..
|
||||
x[i] = GA[i][variables]; //make the variable to be calculated equal to the rhs of the last equation
|
||||
for (j = i + 1; j<variables; j++)
|
||||
if (j != i) //then subtract all the lhs values except the coefficient of the variable whose value is being calculated
|
||||
x[i] = x[i] - GA[i][j] * x[j];
|
||||
x[i] = x[i] / GA[i][i]; //now finally divide the rhs by the coefficient of the variable to be calculated
|
||||
}
|
||||
|
||||
nlhs = variables;
|
||||
for(int j=0; j < variables; j++){
|
||||
plhs[j]=mxCreateDoubleScalar(x[j]);
|
||||
|
||||
}
|
||||
for(int l=0;l<variables;l++){
|
||||
char temp;
|
||||
|
||||
if(x[variables-1-l] != 0)
|
||||
if (xx[j] >= x[i] && xx[j] <= x[i + 1])
|
||||
{
|
||||
if(l!=0){
|
||||
mexPrintf("+");
|
||||
// Interpolationsformel
|
||||
yy[j] = ((y[i + 1] - y[i]) / (x[i + 1] - x[i])) * (xx[j] - x[i]) + y[i];
|
||||
}
|
||||
if(x[variables-1-l] < 0 ){
|
||||
mexPrintf("-");
|
||||
x[variables-l] *= -1;
|
||||
else if (xx[j] > x[i + 1])
|
||||
{
|
||||
savepoint = j;
|
||||
break;
|
||||
}
|
||||
temp=(char)(48+x[variables-1-l]);
|
||||
mexPrintf("%c",temp);
|
||||
|
||||
if(variables-1-l != 0){
|
||||
mexPrintf("*");
|
||||
mexPrintf("x");
|
||||
mexPrintf("^");
|
||||
temp=(char)(48+variables-1-l);
|
||||
mexPrintf("%c",temp);
|
||||
}
|
||||
|
||||
}
|
||||
//Code von Marvin Lehmann ende
|
||||
|
||||
}
|
||||
mexPrintf("\n");
|
||||
nlhs = 2;
|
||||
|
||||
plhs[0] = mxCreateDoubleMatrix(1, len, mxREAL);
|
||||
memcpy(mxGetPr(plhs[0]), xx, len*sizeof(double));
|
||||
|
||||
for (int i = 0; i <= variables; i++ ){
|
||||
free(GA[i]);
|
||||
}
|
||||
plhs[1] = mxCreateDoubleMatrix(1, len, mxREAL);
|
||||
memcpy(mxGetPr(plhs[1]), yy, len*sizeof(double));
|
||||
|
||||
free(GA);
|
||||
free(x);
|
||||
|
||||
return;
|
||||
}
|
||||
34
Mex/a542.cpp
34
Mex/a542.cpp
|
|
@ -2,29 +2,41 @@
|
|||
#include "matrix.h"
|
||||
#include "stdlib.h"
|
||||
#include "math.h"
|
||||
double g_von_theta(long double x, long double y)
|
||||
double g_von_theta(long double x, long double y, char * func_Name)
|
||||
{
|
||||
return -(x*x + y*y);
|
||||
//-(x*x + y*y);
|
||||
mxArray *func_Inputs[2];
|
||||
mxArray *func_Outputs[1];
|
||||
func_Inputs[0] = mxCreateDoubleScalar(x);
|
||||
func_Inputs[1] = mxCreateDoubleScalar(y);
|
||||
mexCallMATLAB(1, func_Outputs , 2 , func_Inputs , func_Name);
|
||||
return *mxGetPr(func_Outputs[0]);
|
||||
|
||||
}
|
||||
|
||||
void mexFunction(int nlhs, mxArray *plhs[], // Output variables
|
||||
int nrhs, const mxArray *prhs[]) // Input variables
|
||||
{
|
||||
double x = -2, y = -2,
|
||||
xnew, ynew,
|
||||
increments = 0.1,
|
||||
z = g_von_theta(x, y),
|
||||
char *func_Name;
|
||||
func_Name = mxArrayToString(prhs[0]);
|
||||
//x = -2, y = -2
|
||||
double x = *mxGetPr(prhs[1]);
|
||||
double y = *mxGetPr(prhs[2]);
|
||||
double increments = *mxGetPr(prhs[3]);
|
||||
|
||||
double xnew, ynew,
|
||||
z = g_von_theta(x, y, func_Name),
|
||||
znew = 0, zold = 1,
|
||||
zinitial = z;
|
||||
int xTOy = 1, iAThalf = 1000; //iAThalf: max iterations/2
|
||||
int i;
|
||||
for( i = 0 ; i <= 2 * iAThalf + 1; ++i) // add. exit crit. needed
|
||||
|
||||
for(int i = 0 ; i <= 2 * iAThalf + 1; ++i) // add. exit crit. needed
|
||||
{
|
||||
if (xTOy == 1)
|
||||
{
|
||||
xnew = x;
|
||||
ynew = y;
|
||||
if (zinitial / 2 == z) //appropriate criteria?
|
||||
if (zinitial / 2 == z)
|
||||
{
|
||||
iAThalf = i;
|
||||
ynew = y + increments;
|
||||
|
|
@ -38,7 +50,7 @@ int i;
|
|||
ynew = y + increments;
|
||||
}
|
||||
|
||||
znew = g_von_theta(xnew, ynew);
|
||||
znew = g_von_theta(xnew, ynew, func_Name);
|
||||
zold = z;
|
||||
if(znew > z)
|
||||
{
|
||||
|
|
@ -55,6 +67,6 @@ int i;
|
|||
plhs[0] = mxCreateDoubleScalar(x);
|
||||
plhs[1] = mxCreateDoubleScalar(y);
|
||||
plhs[2] = mxCreateDoubleScalar(z);
|
||||
plhs[3] = mxCreateDoubleScalar(i);
|
||||
|
||||
return;
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
%function accepts 1 string, 2 double and increments
|
||||
% a542("func_name", x, y, inc)
|
||||
% function returns lowest found return of passed function
|
||||
%
|
||||
%exp.:
|
||||
% function z=func(x,y)
|
||||
% z=-(x*x + y*y);
|
||||
% end
|
||||
%
|
||||
% a542("func",-2,-2, 0.1)
|
||||
% ans=6.3838e-016
|
||||
Loading…
Reference in New Issue